• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the Moving Averaging Technique in Surplus Production Models

    2014-05-05 13:00:25WANGYuandLIUQun
    Journal of Ocean University of China 2014年4期

    WANG Yu, and LIU Qun

    College of Fisheries, Ocean University of China, Qingdao 266003, P. R. China

    Application of the Moving Averaging Technique in Surplus Production Models

    WANG Yu, and LIU Qun*

    College of Fisheries, Ocean University of China, Qingdao 266003, P. R. China

    Surplus production models are the simplest analytical methods effective for fish stock assessment and fisheries management. In this paper, eight surplus production estimators (three estimation procedures) were tested on Schaefer and Fox type simulated data in three simulated fisheries (declining, well-managed, and restoring fisheries) at two white noise levels. Monte Carlo simulation was conducted to verify the utility of moving averaging (MA), which was an important technique for reducing the effect of noise in data in these models. The relative estimation error (REE) of maximum sustainable yield (MSY) was used as an indicator for the analysis, and one-way ANOVA was applied to test the significance of the REE calculated at four levels of MA. Simulation results suggested that increasing the value of MA could significantly improve the performance of the surplus production model (low REE) in all cases when the white noise level was low (coefficient of variation (CV) = 0.02). However, when the white noise level increased (CV= 0.25), adding the value of MA could still significantly enhance the performance of most models. Our results indicated that the best model performance occurred frequently whenMAwas equal to 3; however, some exceptions were observed whenMAwas higher.

    moving averaging; surplus production model; Monte Carlo simulation

    1 Introduction

    Surplus production models are flexible tools for fishery data analysis due to their low data requirement and easy interpretation of model output (Schaefer, 1954; Pella and Tomlinson, 1969; Walter and Hilborn, 1976; Fox, 1970; Prager, 1994). Since Schaefer (1954) put forward the production model, the surplus production model had undergone a long history of development. Prager (1994) reviewed a set of extensions of the simple surplus production model and detailed descriptions of several fundamental equations relating to the population dynamics. In recent years, computer packages such as Catch Effort Data Analysis (CEDA) and A Surplus-Production Model Incorporating Covariates (ASPIC) provided an efficient approach to fit nonequilibrium surplus production models with the ‘observation error’ method (Hoggarthet al., 2006; Prager, 2005; Panhwaret al., 2012; Mesnil, 2012; Punt, 2012). In this study, the relative estimation error (REE) of the maximum sustainable yield (MSY) was used as an evaluation indicator of the performance of the surplus production model. Moving averaging (MA) is a useful technique in reducing data noise, thus improving model performance. Although the application of MA has been reported (Gulland, 1983), the validity of MA in surplus production model estimations has not been detected. Meanwhile, a Monte Carlo simulation was conducted to verify the utility of MA in surplus production models by using the data of three typical fisheries. One-way ANOVA was used for the significance test for the REE calculated from different values of MA.

    2 Data and Methods

    2.1 Data

    Three typical fishery exploitation histories were analyzed in this study according to Cuiet al. (2008). The first type of fishery,i.e., the ‘one-way trip’ fishery or ‘declining fishery’, which is the most common type wherein fishing effort, is continuously increasing while biomass is declining. The second type is the ‘well-managed fishery’, which has a strong contrast between biomass and effort. The third is ‘restoring fishery’, which has a low level of fishing effort and increasing biomass. Figs.1 to 3 show the biomass and effort for these three fisheries.

    2.2 Models and Estimators

    Two types of surplus production models, namely, the Schaefer and Fox surplus models, were used to simulate data for three fishery histories according to Cuiet al. (2008). These two models are expressed as Eqs. (1) and(2), whereB(t)andB(t+1)are the biomass in yeartand yeart+ 1, respectively;ris the intrinsic population growth rate;Kis the carrying capacity. The true parameters (r= 0.4,K= 1000,q= 0.01) and coefficient of variation (CV) of white noise (0.02 and 0.25) were set for three fishery histories in advance (Figs.1 to 3). We noted that the value ofB0was different among the three fisheries. For declining and well-managed fisheries,B0was equal to 800, whereas for restoring fishery,B0was equal to 200.

    Fig.1 Biomass and effort data generated from the Schaefer (upper) and Fox (lower) model for the Declining Fishery.

