• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributions of Picophytoplankton and Phytoplankton Pigments Along a Salinity Gradient in the Changjiang River Estuary, China

    2014-05-05 13:00:19WANGBaoliLIUCongqiangWANGFushunLISiliangandSivajiPatra
    Journal of Ocean University of China 2014年4期

    WANG Baoli, LIU Congqiang WANG Fushun, LI Siliang and Sivaji Patra

    1) State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P. R. China

    2) Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 201800, P. R. China

    Distributions of Picophytoplankton and Phytoplankton Pigments Along a Salinity Gradient in the Changjiang River Estuary, China

    WANG Baoli1),*, LIU Congqiang1), WANG Fushun2), LI Siliang1), and Sivaji Patra1)

    1) State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P. R. China

    2) Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 201800, P. R. China

    We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers ofSynechococcusspp. (Syn) and picoeukaryotes (Euk) were (2.7 ±5.1) ×103and (1.1±1.4) ×103cells mL-1, respectively.Prochlorococcusspp. (Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103cells mL-1.Synand Euk numbers both tended to increase offshore andSynshowed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than overSyn, while nutrients were more important in their influence overSynthan over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient (i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.

    Synechococcus; picoeukaryotes; phytoplankton pigment; salinity; Changjiang River Estuary

    1 Introduction

    Estuaries are coastal areas where fresh water from rivers and streams mixes with salt water from the ocean. Natural and anthropogenic materials are transported, deposited, and transformed in the estuary. Phytoplankton is sensitive to environmental variables and therefore considered as an important investigated object for environmental change (Stockner, 1988; Gao and Song, 2005). Over the last two decades, human activities have strongly enhanced nutrient loading in the Changjiang River Estuary, resulting in eutrophication and concomitant changes in species composition of phytoplankton, structure of food chain, and element biogeochemical cycle in the ecosystem (Gao and Song, 2005; Zhuet al., 2009; Jianget al., 2010).

    Picophytoplankton comprises prokaryotic picocyanobacteria and eukaryotic phototrophs. They are ubiquitous in both fresh water and marine ecosystems (Stockner, 1988). Nowadays, it is well known that, with the enhancement of trophic state, picophytoplankton abundance and biomass increase and its relative importance decreases (Bell and Kalff, 2001; Callieri, 2007). Numerous studies have been conducted with respect to picophytoplankton in the East China Sea (Changet al., 2003; Jiaoet al., 2005; Panet al., 2005). However, few studies focus on picophytoplankton in the Changjiang River Estuary (Vaulot and Ning, 1988; Panet al., 2007; Shanget al., 2007).

    In this study we have investigated the abundance of picophytoplanktonSynechococcusspp. (Syn),Prochlorococcusspp. (Pro), picoeukaryotes (Euk) and examined contents of chlorophylla,b,cand carotenoid index, phaeopigment index and related environmental factors along a salinity gradient in the Changjiang River Estuary. Our aim is to elucidate the distributions of different picophytoplankton groups and phytoplankton pigment ratios in relation to environmental factors, and to discern the influencing factors on their distributions in the Changjiang River Estuary.

    2 Materials and Methods

    2.1 Sampling

    Sample collection was carried out on June 19–22, 2005. A total of 19 stations were investigated in the Changjiang River Estuary (Fig.1). Water samples for depth profiles were taken with 5 L Niskin bottles. Sampling depths were 0 and 7 m at stations 6 and 12; 0, 6 and 16 m at station 15; 0, 10, 20 and 30 m at station 17; and 0, 10, 20, 35 and 50 m at station 18. At other stations, water samples were collected from surface water (upper 0.5 m).

    Water temperature (T), dissolved oxygen (DO), pH, and salinity were measuredin situusing a portable multi-parameter instrument (pIONneer 65). Water samples for determination of nitrate (NO3-) and dissolved silicon (DSi) were filtered through 0.45 μm acid-cleaned acetate cellulose filters. The filtrates were poisoned by HgCl2and stored in the dark at 0–4℃ before analysis. NO3-was measured with the cadmium reduction method (Parsonet al., 1984) and DSi silicomolybdenum blue method (Strickland and Parsons, 1968) with precision of <5%. Duplicate samples were taken to determine the amount of total suspended solids (TSS, mgL-1), for which the salts trapped on the cellulose filters were removed by distilled water. TSS was calculated by the dry-weight method. Water samples for determining the abundance of different picophytoplankton groups were filtered by 53 μm nylon fabric in order to remove impurities and then were put aside in darkness for 15 min with paraformaldehyde (final concentration: 1%) and stored in liquid nitrogen till analysis in one month (Panet al., 2005).

    Fig.1 Map showing sampling locations and sample numbers. The dashed lines are isobaths and depth is given in meters.

