• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extracting the Subsonic Anti-Symmetric Lamb Wave from a Submerged Thin Spherical Shell Backscattering Through Iterative Time Reversal

    2014-05-05 13:00:13YUXiaotaoPENGLinhuiandYUGaokun
    Journal of Ocean University of China 2014年4期
    關(guān)鍵詞:實(shí)驗(yàn)班學(xué)習(xí)成績年齡

    YU Xiaotao, PENG Linhui,, and YU Gaokun

    1) School of Information Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, P. R. China

    Extracting the Subsonic Anti-Symmetric Lamb Wave from a Submerged Thin Spherical Shell Backscattering Through Iterative Time Reversal

    YU Xiaotao1),2), PENG Linhui1),2),*, and YU Gaokun1)

    1) School of Information Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, P. R. China

    The extraction of the weakly excited anti-symmetric Lamb wave from a submerged thin spherical shell backscattering is very difficult if the carrier frequency of the incident short tone burst is not at its frequency of greatest enhancement. Based on a single channel iterative time reversal technique, a method for isolating the subsonic anti-symmetric Lamb wave is proposed in this paper. The approach does not depend on the form function of a thin shell and any other priori knowledge, and it is also robust in the presence of some stochastic noise. Both theoretical and numerical results show that the subsonic anti-symmetric Lamb wave can be identified, even when the carrier frequency of the incident short tone burst is away from the frequency of greatest enhancement. The phenomenon may also be observed even in the case that the subsonic anti-symmetric Lamb wave is submerged in the noise, other than the case with the Signal to Noise Ratio being less than 10 dB, when the amplitude of the noise is comparable with the specular wave. In this paper, each iteration process contains a traditional transmission and time reversal transmission steps. The two steps can automatically compensate the time delay of the subsonic anti-symmetric Lamb wave relative to the specular wave and within-mode dispersion in the forward wave propagation.

    backscattering; Lamb wave; time reversal; frequency of greatest enhancement; SNR

    1 Introduction

    For a short tone burst incidence, the subsonic antisymmetric Lamb wave backscattered by a submerged airfilled thin spherical shell can be relatively enhanced in a midfrequency range. For the example of a 5% thick stainless steel shell emphasized in the present study, this enhancement is evident for ka from about 10 to 25. The frequency of greatest enhancement has a strong dependence on the radius and thickness of the shell, so the extraction of the subsonic anti-symmetric Lamb wave is of significance to estimate geometric parameters of a shell.

    This midfrequency enhancement phenomenon was first observed by Gaunaurd and Werby (1987) in their study of the Lamb and Franz waves scattered by spherical shells in water. It is found that the form function of a shell has a resonance peak (greatest enhancement) in a midfrequency range, and the frequency of greatest enhancement decreases with the shell thickness. Through the analysis of the backscattering amplitude of a thin spherical shell, Sammelmannet al. (1989) has shown that the dispersion curve of the lowest order, anti-symmetric Lamb wave bifurcates to two different curves at a critical frequency. The two different dispersion curves can be differentiated by phase speed,i.e., one is supersonic and the other is subsonic. The subsonic anti-symmetric Lamb wave contributes to the midfrequency enhancement over a certain broad frequency range. Moreover, the frequency-thickness productkhof greatest enhancement is found to be roughly constant. The backscattering amplitude excited by tone bursts is also calculated by the modified ray approximation (Zhanget al., 1992), and it is illustrated that the amplitude of the anti-symmetric Lamb wave is relatively large compared with the specular wave in the midfrequency range, which can be used to identify the frequency of greatest enhancement. Using these properties, Liet al. (2005) estimated the radius and thicknesses of spherical shells. This midfrequency enhancement phenomenon has also been studied by some other authors (Kaduchak and Marston, 1993a, b; Kaduchaket al., 1995).