    Fig.2 Biomass and effort data generated from the Schaefer (upper) and Fox (lower) model for the Well-managed Fishery.

    Fig.3 Biomass and effort data generated from the Schaefer (upper) and Fox (lower) model for the Restoring Fishery.

    The parameters in the paper were estimated with the equilibrium, process error, and observation error methods. The equilibrium method relies on the assumption that each level of fishing effort corresponds to an equilibrium sustainable yield (Boerema and Gulland, 1973; Larkin, 1977). The forms of the Schaefer (Schaefer, 1954) and Fox (Fox, 1970) equilibrium surplus production models are expressed as Eqs. (5) and (6), whereYeis the catch at equilibrium condition;Bis the stock biomass;fis the fishing effort;a,b,c, anddare the regression parameters of the equilibrium estimators. The management parameters ofMSYandfMSYfor the two equilibrium estimators are calculated by using Eqs. (7) and (8), whereMSYis the maximum sustainable yield andfMSYis the optimum fishing effort.

    For simplicity, the normally distributed random variables were generated based on the Box-Muller scheme (Eqs. (3) and (4)), which used two uniformly distributed random numbersU1andU2(between 0 and 1) (Hilborn and Mangel, 1997). Thus,Z1andZ2are the normally distributed random numbers with a mean of 0 and a variance of 1. Eqs. (9) to (12) are the transformations of the simple surplus production models (Eqs. (1) and (2)). Eqs. (9) and (10) are Schaefer-type models (Schnute, 1977; Walters and Hilborn, 1976), and Eqs. (11) and (12) are Fox-type models (Fox, 1970; Yoshimoto and Clarke, 1993). Here,Utis the catch per unit effort (CPUE) or abundance index in yeart, andqis the catchability coefficient.

    The observation error method is a nonlinear technique and is currently the most popular method. This method is used to minimize the squared deviations between observed and predicted CPUE. The equations of the discrete form of the Schaefer and Fox models are expressed as Eqs. (13) to (16), whereis the estimated biomass in yeart,is the estimated catch in yeart, andis the estimated CPUE or abundance index in yeart. The corresponding management parameters ofMSYandfMSYfor the process error and observation error estimators are calculated by Eqs. (17) and (18). Eq. (17) is for the Schaefer nonequilibrium models (Eqs. (9), (10), and (13)). Eq. (18) is for the Fox nonequilibrium models (Eqs. (11), (12), and (14)).

    2.3 Monte Carlo Simulation and Moving Averaging

    The Monte Carlo simulation is a calculation-intensive method that can be used to test a specific hypothesis and to answer ‘what if’ type questions, including projections into the future (Polachecket al., 1993; Kinas, 1996). This method is one of the most common ways to assess thequality of an estimator and is currently extensively applied in risk assessment and management strategy evaluation in fisheries (Francis, 1992; Haddon, 2011). For the simulation study, we followed the procedure of Hilborn and Walters (1992). The initial step was generating numerous data sets by using the Schaefer and Fox production models (Eqs. (1) and (2)), representing simulated fished populations under two levels of CV. Uncertainty consideration is important for fishery stock assessments and management decisions (Zhu et al., 2012). Thus, white noise levels (normally distributed random numbers) are used in the Monte Carlo simulation. The values of CV were set at 0.02 and 0.25 following Prager (2002). A simple unweighed MA technique was used to smooth the original data to reduce the effect of noise. The MA levels were one, three, five, and seven years. The formulation of this technique is expressed as Eq. (19), where C1is the catch after MA, C0is the original data, N is the number of data points, and n is the number of MA. MA was applied to the data of the six simulated fisheries, and eight models were used to conduct the assessment. The biological reference points, such as MSY and its REE, were estimated (Eq. (20)). Finally, 1000 repetitions were generated by Monte Carlo simulation, and the average of the REE at four MAs was used to evaluate the performance of the eight models.

    All works in this study were performed by using Visual Basic for Applications in Microsoft Office Excel 2007, and the significance test was conducted by using SPSS (V.17).