    2.2 Analysis of Phytoplankton Pigments

    One liter of seawater was filtered by 0.45 μm acetate cellulose membrane. Phytoplankton on the membrane was soaked in 90% acetone at 4℃ in the dark for 20 h in order to adequately extract the pigments. The extract was analyzed at 410, 430, 480, 630, 647, 663, and 750 nm wavelengths, respectively, against a 90% acetone blank. The concentrations of chlorophylla,b,c(μg L-1, Jeffrey and Humphrey, 1975), Carotenoid index (CI; Strickland and Parsons, 1968), and Phaeopigment index (PI; Moss, 1967) were calculated according to the following equations:

    whereAxis absorbance atxnm;Vais extraction volume in milliliter;Vwis filter volume in liter.

    2.3 Analysis of Picophytoplankton

    Picophytoplankton samples were analyzed on a FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA) equipped with an air-cooled argon laser (488 nm, 15 mW). Cell fluorescence emissions and light scatter signals were calibrated by adding yellowish green fluorescent beads (1.002 μm) (Polysciences Inc., catalogue # 18660). For each particle in the sample, forward light scatter, side light scatter, orange fluorescence (585 nm± 21 nm), and red fluorescence (>650 nm) were recorded and the data obtained were processed with CELLQuestTMsoftware (Becton Dickinson, San Jose, CA, USA). According to their specific autofluorescence properties and light scatter differences, the different picophytoplankton groups could be discriminated and enumerated (Collier, 2000).

    The software SPSS (version 11.5; SPSS Inc.) was used to carry out statistical analysis of the data and Pearson’s correlation coefficient analysis was conducted.

    3 Result

    Fig.2 Distributions of temperature, pH, dissolved oxygen, salinity, dissolved Si, NO3-, total suspended solids, picoeukaryotes, Synechococcus, chlorophyll a, b, c in the investigated area.

    Fig.2 shows the spatial and temporal distributions of water temperature, salinity, DO, pH, TSS, DSi, and NO3-in the studied area. The average values were 23.9±2.3℃ (from 20.2 to 28.7℃) for water temperature, 15.5±12.5 (from 0 to 32.3) for salinity, 7.2±1.0 mg L-1(from 5.4 to 9.6 mg L-1) for DO, 8.0±0.4 (from 7.0 to 8.7) for pH, 77.8±111.3 mg L-1(from 0.3 to 518.2 mg L-1) for TSS, 48.9±33.6 μmol L-1(from 13.5 to 99.9μmol L-1) for DSi, and 57.3±39.2μmol L-1(from 2.2 to 105.5μmol L-1) for NO3-. pH and DO leaned to the increase of salinity. Water temperature decreased with depth and increasing salinity and therefore it showed significant correlations withdepth and salinity (Table 1). At station 15, an upwelling of cold and saline water existed (Fig.2). Low DO appeared with this upwelling and this low DO did not come directly from the Changjiang River Diluted Water in the upper layer, instead it might come from the modified high saline Taiwan Warm Current Water in the deep and bottom layers (Zhaoet al., 2001). TSS showed high values at stations 9-12 (Fig.2), which is located in the Turbidity Maximum Zone that is originated from sediment resuspension caused by salt and fresh water mixing (Panet al., 1999). Since there was an inverse correlation between NO3-and the salinity and between DSi and the salinity, respectively (Table 1), both NO3-and DSi tended to decrease rapidly with the increase of the salinity (Fig.2).

    Table 1 Relationships between the investigated factors in terms of Pearson’s correlation coefficient analysis

    The average cell abundance was (2.7 ±5.1) ×103cells mL-1forSynwith the range from 0.03 to 17.8 ×103cells mL-1, (1.1 ± 1.4) ×103cells mL-1for Euk with the range from 0.1 to 7.7 ×103cells mL-1, respectively.Prowas only found at station 19 with the concentration of 3.0 ×103cells mL-1.Synand Euk numbers both tended to increase offshore andSynshowed a larger variation in cell abundance than Euk (Fig.2). Euk tended to decrease with depth; however, this phenomenon was not observed forSynand the high cell abundance ofSynappeared in the 10 m layer of seawater at station 18 (Fig.2).Synshowed significant correlations with NO3-and DSi concentrations, while this was not found for Euk (Table 1).

    The average concentration was 9.3±13.4 μg L-1for Chlawith the range from 0.4 to 46.1 μg L-1, 0.7±0.7μg L-1for Chlbwith the range from 0.1 to 3.6 μg L-1, and 0.6 ± 0.7 μg L-1for Chlcwith the range from 0.03 to 4.2 μg L-1, respectively. On both sides of the upwelling area (i.e., station 15), one area with high Chlaconcentration appeared. In the freshwater area (stations 1-8), Chla,b, andcshowed a similar variation trend (Fig.2). High Chlaoccurred in upper low salinity area due to the dominance of Changjiang River Diluted Water with ample nutrients in this zone (Songet al., 2009).