    The frequency of greatest enhancement in the above investigations is obtained by calculating the form function of a shell. However, in practice, it is not easy to extract the form function from the echoes of a shell. The antisymmetric Lamb wave was experimentally isolated from the scattering responseviaa single channel, iterative time reversal by Yinget al. (2009), Waters (2009) and Waterset al. (2009). Power-iterated single-channel time-reversal has been extended to employ Lanczos iterations (Waters and Barbone, 2010, 2012) which possess a superior convergence in comparison to the standard power-iterated technique (Waterset al., 2012). It is shown that the anti-symmetric Lamb can be identified from the echoes for the carrier frequency at the frequency of greatest enhancement. However, for the carrier frequency away from the frequency of great enhancement, the anti-symmetric Lamb wave is so weekly excited that it can hardly be identified, especially in the presence of noise.

    In this paper, based on the single channel, iterative time reversal technique and the application of time reversal process in structural health monitoring (Parket al., 2007, 2009; Jun and Lee, 2012), both theoretical and numerical results show that the anti-symmetric Lamb wave can be identified, even when the carrier frequency of the incident short tone burst is away from the frequency of greatest enhancement. First, the midfrequency enhancement phenomena of the thin spherical shell is introduced in Section 2, and a dominant resonance of the echo, the subsonic anti-symmetric Lamb wave, is observed in both time and frequency domain. In Section 3, the frequency of the dominant resonance is isolated through an improved single channel, iterative time reversal technique, and in the case that the noise is present. Then the validity of the improved iteration steps in compensating the time delay relative to the specular wave and within-mode dispersion of the anti-symmetric Lamb is analyzed in Section 4. The paper is concluded in Section 5.

    2 Midfrequency Enhancement of the Thin Spherical Shells

    For the purpose of interpreting the frequency drift and converging through the iterative time reversal, the midfrequency enhancement phenomena of thin spherical shells is first investigated in this section. The dominant resonance of the echo is also discussed in both the frequency and time domain.

    The steady state of the far-field (r>>ka2) backscattering can be written as the real part of

    wherepincis the amplitude of the incident plane wave,ais the radius of the spherical shell,x=kais the dimensionless frequency, andk=ω/c,ωis the angular frequency of the incident signal,kandcare the wave number and sound speed in the surrounding water, respectively. The backscattering form functionf(x) is

    where the functionsBn(x) andDn(x) are 5×5 determinants given by Kargl and Marston (1989). The material parameters of the spherical shell and surrounding water are displayed in Table 1. Fig.1 shows the calculated backscattering form function of shells with different thicknesses and a same 1 m radius (below the same). The ratio between the radius,a, and thickness,h, of the shell is denoted byh/a. And for eachh/a, an apparent broad peak, which is dominated by the lowest order, subsonic, antisymmetric Lamb wave, appears in a midfrequency range. Fig.1 also displays the result that the enhanced midfrequency range varies approximately asa/h, suggesting the following inverse problem for estimating theh/a.

    In order to display the midfrequency enhancement phenomenon in the time domain, the echoes excited by tone bursts with different carrier frequenciesk0a=14, 21, 28 and 66.2 are calculated withh/a=0.05 as shown in Fig.2. It should be noted that the echoes presented in this paper are calculated by OASES&SCATT model which is based on the wavenumber integration and virtual source method(Schmidt, 2004; Lee and Schmidt, 2003). Consistent with the frequency of greatest enhancement obtained from the backscattering form function, the lowest order subsonic anti-symmetric Lamb waves,a0-, are relatively enhanced atk0a=21 compared with the specular wave. In Fig.2d, the echo excited by a 4-cycle sine tone at a much higher carrier frequencyk0a=66.2 is presented, and thea0-wave is so weakly excited that it can hardly be isolated.

    Table 1 Material parameters of the spherical shell and surrounding water

    Fig.1 The backscattering form function of spherical shells with different h/a.

    Fig.2 Echoes of the spherical shell with different k0a.

    The first arrival is the specular wave, and the second arrival is the subsonic anti-symmetric Lamb wave (a0-).

    3 Isolation of the Subsonic Anti-Symmetric Lamb Wave

    In this section, an improved single channel, iterative time reversal technique is used to enhance the echo from a thin spherical shell. The single-channel iterative time reversal technique was previously described by Pautetet al. (2005). Based on the steps used by Waterset al. (2012), the procedure of the single channel, iterative time reversal technique is improved as followed:

    1) Excite a submerged air-filled spherical shell with a short tone burst.