    2.4 Functions

    3 Results

    3.1 Declining Fishery

    Table 1 shows that for both Schaefer-type and Foxtype simulated data of declining fishery, increasing the value of MA improved the model performance for all the cases, and the significance levels of the average REE estimated under four levels of MA were all <0.01. Table 2 shows the average REE of 15 out of 16 cases, with the exception of the Schaefer model with Schaefer simulated data, decreased with increasing value of MA when CV increased. The significance level of three cases was >0.01. In general, for the three parameter estimation methods, the value of REE estimated from the observation error method was the smallest, except for the Obs.Schaefer model under the Schaefer simulated data. Fig.4 shows that the accuracy of REE was high when CV was equal to 0.02 for all the models, but began to decline when CV was equal to 0.25. With the increasing value of MA, REE decreased significantly.

    Table 1 Average REE (Relative Estimation Error) computed from eight models by changing the value of MA from 1 to 7 using Schaefer and Fox type simulated data of the three fisheries when CV=0.02

    Table 2 Average REE computed from eight models by changing the value of MA from 1 to 7 using Schaefer and Fox type simulated data of the three fisheries when CV=0.25

    (continued)

    Fig.4 REE of maximum sustainable yield (MSY) for the eight estimators under four moving averagings and two CV levels using the Schaefer and Fox simulated data of declining fishery. REE values higher than 100% were abandoned.

    3.2 Well-Managed Fishery

    With regard to the well-managed fishery (Fig.2), Table 1 shows that the value of REE decreased whenMAincreased, with only one exception (I-Fox model in Schaefer simulated data). This result indicated thatMAcould generally improve the model performance for this fishery. However, whenCVwas equal to 0.25 (Table 2), all the average REE computed from the eight models had the smallest value whenMAwas >1. The REE from the four levels ofMAwere significantly different, with the exceptions of Schaefer (1954) and Fox (1970). As shown in Fig.5, whenCVwas equal to 0.02, the observation error method showed the smallest REE at all four levels ofMA.

    Fig.5 REE of maximum sustainable yield (MSY) for the eight estimators under four moving averaging and two CV levels using the Schaefer and Fox simulated data of well-managed fishery. REE values higher than 100% were abandoned.

    3.3 Restoring Fishery

    For the restoring fishery (Fig.3), Table 1 and 2 show that the increased value of MA could improve the model performance for all the cases. However, the REE values at four MAs for the Schnute (1977) model were not significantly different when CV was equal to 0.25. Table 1 shows that for the Schaefer simulated data, the W-H (1976) model with MA equal to 3 operated best, and the Obs. Fox model with MA = 5 gained the smallest REE for the Fox simulated data. The results shown in Table 2 are similar to those in Table 1. The D-Fox (1970) model with MA = 3 behaved excellently for the Fox simulated data. Fig.6 shows that when CV was equal to 0.02, the increasing value of MA could significantly decrease the value of REE.

    Fig.6 Relative Estimation Error (REE) of maximum sustainable yield (MSY) for the eight estimators under four moving averaging and two CV levels using the Schaefer and Fox simulated data of restoring fishery. REE values higher than 100% were abandoned.

    3.4 Confidence Interval

    Table 3 shows the average MSY and their 95% confidence intervals (in brackets) for the global minimum of REE values (double underlined values in Tables 1 and 2). We observed that the confidence intervals were small for all the cases which offered a reliable result. All the values were close to the true value of MSY.

    Table 3 Average MSY and their 95% confidence intervals (in brackets) for the global minimum of REE values, the double under-lined in Tables 1–2

    4 Discussion

    MA has been applied in science, with a long history of development. For example, Holt (2004) forecasted seasonal trends by using exponentially weighted MAs. In fishery science, Gulland (1983) and Haddon (2011) reported the effect of MA in smoothing noise in data. With 12000 generated artificial data sets, this study demonstrated that MA can reduce the effect of noise in the data effectively, thereby improving the accuracy of surplus production models significantly. Although the use of MA was not workable in all of the situations considered, results proved that MA was feasible for most of the cases. We noted that the effect of MA was sensitive to white noise. In some cases, when the value ofCVincreased, the values of REE at the four MA levels were not significantly different.

    Tables 1 and 2 show that in Schaefer-type simulated fishery, Schaefer-type estimators, such as W-H (1976) and Obs.Schaefer generally behave better compared with other estimators. Similarly, Fox-type estimators such as I-Fox, D-Fox, and Obs. Fox, had better estimation accuracy compared with other estimators in Fox-type simulated fishery. This finding agrees well with practical experiences and proves the validity of using REE as an indicator. Therefore, choosing the right production model,i.e., Schaefer or Fox is important when analyzing fishery catch and effort data.