    4 Discussion

    4.1 Distribution of the Different Picophytoplankton Groups in Relation to Environmental Factors Along the Salinity Gradient

    The environmental factors in the Changjiang River Estuary are mainly influenced by the extremely high nutrient loads from the Changjiang River and the mixing between the fresh and saline water. Both water temperature and pH show significant correlations with salinity (Table 1), suggesting that they were controlled by the mixing between the fresh and saline water. In surface waters, nutrient concentrations decrease from eutrophic coastal to oligotrophic open shelf waters (Zhanget al., 2007; Chaiet al., 2009; Chenet al., 2010) though patchy character of nutrient distribution can be produced by biological uptake and regeneration in the surface waters (Zhanget al., 2007). In this study, both NO3-and DSi showed significant negative correlations with salinity (Table 1). With the increase of surface salinity from 0 to 23.8, NO3-decreased from 104.3 to 7.7 μmol L-1and DSi decreased from 99.9 to 14.6 μmol L-1; meanwhile, chlorophylladecreased from 46.1 to 1.9 μg L-1, indicating a rapid change of trophic state along the salinity gradient. Phosphate was found to show similar distribution pattern to that of nitrate in the Changjiang River Estuary (Chenet al., 2010). Potential phosphorus limitation mainly took place where the salinity was less than 30 after 2003, while potential silicon limitation occurred in an area of salinity more than 30 (Chaiet al., 2009).

    Euk were the most competitive among the picophytoplankton in freshwater zone (0-5 salinity range, named Zone I) with high temperature and abundant nutrients (Figs.2 and 3a); they showed significant correlation with temperature and this phenomenon was not found forSyn, suggesting that water temperature was a more important factor controlling Euk thanSyn. In fresh and saline water mixing zone (5-20 salinity range, named Zone II), picophytoplankton numbers decreased due to the limitations forced by high turbidity (the radiation effect). In highsalinity brackish water (20-32 salinity range, named Zone III),Synnumbers increased rapidly with low nutrients and clear water while Euk did not, andProwas also discovered (Figs.2 and 3a), suggesting the change of composition of different picophytoplankton groups in this zone.

    Fig.3 Picoeukaryotes (Euk) and Synechococcus (Syn) vs the salinity (a), and contributions of Euk and Syn to chlorophyll a (Chl a) vs the salinity (b).

    Our previous study showed thatsynhad the significant negative correlation with PO43-(Wanget al., 2008). As phosphate presented similar distribution pattern to that of nitrate (Chenet al., 2010), it can be inferred thatSyncould had close relationship with PO43-in the Changjiang River Estuary and nutrients could be more important factors influencingSynthan Euk (Table 1).Prowas only found at station 19 with a salinity of 23.8 due to its favorable marine environment (Partenskyet al., 1999). These results demonstrated that the responses of different picophytoplankton groups to environment variables such as temperature, light, and nutrients are genus-specific. The picophytoplankton numbers in this study are comparable to these in previous studies conducted in the Changjiang River Estuary (Vaulot and Ning 1988; Shanget al., 2007; Panet al., 2007). The ratios ofSynand Euk numbers to that of chlorophyllaincreased with the increase of salinity (Fig.3b), suggesting the increasing importance of photosynthetic picoplankton from estuaries to the open ocean with the decreasing nutrient concentrations. This result is consistent with the studies of picophytoplankton in Southampton Water (south coast of England; Iriarte and Purdie, 1994) and in San Francisco Bay (Ninget al., 2000).

    4.2 Distribution of Phytoplankton Pigment Composition Along the Salinity Gradient

    Phytoplankton pigments absorb light over different wavelength ranges. Chlorophyll absorbs it in the 430-450 nm and 600-690 nm ranges, and carotenoid in the 400-500 nm range. Phytoplankton pigment composition can be considered as a taxonomic signature (Stonet al., 2002) because there are highly specific quantities and relative proportions of pigments in particular species. Adaptive divergence in pigment composition promotes phytoplankton biodiversity (Falkowski and LaRoche, 1991; Stompet al., 2004).

    Chlorophyta contains Chlaandb, while Bacillariophyta and Pyrrophyta have Chlaandc, diadinoxanthin and β-carotene. Phytoplankton showed lower values of Chla/b,a/c, andb/cin Zone III and higher values of Chla/banda/cin Zone II (Fig.4), indicating that Chlorophyta decreased and Bacillariophyta increased with the salinity. They also showed different CI and PI in Zone II from those in Zones I and III. These results indicate that there were three different phytoplankton communities along the salinity gradient. An earlier study has distinguished these three different phytoplankton communities in accord with salinity gradient in Changjiang River Estuary according to the analyses of phytoplankton species (Table 2; Wang, 2002). Another study found thatMelosira granulataand most of the Chlorophyta species that belong to the freshwater community predominated in Zone I, Euryhaline species such asSkeletonema costatumpredominated in Zone II, and another euryhaline species,Prorocentrum dentatum, predominated in Zone III (Gao and Song, 2005). Different phytoplankton groups have different responses to the environmental variables along the salinity gradient. The optimal range of salinity forP.dentatumgrowth is 25-31 and that forS.costatumis 18-35.7(Chenet al., 2005).S.costatumshowes a much higher phosphatase activity and thus can assimilate phosphorus from the environment much faster thanP.donghaienseunder the same nutrient conditions (Zhaoet al., 2009).