    2) Truncate a portion of the echo using a time-domain window.

    3) Reverse the temporal truncated echo and transmit the new time reversed signal.

    4) Truncate the focused signal received after step (3) as the tone burst of step (1).

    5) Repeat steps (2)–(4) iteratively.

    Different from the process used by Waterset al.(2012), a much longer time-domain window is used in step (2), and the step (4) is added. The extraction process contains one initial traditional transmission and multiple time reversal transmissions. The two steps can compensate the time delay between the specular reflection and thea0-wave and within-mode dispersion during propagating in the shell, and enhance the capability of the iteration time reversal.

    3.1 The Theoretical Process of the Iterative Time Reversal

    The theoretical process of the single channel, iterative time reversal is performed in the case that the transfer function of thea0- wave is obtained from a ray approximation, and the echo contains only the specular wave and first receiveda0- wave.

    The ray approximation (Zhanget al., 1992) for themtha0-contribution to the steady state form function for backscattering is

    wheremis the circumnavigation index,ηis a propagation-related phase shift,clis the phase velocity along the outer surface of the shell,wis the angular frequency of thea0- wave,xandcare defined as in Eq. (1). Its magnitude is simply related to the radiation damping parameterβ(w) for thea0- wave.

    In this paper, the ray approximation of thea0-wave is simplified as

    k2andldenote respectively the wavenumber and propagating distance in the shell.

    The echo is supposed to contain only the specular wave and first receiveda0-wave. Their transfer function in the shell can be written as

    wherecgis the group velocity of thea0-wave propagating in the shell.

    Because the specular wave does not penetrate into the shell, the transfer function can be described aswithout amplitude and within-mode dispersion. The transfer function of thea0- wave isA2(w) and2ejkldenote the amplitude and within-mode dispersion function during propagating in the shell.

    以我院2013級中職護(hù)生為研究對象,選擇一個(gè)班級為實(shí)驗(yàn)班(護(hù)生51名),一個(gè)班級為對照班(護(hù)生54名)。兩班各有男生3人,其余均為女生,年齡14~16歲,初中起點(diǎn)。兩班在年齡、性別、家庭背景、學(xué)習(xí)成績上無明顯差異,由同一教師授課,實(shí)驗(yàn)安排、考核標(biāo)準(zhǔn)相同。實(shí)驗(yàn)班在基護(hù)實(shí)訓(xùn)操作中加入標(biāo)準(zhǔn)化溝通訓(xùn)練,對照班采用傳統(tǒng)教學(xué)方法。

    For the plane wave incidence, neglecting the spherical spreading damping factorr-1, the steady state of the scattered pressure can be written as follows

    Then, relaunch the conjugated pressure, and the second received pressure can be written to

    Thes/sanda0-/a0- superpose each other as the focused signal as shown in Eq. (7). After iterative time reversal operation, the focused signal is of the form

    Then the amplitude ratio of thea0- wave relative to the specular wave is of the form

    Eq. (9) shows that the amplitude ratio increases with the iterations increasing, which manifests that the focused signal is more and more dominated by thea0- wave. Therefore, the frequency of the focused signal may shift and converge to the frequency of greatest enhancement at which thea0- wave can be maximizedly excited.

    3.2 Numerical Simulations

    The predictions of Eq. (9) are confirmed through the following numerical simulations for the above iteration process with OASES&SCATT when thea0- wave is weakly excited.

    In this section, a 4-cycle sine tone burst with a much higher carrier frequencyk0a=66.2 and with the excited Lamb waves being weakly excited is employed. Fig.3 shows the echo with its wigner-ville distribution (WVD) where two light spots (cut across by vertical lines) are found after the specular wave. Compared with the arriving time of thea0- wave obtained from Fig.2, they are identified as them=0 andm=1a0- waves. In the spectrum of the focused signal, a weak enhancement peak (cut across by a horizontal line) is found nearka=21. With the frequency of greatest enhancementka=21 lying on the side lobe of the incident spectrum far away from the carrier frequency, the exciteda0- waves contribute little to the energy of the echo. The second received echo after time reversal is shown in Fig.4, where the focused signal is primarily contributed by the specular wave.