    The result from the six simulated fisheries also indicated that the REE estimated from the equilibrium models was always larger than the values from nonequilibrium models. The two equilibrium estimators were not sensitive to white noise but sensitive to the value ofMA, whereas the six nonequilibrium estimators were sensitive to white noise andMA, especially for the observation error estimators. Therefore, we can conclude that equilibrium estimators are more stable than nonequilibrium estimators. However, this conclusion does not mean that equilibrium estimators are always perfect. Figs.4 to 6 show that observation error methods always possess significantly accurate estimates than the equilibrium and process error methods.

    Polachecket al.(1993) stated that process error estimators should be applied only if simulation studies and practical experience suggest that they would be superior to observation error estimators. Our research proved that none of the estimators outperformed all of the other estimators for all the cases considered. However, the observation error estimator is considered the best choice because we should make a tradeoff between accuracy and precision. However, factors other than performance under simulated conditions should be considered when selecting a better estimator for assessment.

    Computer packages programmed with nonlinear production models such as ASPIC and CEDA are extensively used today as parameter estimation tools (Prager, 2005; Hoggarthet al., 2006; Panhwaret al., 2012). However, these computer packages cannot be included in this Monte Carlo simulation study because repeating the computer packages 1000 times is difficult. The application of these two packages in this work will be interesting.

    Given their simple concepts and assumptions, surplus production models generally cannot capture certain agedependent characteristics of a fish population. Therefore, if the data allow, age-structured production models that relate the present total number or total biomass of a fish population to its previous numbers through age structure should be used in future studies. The MA technique is simple and useful. However, research regarding the application of MA in the surplus production model in this paper was based only on simulated data. Therefore, additional tests on real fisheries data will yield optimal results. This research nonetheless provides a useful start in this area.

    Acknowledgement

    This work is supported by the special research fund of Ocean University of China (201022001).

    Boerema, L. K., and Gulland, J. A., 1973. Stock assessment ofthe Peruvian anchovy (Engraulis ringens) and management of the fishery. Journal of Fisheries Research Board of Canada, 30: 2226-2235.

    Cui, H., Liu, Q., and Wang, Y. J., 2008. Application of a continuous Fox-form production model in fishery stock assessment. South China Fisheries Science, 4 (2): 34-42.

    Fox, W. W., 1970. An exponential surplus-yield model for optimizing exploited fish populations. Transactions of the American Fish Society, 99: 80-88.

    Francis, R. I. C. C., 1992. Use of risk analysis to assess fishery management strategies: A case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Canadian Journal of Fisheries and Aquatic Science, 49: 922-930.

    Gulland, J. A., 1983. Fish Stock Assessment: A Manual of Basic Methods. John Wiley&Sons, New York, 223pp.

    Haddon, M., 2011. Modelling and Quantitative Methods in Fisheries. 2nd edition. Chapman & Hall /CRC, New York, 285-300.

    Hilborn, R., and Walters, C. J., 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics, and Uncertainty. Chapman & Hall, London, 297-319.

    Hilborn, R., 1997. Comment: Recruitment paradigms for fish stocks. Canadian Journal of Fisheries and Aquatic Science, 54: 984-985.

    Hoggarth, D. D., Abeyasekera, S., and Arthur, R. I., 2006. Stock Assessment for Fishery Management. A Framework Guide to the Stock Assessment Tools of the Fisheries Management and Science Programme. FAO Fishery Technical Paper 487, Rome, 97-146.

    Holt, C. C., 2004. Forecasting seasonal and trends by exponentially weighted moving averages. International Journal of Forecasting, 20: 5-10.

    Kinas, P. G., 1996. Bayesian fishery stock assessment and decision making using adaptive importance sampling. Canadian Journal of Fisheries and Aquatic Science, 53: 414-423.

    Larkin, P. A., 1977. An epitaph for the concept of maximum ststainable yield. Transactions of the American Fish Society, 106: 1-11.

    Mesnil, B., 2012. The hesitant emergence of maximum sustainable yield (MSY) in fisheries policies in Europe. Marine Policy, 36 (2): 473-480.

    Panhwar, S. K., Liu, Q., Khan, F., and Siddiqui, P. J. A., 2012. Maximum sustainable yield estimates of ladypees, Sillago sihama (Forssk), fishery in Pakistan, using the ASPIC and CEDA packages. Journal of Ocean University of China, 11 (1): 93-98.