    Table 2 Basic ecological parameters for the three different phytoplankton communities

    Our study demonstrated that phytoplankton pigment compositions were different in the three different ecological zones (Table 2; Fig.4), where three different phytoplankton communities had been earlier discovered (Wang, 2002; Gao and Song, 2005). Therefore, phytoplankton pigment ratios can be used as the indicator of phytoplankton community structure. Chlaandbcan possibly be overestimated because a small part of them may originate from vascular plant detritus in turbid estuary (Lionardet al., 2008, Zhuet al., 2009); therefore, phytoplankton pigment ratios should be considered a complementary to, but not exclusive replacement for, microscopic observation for understanding the dynamics of phytoplankton.

    Fig.4 Phytoplankton pigment ratios vs the salinity. Ca, chlorophyll a; Cb, chlorophyll b; Cc, chlorophyll c, CI, Carotenoid index; PI, Phaeopigment index.

    5 Conclusion

    The responses of different picophytoplankton groups to environmental variables in the Changjiang River Estuary were genus-specific. Pro was only found in the high-salinity brackish water. Water temperature was more important in its regulation of Euk than of Syn, while nutrients were more important in their influence over Syn than over Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from estuaries to the open ocean. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient, indicating that they can be an indicator of phytoplankton community structure in the Changjiang River Estuary.

    Acknowledgements

    We are grateful to Drs. LI Jun and WU Pan for their assistance in sample collection in the field and to Dr. ZHANG Lihua for her assistance in picophytoplankton determination. It is supported by the Foundation of Chinese Academy of Sciences (Grant No: kzcx2-ew-102) and the National Natural Science Foundation of China (Grant No. 41021062).

    Bell, T., and Kalff, J., 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography, 46: 1243-1248.

    Chai, C., Yu, Z., Shen, Z., Song, X., Cao, X., and Yao, Y., 2009. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of the Total Environment, 407: 4687-4695.

    Callieri, C., 2007. Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshwater Reviews, 1: 1-28.

    Chang, J., Lin, K., Chen, K., Gong, G., and Chiang, K., 2003. Synechococcus growth and mortality rates in the East China Sea: Range of variations and correlation with environmental factors. Deep Sea Research Part II, 50: 1265-1278.

    Chen, B., Wang, Z., Zhu, M., and Li, R., 2005. Effects of temperature and salinity on growth of Prorocentrum dentatum and comparisons between growths of Prorocentrum dentatum and Skeletonema costatum. Advances in Marine Science, 23: 60-64 (in Chinese with English abstract).

    Chen, H., Yu, Z., Yao, Q., Mi, T., and Liu, P., 2010. Nutrient concentrations and fluxes in the Changjiang Estuary during summer. Acta Oceanologica Sinica, 29: 107-119.

    Collier, J. L., 2000. Flow cytometry and the single cell in phycology. Journal of Phycology, 36: 628-644.

    Falkowski, P. G., and LaRoche, J., 1991. Acclimation to spectral irradiance in algae. Journal of Phycology, 27: 8-14.

    Gao, X., and Song, J., 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin, 50: 327-335.

    Iriarte, A., and Purdie, D. A., 1994. Size distribution of Chl a biomass and primary production in a temperate estuary (Southampton Water): The contribution of photosynthetic picoplankton. Marine Ecology Progress Series, 115: 283-297.

    Jeffrey, S. W., and Humphrey, G. F., 1975. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167: 191-194.

    Jiao, N. Z., Yang, Y. H., Hong, N., Ma, Y., Harada, S., Koshikawa, H., and Watanabe, M., 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research, 25: 1265-1279.

    Jiang, T., Yu, Z., Song, X., Cao, X., and Yuan, Y., 2010. Long-term ecological interactions between nutrient and phytoplankton community in the Changjiang Estuary. Chinese Journal of Oceanology and Limnology, 28: 887-898.

    Lionard, M., Muylaert, K., Tackx, M., and Vyverman, W., 2008.Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science, 76: 809-817.

    Moss, B., 1967. A spectrophotometric method for estimation of percentage degradation of chlorophyll to phaeopigments in extracts of algae. Limnology and Oceanography, 12: 335-340.

    Ning, X., Cloern, J. E., and Cole, B. E., 2000. Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnology and Oceanography, 45: 695-702.