    Fig.3 WVD of the echo excited by k0a=66.2.

    Fig.4 The received echo after time reversal.

    Fig.5 spectra of the focused signals after iterative time reversal.

    Eq. (13), which is an increasing function versusnas Eq. (9), shows that the focused signal may be more and more dominated by thea0- wave with the frequency drifting and converging to the frequency of greatest enhancement. Eq. (10) displays the result when the noise can be coherently superposed during the iterative time reversal process. However, the noise is not coherently amplif i ed as rapidly as the coherent target response in practice, which enhances the validity of this method.

    The derivation of Eq. (9) and Eq. (13) indicates that the focused signal should be identified from the noise in the time domain, which limits the application of the method at a weaker Signal to Noise Ratio (SNR).

    TheSNRis defined asSNR=10log(Es/En), whereEscident short tone burst when thea0- waves are maximizedly excited. However, the iterationnshould be balanced considering the amplitude dispersion during the iterative time reversal which makes thea0- wave expanse in the time domain. It is apparent that the frequency drift from the carrier frequency to the frequency of greatest enhancement is not reversible during the iteration, which supports that the phenomenon may also be observed in the case that some other Lamb waves are excited in the echo.

    3.3 The Effect of Noise

    In the presence of noise whose transfer function isNe-jkr, the focused signal received after iterative time reversal can be written as

    Then the amplitude ratio of thea0-wave relative to the specular wave is of the form

    Compared with Eq. (9), the effect of the noise is performed in Eq. (11). The expressionN(A1+1)/Pincmay be neglected if the amplitude of the noise is very low relative to amplitude of the incident plane wave when Eq.(11) can be simplified as Eq. (9). After a constant,a, is introduced for compensating the scattering loss of the signal, Eq. (11) can be modified toandEndenote the maximum amplitudes of the signal and the noise in the truncated time window. The results of numerical calculation of the echoes without noise and with theSNRat 30 dB, 20 dB and 10 dB are shown in Fig.6. Figs.6a–d show that thea0- wave is gradually submerged in the noise. The spectra of the focused signals after iterative time reversal are given in Fig.7, where the frequency of the greatest enhancement can hardly be identified atSNR=10 dB. Numerical simulations demonstrate that the focused signal is completely submerged in the noise for much more iterations. Therefore, the critical value ofSNRmay be 10 dB under which thea0- wave cannot be isolated.

    Fig.6 Echoes from the spherical shell in the presence of stochastic noise.

    Fig.7 Spectra of the focused signal after iterative time reversal operation.

    4 Discussions

    In Section 3, a drift to the frequency of greatest enhancement is observed through the improved single channel, iterative time reversal technique. As discussed in Section 2, the resonance is dominated by the subsonic anti-symmetric Lamb wave in a thin spherical shell.

    In this paper, each iteration process contains a traditional transmission and time reversal transmission steps, which is different from the process used by Waterset al.(2012). The two steps can compensate the time delay factor, etjω-Δ, of thea0- wave relative to the specular wave. Fig.8a shows the numerical results of the echoes excited by a 4-cycle, narrow band sine tone burst with a carrier frequencyk0a=21. Fig.8b displays the second received response after time reversal containings/s,a0-/s,a0-/a0- ands/a0-. After time reversal, thea0-/a0- ands/sare received at the same time and superpose each other as the focused signal. Therefore, thea0- wave once weakly excited may be picked up along with the focused signal instead of searching through the whole time window which is usually not easy to perform.

    Eq. (7) also shows that the within-mode dispersion factor,2ejklin the forward wave propagation process is automatically compensated during the time reversal process, resulting in only amplitude dispersion at the end. Numerical results shown in Fig.9a shows that the different frequencies are received at different times bending the bright stripe consistent with the dispersion curve shown by Zhanget al. (1992). However, after time reversal, the bent bright stripe straightens without narrowinga0- in the time domain for the amplitude dispersion shown in Fig.9b.

    Fig.8 (a) The echo of the spherical shell; (b) The second received echo after time reversal.

    Fig.9 The wigner-ville distribution (WVD) of the echoes. (a) before time reversal; (b) after time reversal.