    Pella, J. J., and Tomlinson, P. K., 1969. A generalized stock production model. Bulletin of the Inter-American Tropical Tuna Commission, 13: 419-496.

    Polacheck, T., Hilborn, R., and Punt, A. E., 1993. Fitting surplus production models: Comparing methods and measuring uncertainty. Canadian Journal of Fisheries and Aquatic Science, 50: 2597-2607.

    Prager, M. H., 1994. A suit of extensions to a nonequilibrium surplus-production model. Fishery Bulletin, 92: 374-389.

    Prager, M. H., 2002. Comparison of logistic and generalized surplus-production models applied to swordfish, Xiphias glodius, in the North Atlantic Ocean. Fisheries Research, 58 (1): 41-47.

    Prager, M. H., 2005. A stock-Production model incorporating covariates (Version 5) and auxiliary programs, CCFHR (NOAA) Miami laboratory document MIA-92/93-55, Beaufort Laboratory Document BL-2004-01.

    Punt, A. E., 2012. How well can FMSYand BMSYbe estimated using empirical measures of surplus production? Fisheries Research, 134-136: 113-124.

    Schaefer, M. B., 1954. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bulletin of the Inter-American Tropical Tuna Commission, 1: 27-56.

    Schnute, J., 1977. Improved estimates from the Schaefer production model: Theoretical considerations. Journal of the Fisheries Research Board of Canada, 34: 583-603.

    Walters, C. J., and Hilborn, R., 1976. Adaptive control of fishing systems. Journal of the Fisheries Research Board of Canada, 33: 145-159.

    Yoshimoto, S. S., and Clarke, R. P., 1993. Comparing dynamic versions of the Schaefer and Fox production models and their application to lobster fisheries. Canadian Journal of Fisheries and Aquatic Science, 50: 181-189.

    Zhu, J. F., Chen, Y., Dai, X. J., Harley, S. J., Hoyle, S. D., Maunder, M. N., and Aires-da-Silva, A. M., 2012. Implications of uncertainty in the spawner-recruitment relationship for fisheries management: An illustration using bigeye tuna (Thunnus obesus) in the eastern Pacific Ocean. Fisheries Research, 119-120: 89-93.

    (Edited by Qiu Yantao)

    (Received October 19, 2012; revised December 24, 2012; accepted December 2, 2013)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82031715