    Pan, D., Shen, H., and Mao, Z., 1999. Formation mechanism and features of the turbidity maximum in the Changjiang River Estuary. Acta Oceanologica Sinica, 21: 62-69 (in Chinese with English abstract).

    Pan, L. A., Zhang, L. H., Zhang, J., Gasol, J. M., and Chao, M., 2005. On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiology Ecology, 52: 243-253.

    Pan, L. A., Zhang, J., and Zhang, L. H., 2007. Picophytoplankton, nanophytoplankton, heterotrohpic bacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal of Plankton Research, 29: 187-197.

    Partensky, F., Hess, W. R., and Vaulot, D., 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews, 63: 106-127.

    Parsons, T. R., Maita, Y., and Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, 173pp.

    Shang, X., Zhang, L. H., and Zhang, J., 2007. Prochlorococcuslike populations detected by flow cytometry in the fresh and brackish waters of the Changjiang Estuary. Journal of the Marine Biological Association of the United Kingdom, 87: 643-648.

    Song, S., Sun, J., and Yu, Z., 2009. Vertical pattern of chlorophyll a in the Yangtze River Estuary and its adjacent waters. Journal of Plant Ecology, 33: 369-379 (in Chinese with English abstract).

    Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnology and Oceanography, 33: 765-775.

    Stomp, M., Huisman, J., de Jongh, F., Veraart, A. J., Gerla, D., and Rijkeboer, M., 2004. Adaptive divergence in pigment composition promotes phytoplankton diversity. Nature, 432: 104-107.

    Ston, J., Kosakowska, A., Lotocka, M., and Lysiak-Pastuszak, E., 2002. Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia, 44: 419-437.

    Strickland, J. D. H., and Parsons, T. R., 1968. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada, 167: 1-311.

    Vaulot, D., and Ning, X., 1988. Abundance and cellular characteristics of marine Synechococcus spp. in the dilution zone of Changjiang (Yangtze River, China). Continental Shelf Research, 8: 1171-1186.

    Wang, B., Liu, C. Q., Wang, F., Yu, Y., and Zhang, L. H., 2008. The distributions of autumn picoplankton in relation to environmental factors in the reservoirs along the Wujiang River in Guizhou Province, SW China. Hydrobiologia, 598: 35-45.

    Wang, J., 2002. Phytoplankton communities in three distinct ecotypes of the Changjiang Estuary. Journal of Ocean University of Qingdao, 32: 422-428 (in Chinese with English abstract).

    Zhao, B., Ren, G., Cao, D., and Yang, Y., 2001. Characteristics of the ecological environment in upwelling area adjacent to the Changjiang River Estuary. Oceanologia et Limnologia Sinica, 32: 327-333 (in Chinese with English abstract).

    Zhao, B., Yu, Z., Song, X., and Cao, X., 2009. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense. Environmental Science, 30: 693-699 (in Chinese with English abstract).

    Zhang, J., Liu, S. M., Ren, J. L., Wu, Y., and Zhang, G. L., 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74: 449-478.

    Zhu, Z. Y., Ng, W. M., Liu, S. M., Zhang, J., Chen, J. C., and Wu, Y., 2009. Estuarine phytoplankton dynamics and shift of limiting factors: A study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84: 393-401.

    (Edited by Ji Dechun)

    (Received April 9, 2013; revised May 21, 2013; accepted July 4, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-851-5890450