    E-mail: qunliu@ouc.edu.cn

    国产在线视频一区二区| 国产男女内射视频| 免费日韩欧美在线观看| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 久久99蜜桃精品久久| 欧美日韩亚洲国产一区二区在线观看 | 免费观看性生交大片5| 亚洲国产精品成人久久小说| 欧美av亚洲av综合av国产av | 日韩伦理黄色片| 精品一区在线观看国产| 人妻少妇偷人精品九色| 秋霞伦理黄片| 男女啪啪激烈高潮av片| 一级片'在线观看视频| 美国免费a级毛片| 亚洲精品国产av蜜桃| 国产毛片在线视频| 亚洲美女黄色视频免费看| 欧美另类一区| 亚洲欧美日韩另类电影网站| 赤兔流量卡办理| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 国产精品久久久久成人av| 99久久人妻综合| 美女高潮到喷水免费观看| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 亚洲国产欧美日韩在线播放| 黄色一级大片看看| 日本色播在线视频| 久久久久久久久免费视频了| 黄色 视频免费看| 国产成人一区二区在线| 久久99蜜桃精品久久| 国产高清国产精品国产三级| 日韩中文字幕欧美一区二区 | 精品亚洲成a人片在线观看| 亚洲中文av在线| 欧美日韩精品成人综合77777| 天堂8中文在线网| 激情视频va一区二区三区| 久久亚洲国产成人精品v| 麻豆av在线久日| 2018国产大陆天天弄谢| 亚洲男人天堂网一区| 午夜福利网站1000一区二区三区| 有码 亚洲区| 亚洲精品成人av观看孕妇| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| 欧美bdsm另类| 午夜91福利影院| 女人被躁到高潮嗷嗷叫费观| 免费大片黄手机在线观看| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 国产一级毛片在线| 国产精品一区二区在线观看99| 亚洲美女视频黄频| 一本久久精品| 精品亚洲成a人片在线观看| 欧美黄色片欧美黄色片| tube8黄色片| 一二三四在线观看免费中文在| 国产日韩欧美视频二区| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看 | 日韩成人av中文字幕在线观看| 国产亚洲一区二区精品| 亚洲中文av在线| 亚洲美女视频黄频| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 你懂的网址亚洲精品在线观看| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 少妇被粗大的猛进出69影院| 国产精品无大码| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 国产日韩欧美在线精品| 最近最新中文字幕大全免费视频 | 亚洲av成人精品一二三区| 久久 成人 亚洲| 亚洲国产精品国产精品| 亚洲av欧美aⅴ国产| 亚洲欧洲日产国产| 超碰97精品在线观看| 久久久久精品人妻al黑| 99热网站在线观看| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 日日啪夜夜爽| 色吧在线观看| 青青草视频在线视频观看| 美女福利国产在线| 中文乱码字字幕精品一区二区三区| 国产精品国产三级国产专区5o| 亚洲成人一二三区av| 午夜影院在线不卡| 99国产精品免费福利视频| 成人亚洲欧美一区二区av| 黄频高清免费视频| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| 国产精品欧美亚洲77777| 嫩草影院入口| 亚洲三区欧美一区| 男女无遮挡免费网站观看| 男女边摸边吃奶| 久久久久久久久免费视频了| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产乱人偷精品视频| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 精品人妻一区二区三区麻豆| 高清黄色对白视频在线免费看| 97在线视频观看| 韩国高清视频一区二区三区| 捣出白浆h1v1| 亚洲精品国产一区二区精华液| 久久久久国产精品人妻一区二区| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 亚洲一区中文字幕在线| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 欧美精品亚洲一区二区| 亚洲中文av在线| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 亚洲av成人精品一二三区| 热99国产精品久久久久久7| 少妇的逼水好多| 国产精品无大码| 亚洲欧美一区二区三区久久| 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 久久精品久久久久久久性| 色94色欧美一区二区| 亚洲av福利一区| 侵犯人妻中文字幕一二三四区| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 最近最新中文字幕免费大全7| 欧美日韩精品网址| 在线天堂中文资源库| 亚洲一级一片aⅴ在线观看| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 夫妻午夜视频| 女人高潮潮喷娇喘18禁视频| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 亚洲欧美成人精品一区二区| 色吧在线观看| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看免费完整高清在| 国产精品一区二区在线不卡| 一级爰片在线观看| 观看av在线不卡| 2021少妇久久久久久久久久久| 亚洲视频免费观看视频| 高清av免费在线| 少妇 在线观看| 久久鲁丝午夜福利片| 成人国产av品久久久| 日韩欧美精品免费久久| 亚洲国产精品999| 精品久久久久久电影网| 国产片特级美女逼逼视频| 在线精品无人区一区二区三| 一级片'在线观看视频| 蜜桃国产av成人99| 久久久久久久久久人人人人人人| 一区在线观看完整版| 亚洲精品久久久久久婷婷小说| 边亲边吃奶的免费视频| 欧美精品国产亚洲| 好男人视频免费观看在线| 飞空精品影院首页| 人人妻人人爽人人添夜夜欢视频| 91午夜精品亚洲一区二区三区| 七月丁香在线播放| 国产av国产精品国产| 国产日韩欧美视频二区| 少妇被粗大的猛进出69影院| 亚洲av欧美aⅴ国产| 国产成人精品婷婷| 亚洲精品国产av成人精品| 