    E-mail: baoliwang@163.com

    午夜老司机福利片| 99九九在线精品视频| 欧美日韩精品网址| 乱人伦中国视频| 国产又色又爽无遮挡免| 肉色欧美久久久久久久蜜桃| av片东京热男人的天堂| 日韩免费高清中文字幕av| 999精品在线视频| 国产精品麻豆人妻色哟哟久久| 在线精品无人区一区二区三| 制服诱惑二区| 看免费av毛片| 久久久久久免费高清国产稀缺| 自线自在国产av| 乱人伦中国视频| 国产一区有黄有色的免费视频| a级片在线免费高清观看视频| 天天操日日干夜夜撸| 日本wwww免费看| 国产精品一区二区免费欧美 | 一二三四社区在线视频社区8| 国产免费现黄频在线看| 国产麻豆69| 亚洲精品av麻豆狂野| 韩国高清视频一区二区三区| 亚洲久久久国产精品| 亚洲精品自拍成人| 中文字幕最新亚洲高清| 国产精品久久久久久精品古装| 美女中出高潮动态图| 黄色视频不卡| 性高湖久久久久久久久免费观看| 亚洲欧洲精品一区二区精品久久久| 久久青草综合色| 丁香六月欧美| 久久人人爽人人片av| 韩国精品一区二区三区| 他把我摸到了高潮在线观看 | 欧美午夜高清在线| 免费观看人在逋| av超薄肉色丝袜交足视频| 亚洲国产av新网站| 午夜激情久久久久久久| 久久久久久久精品精品| 99国产精品一区二区三区| 亚洲精品一区蜜桃| 成人国产一区最新在线观看| 久久久国产欧美日韩av| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区| 亚洲专区国产一区二区| 老司机在亚洲福利影院| 免费久久久久久久精品成人欧美视频| 一级毛片女人18水好多| 老司机影院成人| 久久人人爽人人片av| 又紧又爽又黄一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡av网站在线观看| 99精品欧美一区二区三区四区| 五月开心婷婷网| 精品福利永久在线观看| 亚洲人成电影观看| 久9热在线精品视频| 久久久精品免费免费高清| 午夜福利视频在线观看免费| 国产精品久久久人人做人人爽| 欧美日本中文国产一区发布| 亚洲av日韩精品久久久久久密| 免费女性裸体啪啪无遮挡网站| 午夜福利在线观看吧| 这个男人来自地球电影免费观看| 亚洲人成电影免费在线| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 正在播放国产对白刺激| netflix在线观看网站| 亚洲精品第二区| 亚洲专区中文字幕在线| 欧美日韩亚洲高清精品| 久久中文看片网| 久久久久网色| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 蜜桃在线观看..| 午夜福利在线免费观看网站| 国产精品久久久人人做人人爽| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 国产人伦9x9x在线观看| 韩国高清视频一区二区三区| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 久久午夜综合久久蜜桃| 午夜视频精品福利| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 精品熟女少妇八av免费久了| xxxhd国产人妻xxx| 午夜免费成人在线视频| 日韩熟女老妇一区二区性免费视频| 在线观看免费午夜福利视频| 国产色视频综合| 国产人伦9x9x在线观看| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 国产在线免费精品| 夜夜夜夜夜久久久久| 国产1区2区3区精品| 色婷婷久久久亚洲欧美| 不卡一级毛片| 女人高潮潮喷娇喘18禁视频| 久久久精品免费免费高清| 在线永久观看黄色视频| 欧美黑人精品巨大| 男女床上黄色一级片免费看| 国产国语露脸激情在线看| 热re99久久国产66热| 18禁观看日本| 成在线人永久免费视频| 久久久国产一区二区| 欧美日韩av久久| 国产精品久久久人人做人人爽| a在线观看视频网站| 夫妻午夜视频| 性色av一级| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 黑人欧美特级aaaaaa片| 91字幕亚洲| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 免费日韩欧美在线观看| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 免费在线观看视频国产中文字幕亚洲 | 久久久水蜜桃国产精品网| 男人操女人黄网站| 人妻人人澡人人爽人人| 久久精品国产亚洲av香蕉五月 | 黑丝袜美女国产一区| 国产区一区二久久| 精品少妇一区二区三区视频日本电影| 国产三级黄色录像| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 最新在线观看一区二区三区| 麻豆乱淫一区二区| 一个人免费在线观看的高清视频 | 青春草亚洲视频在线观看| 91精品伊人久久大香线蕉| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看 | 又黄又粗又硬又大视频| 黄片小视频在线播放| 在线观看免费午夜福利视频| 男人爽女人下面视频在线观看| 日韩欧美一区二区三区在线观看 | 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 一区二区三区乱码不卡18| 日韩视频在线欧美| 99香蕉大伊视频| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 成人手机av| 午夜福利视频精品| 久久久精品免费免费高清| 成人黄色视频免费在线看| 热re99久久国产66热| 精品一区二区三卡| 操出白浆在线播放| 午夜激情av网站| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 欧美日韩精品网址| 成人免费观看视频高清| 精品一区在线观看国产| 午夜福利视频在线观看免费| 日本av免费视频播放| 午夜91福利影院| 欧美97在线视频| 免费高清在线观看视频在线观看| 搡老熟女国产l中国老女人| 久久精品熟女亚洲av麻豆精品| 超色免费av| 窝窝影院91人妻| 亚洲欧美色中文字幕在线| 亚洲五月婷婷丁香| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 亚洲综合色网址| 日韩中文字幕欧美一区二区| 免费女性裸体啪啪无遮挡网站| 成年女人毛片免费观看观看9 | 国产成人欧美在线观看 | 不卡av一区二区三区| 1024香蕉在线观看| 欧美黄色淫秽网站| 欧美日韩亚洲高清精品| 亚洲精华国产精华精| 免费在线观看日本一区| 国产深夜福利视频在线观看| 中国美女看黄片| 一级毛片女人18水好多| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 国产精品免费视频内射| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 欧美97在线视频| 久9热在线精品视频| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 精品第一国产精品| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 久久久精品区二区三区| 欧美精品人与动牲交sv欧美| 热re99久久国产66热| 两个人免费观看高清视频| 亚洲人成电影免费在线| 97精品久久久久久久久久精品| 成人免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区 | 久久天躁狠狠躁夜夜2o2o| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 女警被强在线播放| 亚洲三区欧美一区| 大型av网站在线播放| 亚洲 欧美一区二区三区| 国产日韩欧美亚洲二区| 深夜精品福利| 美女大奶头黄色视频| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区 | 亚洲第一欧美日韩一区二区三区 | 丝瓜视频免费看黄片| 女人久久www免费人成看片| 久久99一区二区三区| 99热网站在线观看| 亚洲情色 制服丝袜| 老司机深夜福利视频在线观看 | 美女主播在线视频| 一区二区三区四区激情视频| 亚洲精品一卡2卡三卡4卡5卡 | 最近最新免费中文字幕在线| 91麻豆av在线| 女性被躁到高潮视频| 国产xxxxx性猛交| 久久久久久久久久久久大奶| 欧美中文综合在线视频| 美女国产高潮福利片在线看| 亚洲国产看品久久| 美女脱内裤让男人舔精品视频| 久久天躁狠狠躁夜夜2o2o| 日韩大片免费观看网站| 国产精品久久久久久精品电影小说| av有码第一页| 精品国内亚洲2022精品成人 | 一本大道久久a久久精品| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 色婷婷av一区二区三区视频| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 精品卡一卡二卡四卡免费| 他把我摸到了高潮在线观看 | 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久精品古装| 永久免费av网站大全| 午夜91福利影院| 十八禁网站网址无遮挡| av天堂久久9| 国产xxxxx性猛交| 日韩一卡2卡3卡4卡2021年| 国产一级毛片在线| tocl精华| 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕一二三四区 | 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 日日夜夜操网爽| 国产欧美日韩一区二区三 | 18禁观看日本| 免费观看a级毛片全部| 97人妻天天添夜夜摸| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 久9热在线精品视频| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 成年人午夜在线观看视频| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲 | 搡老乐熟女国产| 亚洲国产看品久久| 亚洲avbb在线观看| 久久亚洲精品不卡| 午夜成年电影在线免费观看| 午夜免费观看性视频| 成年女人毛片免费观看观看9 | av电影中文网址| 岛国毛片在线播放| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 日韩欧美一区视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 精品人妻1区二区| 久久精品久久久久久噜噜老黄| 飞空精品影院首页| 国产熟女午夜一区二区三区| 纯流量卡能插随身wifi吗| 国产av又大| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| 精品免费久久久久久久清纯 | 国产av国产精品国产| 十八禁网站网址无遮挡| 免费一级毛片在线播放高清视频 | 99香蕉大伊视频| 动漫黄色视频在线观看| 亚洲熟女精品中文字幕| 中文字幕制服av| av福利片在线| av线在线观看网站| 99久久精品国产亚洲精品| 成年av动漫网址| 18禁黄网站禁片午夜丰满| 999久久久国产精品视频| 成人黄色视频免费在线看| 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 老汉色∧v一级毛片| 成人手机av| 久久久久久免费高清国产稀缺| 青草久久国产| 亚洲国产成人一精品久久久| 国产国语露脸激情在线看| 成年av动漫网址| 精品国产一区二区久久| 亚洲全国av大片| 国产精品成人在线| 999精品在线视频| 男人操女人黄网站| 自线自在国产av| 久久这里只有精品19| 午夜免费成人在线视频| 日韩中文字幕视频在线看片| 国产精品香港三级国产av潘金莲| 伦理电影免费视频| 欧美黄色片欧美黄色片| 国产av国产精品国产| 性色av一级| 国产av又大| 欧美 日韩 精品 国产| 麻豆国产av国片精品| 蜜桃国产av成人99| 午夜老司机福利片| tube8黄色片| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院| 人人澡人人妻人| 亚洲成人国产一区在线观看| 高潮久久久久久久久久久不卡| 国产一区二区三区综合在线观看| 少妇猛男粗大的猛烈进出视频| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 国产精品自产拍在线观看55亚洲 | 窝窝影院91人妻| 性高湖久久久久久久久免费观看| 咕卡用的链子| 久久99一区二区三区| 九色亚洲精品在线播放| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 视频区图区小说| 国产在线一区二区三区精| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 夫妻午夜视频| www.999成人在线观看| 