欧美成人午夜免费资源| 久久久久久久久久久免费av| 在线观看免费日韩欧美大片| 欧美少妇被猛烈插入视频| av电影中文网址| 中文字幕制服av| 精品少妇黑人巨大在线播放| 午夜av观看不卡| 卡戴珊不雅视频在线播放| 国产色婷婷99| 极品人妻少妇av视频| 久久人人爽人人片av| 亚洲成色77777| 有码 亚洲区| 欧美成人午夜免费资源| 午夜av观看不卡| 久久久久网色| 欧美激情高清一区二区三区 | 午夜老司机福利剧场| 18禁国产床啪视频网站| 国产一区亚洲一区在线观看| 亚洲图色成人| 一区在线观看完整版| a级毛片黄视频| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 午夜福利视频在线观看免费| 久久久久精品久久久久真实原创| 亚洲三区欧美一区| 日韩人妻精品一区2区三区| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 天堂中文最新版在线下载| 黄片播放在线免费| 久久久精品免费免费高清| 成人国产麻豆网| 亚洲精品成人av观看孕妇| 欧美日韩一区二区视频在线观看视频在线| 日日爽夜夜爽网站| 高清视频免费观看一区二区| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人 | 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 亚洲成国产人片在线观看| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人 | 男女下面插进去视频免费观看| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 亚洲综合色惰| 老熟女久久久| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 亚洲一码二码三码区别大吗| 婷婷色综合www| 黄色配什么色好看| 看免费av毛片| 伦精品一区二区三区| 欧美中文综合在线视频| 美女午夜性视频免费| 搡女人真爽免费视频火全软件| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲 | 91国产中文字幕| 美女国产高潮福利片在线看| 午夜福利在线观看免费完整高清在| 在线观看免费高清a一片| 宅男免费午夜| 欧美精品av麻豆av| 久久久精品免费免费高清| 成年女人毛片免费观看观看9 | 国产成人免费无遮挡视频| 亚洲,欧美精品.| 亚洲内射少妇av| 97在线人人人人妻| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 看十八女毛片水多多多| 综合色丁香网| 亚洲在久久综合| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲| 亚洲国产av影院在线观看| 另类精品久久| 制服诱惑二区| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 亚洲激情五月婷婷啪啪| av不卡在线播放| 欧美最新免费一区二区三区| 亚洲国产欧美网| www.av在线官网国产| 综合色丁香网| 捣出白浆h1v1| 亚洲,一卡二卡三卡| 国产毛片在线视频| 青青草视频在线视频观看| 亚洲视频免费观看视频| 国产高清国产精品国产三级| 18禁国产床啪视频网站| 两个人看的免费小视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲五月色婷婷综合| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 久久久久视频综合| 一个人免费看片子| 一本色道久久久久久精品综合| 亚洲伊人色综图| 99热网站在线观看| 飞空精品影院首页| 国产欧美日韩综合在线一区二区| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 18禁观看日本| 青草久久国产| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 韩国av在线不卡| 一级片免费观看大全| 老司机亚洲免费影院| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| av.在线天堂| 中文字幕精品免费在线观看视频| 成年美女黄网站色视频大全免费| 久久国内精品自在自线图片| 寂寞人妻少妇视频99o| 啦啦啦在线免费观看视频4| 日韩一区二区视频免费看| 哪个播放器可以免费观看大片| 国产av国产精品国产| 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 久久综合国产亚洲精品| 99久久人妻综合| 亚洲经典国产精华液单| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 久久久久精品人妻al黑| 精品午夜福利在线看| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 满18在线观看网站| 搡老乐熟女国产| 亚洲伊人色综图| 电影成人av| 热re99久久国产66热| av视频免费观看在线观看| 国产麻豆69| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| av天堂久久9| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 蜜桃在线观看..| 一级毛片电影观看| 亚洲男人天堂网一区| 黄片播放在线免费| 黄色一级大片看看| 久久精品国产综合久久久| 美女脱内裤让男人舔精品视频| 美国免费a级毛片| 欧美日韩一区二区视频在线观看视频在线| 在线 av 中文字幕| 美女大奶头黄色视频| 一二三四在线观看免费中文在| 麻豆av在线久日| 精品少妇一区二区三区视频日本电影 | 久久国产精品男人的天堂亚洲| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 久久久久精品人妻al黑| 色播在线永久视频| 你懂的网址亚洲精品在线观看| 欧美 亚洲 国产 日韩一| 免费观看在线日韩| 日韩 亚洲 欧美在线| freevideosex欧美| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 97在线人人人人妻| 久久久国产一区二区| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 久久久久国产网址| videossex国产| 日本-黄色视频高清免费观看| www日本在线高清视频| 国产成人精品无人区| 最近的中文字幕免费完整| 超色免费av| 妹子高潮喷水视频| 