免费在线观看日本一区| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 久热爱精品视频在线9| 大香蕉久久成人网| 久久久久久久国产电影| 日本撒尿小便嘘嘘汇集6| videos熟女内射| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院| 亚洲精品久久午夜乱码| 亚洲人成77777在线视频| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 99热全是精品| 精品熟女少妇八av免费久了| 久久久国产欧美日韩av| 国产男女内射视频| 国产精品二区激情视频| 国产成人精品久久二区二区免费| 亚洲国产精品一区二区三区在线| 午夜两性在线视频| 男人操女人黄网站| 极品少妇高潮喷水抽搐| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| 中文字幕最新亚洲高清| 国产三级黄色录像| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 国产精品一二三区在线看| 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| 国产高清国产精品国产三级| 亚洲精品国产精品久久久不卡| 一区二区三区乱码不卡18| 天天操日日干夜夜撸| 亚洲中文字幕日韩| 久久精品久久久久久噜噜老黄| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 十八禁网站网址无遮挡| 午夜91福利影院| 欧美在线一区亚洲| 老汉色∧v一级毛片| 少妇人妻久久综合中文| 日韩欧美一区视频在线观看| 看免费av毛片| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 国产一区二区三区av在线| 亚洲精品一区蜜桃| 亚洲国产中文字幕在线视频| a级片在线免费高清观看视频| 精品第一国产精品| 色94色欧美一区二区| 国产老妇伦熟女老妇高清| 视频在线观看一区二区三区| 免费在线观看影片大全网站| 少妇的丰满在线观看| 久久天堂一区二区三区四区| 中文字幕av电影在线播放| 欧美激情高清一区二区三区| 国产精品免费视频内射| 国产极品粉嫩免费观看在线| 亚洲国产看品久久| 精品少妇久久久久久888优播| 天天添夜夜摸| 老熟妇乱子伦视频在线观看 | 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 精品一区在线观看国产| 成人亚洲精品一区在线观看| 岛国在线观看网站| 国产精品偷伦视频观看了| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| 国产不卡av网站在线观看| 美女福利国产在线| 人成视频在线观看免费观看| 国产高清视频在线播放一区 | 国产伦理片在线播放av一区| 亚洲欧美一区二区三区久久| 亚洲精品日韩在线中文字幕| 老熟女久久久| 欧美国产精品一级二级三级| 国产精品九九99| 高清欧美精品videossex| 又大又爽又粗| av线在线观看网站| 男女国产视频网站| 性高湖久久久久久久久免费观看| a 毛片基地| 欧美日韩福利视频一区二区| 国产淫语在线视频| 看免费av毛片| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 亚洲国产欧美在线一区| 国产欧美日韩精品亚洲av| 亚洲专区字幕在线| 中文欧美无线码| 午夜免费成人在线视频| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 日韩一区二区三区影片| 夜夜夜夜夜久久久久| 18禁国产床啪视频网站| 一本久久精品| 亚洲五月婷婷丁香| tube8黄色片| 91老司机精品| 精品免费久久久久久久清纯 | 国产精品99久久99久久久不卡| 国产欧美日韩一区二区精品| 男人添女人高潮全过程视频| 日本av手机在线免费观看| 免费女性裸体啪啪无遮挡网站| 热re99久久精品国产66热6| 亚洲精品乱久久久久久| 国产伦理片在线播放av一区| 欧美人与性动交α欧美软件| 后天国语完整版免费观看| 新久久久久国产一级毛片| 搡老乐熟女国产| 亚洲九九香蕉| 一二三四在线观看免费中文在| 日本wwww免费看| 一区二区日韩欧美中文字幕| 午夜福利视频精品| 色精品久久人妻99蜜桃| 日本五十路高清| 成人影院久久| 少妇裸体淫交视频免费看高清 | 国产精品av久久久久免费| 一区二区三区激情视频| 最新在线观看一区二区三区| 亚洲成av片中文字幕在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 久久国产精品影院| 极品人妻少妇av视频| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 亚洲色图 男人天堂 中文字幕| 美女午夜性视频免费| 亚洲色图综合在线观看| a级毛片在线看网站| 亚洲精品一区蜜桃| 亚洲情色 制服丝袜| 亚洲七黄色美女视频| 纯流量卡能插随身wifi吗| svipshipincom国产片| 精品久久久久久久毛片微露脸 | 国产成人精品无人区| 狠狠精品人妻久久久久久综合| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花| 黄网站色视频无遮挡免费观看| 少妇的丰满在线观看| 在线天堂中文资源库| 欧美日韩av久久| 老司机午夜十八禁免费视频| 国产一卡二卡三卡精品| 亚洲自偷自拍图片 自拍| 欧美人与性动交α欧美精品济南到| 国产xxxxx性猛交| 国产成人a∨麻豆精品| 这个男人来自地球电影免费观看| 精品亚洲成国产av| 精品国内亚洲2022精品成人 | 少妇被粗大的猛进出69影院| av电影中文网址| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲精品不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲免费av在线视频| 欧美黑人欧美精品刺激| 男人爽女人下面视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲国产精品999| 欧美性长视频在线观看| 黄色片一级片一级黄色片| 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看 | netflix在线观看网站| 国产精品偷伦视频观看了| 日韩精品免费视频一区二区三区| 黑人操中国人逼视频| 麻豆国产av国片精品| 久久毛片免费看一区二区三区| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区精品|