国产国语露脸激情在线看| 男女午夜视频在线观看| 在线观看三级黄色| 亚洲精品一二三| 国产精品女同一区二区软件| videosex国产| 日本欧美国产在线视频| 这个男人来自地球电影免费观看 | 国产精品二区激情视频| 久久久a久久爽久久v久久| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 巨乳人妻的诱惑在线观看| 久久99一区二区三区| 嫩草影院入口| 少妇精品久久久久久久| 午夜福利网站1000一区二区三区| 亚洲 欧美一区二区三区| 考比视频在线观看| av片东京热男人的天堂| 国产亚洲一区二区精品| 亚洲一码二码三码区别大吗| 色播在线永久视频| 99re6热这里在线精品视频| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 国产在线免费精品| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 亚洲欧美精品综合一区二区三区 | 国产国语露脸激情在线看| 国产野战对白在线观看| 一级毛片电影观看| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 久久久久久久久久久久大奶| 久久久久久免费高清国产稀缺| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 丰满乱子伦码专区| 美女高潮到喷水免费观看| 夜夜骑夜夜射夜夜干| 电影成人av| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲三级黄色毛片| 综合色丁香网| 在线天堂最新版资源| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区| 新久久久久国产一级毛片| 亚洲av福利一区| a级片在线免费高清观看视频| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷| 最近的中文字幕免费完整| 美女主播在线视频| 日本91视频免费播放| www.精华液| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区久久| 91午夜精品亚洲一区二区三区| 飞空精品影院首页| 精品午夜福利在线看| 尾随美女入室| 性色avwww在线观看| 天天躁夜夜躁狠狠久久av| 欧美成人精品欧美一级黄| 一本色道久久久久久精品综合| 午夜免费男女啪啪视频观看| av卡一久久| 精品福利永久在线观看| 国产精品久久久久久精品古装| 桃花免费在线播放| 精品人妻在线不人妻| 一区二区三区四区激情视频| 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 国产麻豆69| 久久精品aⅴ一区二区三区四区 | 18禁国产床啪视频网站| videossex国产| 91午夜精品亚洲一区二区三区| 中文字幕制服av| 欧美精品国产亚洲| 国产在线视频一区二区| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| av在线老鸭窝| 久久久久久久久免费视频了| 欧美激情高清一区二区三区 | 国产成人精品一,二区| 国产人伦9x9x在线观看 | 亚洲欧美中文字幕日韩二区| 欧美人与性动交α欧美精品济南到 | 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 青草久久国产| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 叶爱在线成人免费视频播放| 国产精品国产三级国产专区5o| 日韩一卡2卡3卡4卡2021年| 少妇的逼水好多| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 国产精品国产三级国产专区5o| 亚洲欧美成人综合另类久久久| 久久这里有精品视频免费| 大片电影免费在线观看免费| 青春草视频在线免费观看| 天天躁夜夜躁狠狠久久av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产成人一精品久久久| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| av电影中文网址| 成人手机av| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 你懂的网址亚洲精品在线观看| 丰满饥渴人妻一区二区三| av片东京热男人的天堂| 人妻一区二区av| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 久久狼人影院| 国产成人a∨麻豆精品| 亚洲激情五月婷婷啪啪| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区 | 亚洲在久久综合| 亚洲精品日本国产第一区| 久久精品国产自在天天线| 在线观看免费视频网站a站| 男男h啪啪无遮挡| 国产黄色免费在线视频| 丁香六月天网| 校园人妻丝袜中文字幕| 边亲边吃奶的免费视频| 欧美成人午夜免费资源| 搡老乐熟女国产| 免费女性裸体啪啪无遮挡网站| 亚洲精品在线美女| 大片电影免费在线观看免费| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 色吧在线观看| 老汉色av国产亚洲站长工具| 黄色视频在线播放观看不卡| 亚洲综合色惰| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 亚洲国产av影院在线观看| 黄片小视频在线播放| 欧美国产精品va在线观看不卡| 日韩伦理黄色片| 18+在线观看网站| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到 | 国产福利在线免费观看视频| 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| 香蕉丝袜av| 中文字幕制服av| 欧美精品av麻豆av| 成年美女黄网站色视频大全免费| 国产欧美日韩一区二区三区在线| 91久久精品国产一区二区三区| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 一级片'在线观看视频| 波野结衣二区三区在线| 免费看av在线观看网站| 午夜久久久在线观看| 成人亚洲精品一区在线观看| 久久人人爽人人片av| xxx大片免费视频| 90打野战视频偷拍视频| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 日本黄色日本黄色录像| 免费黄色在线免费观看| 精品久久蜜臀av无| 亚洲成色77777| 婷婷色av中文字幕|