    5 Conclusions

    A feasible method for extracting the frequency of greatest enhancement dominated by thea0- wave is presented in this paper. Not requiring the form function and any other priori knowledge, the extraction method is based on a single channel, iterative time reversal process. Both theoretical and numerical simulation results show that the frequency of the focused signal shifts and converges to the frequency of greatest enhancement with the single channel, iterative time reversal process. The phenomenon can be used to identify the frequency of greatest enhancement, which is consistent with the result obtained from the form function.

    The effect of the stochastic noise is also studied in this paper. An obvious defect is that the validity of this method is bounded by the absoluteSNRof the system. Because the iterative time reversal process amplif i es the coherent target response and does not act to decrease the level of the noise. Therefore, further study in enhancing the validity of this method at much lowerSNRis necessary.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (46976019) and the open project of the State Key Laboratory of Acoustics, Chinese Academy of Sciences (SKLA201202). The authors acknowledge their funds to support the research.

    Gaunaurd, G. C., and Werby, M. F., 1987. Lamb and creepingwaves around submerged spherical shells resonantly excited by sound scattering. Journal of the Acoustical Society of America, 82 (6): 2021-2033.

    Jun, Y., and Lee, U., 2012. Computer-aided hybrid time reversal process for structural health monitoring. Journal of Mechanical Science and Technology, 26 (1): 53-61.

    Kaduchak, G., and Marston, P. L., 1993a. Observation of the midfrequency enhancement of tone bursts backscattered by a thin spherical shell in water near the coincidence frequency. Journal of the Acoustical Society of America, 93 (1): 224-230. Kaduchak, G., and Marston, P. L., 1993b. Backscattering of chirped bursts by a thin spherical shell near the coincidence frequency. Journal of the Acoustical Society of America, 93 (5): 2700-2706.

    Kaduchak, G., Kwiatkowski, S., and Marston, P. L., 1995. Measurement and interpretation of the impulse response for backscattering by a thin spherical shell using a broad- bandwidth source that is nearly acoustically transparent. Journal of the Acoustical Society of America, 97 (5): 2699-2708.

    Kargl, S. G., and Marston, P. L., 1989. Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations. Journal of the Acoustical Society of America, 85 (3): 1014-1028.

    Lee, J., and Schmidt, H., 2003. SCATT-OASES3D User’s Manual Revision 2. Department of Ocean Engineering, Massachusetts Institute of Technology.

    Li, W., Liu, G. R., and Varadan, V. K., 2005. Estimation of radius and thickness of a thin spherical shell in water using the midfrequency enhancement of a short tone burst response. Journal of the Acoustical Society of America, 118 (4): 2147-2153.

    Park, H. W., Kim, S. B., and Sohn, H., 2009. Understanding a time reversal process in Lamb wave propagation. Wave Motion, 46: 451-467.

    Park, H. W., Sohn, H., Lawc, K. H., and Farrar, C. R., 2007. Time reversal active sensing for health monitoring of a composite plate. Journal of Sound and Vibration, 302: 50-66.

    Pautet, L., Tesei, A., Guerrini, P., and Pouliquen, E., 2005. Target echo enhancement using a single-element time reversal mirror. IEEE Oceanic Engineering Society, 30 (4): 912-920.

    Sammelmann, G. S., Trivett, D. H., and Hackman, R. H., 1989. The acoustic scattering by a submerged, spherical shell I: The bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave. Journal of the Acoustical Society of America, 85 (1): 114-124.

    Schmidt, H., 2004. OASES Version 3.1 User Guide and Reference Manual. Department of Ocean Engineering, Massachusetts Institute of Technology.

    Waters, Z. J., 2009. Sensing resonant objects in the presence of noise and clutter using iterative, single-channel time reversal. PhD thesis, Boston University, Boston, MA.

    Waters, Z. J., and Barbone, P. E., 2010. Single-channel time reversal with Lanczos iterations. Journal of the Acoustical Society of America, 127 (3): 2013-2013.

    Waters, Z. J., and Barbone, P. E., 2012. Discriminating resonant targets from clutter using Lanczos iterated single-channel time reversal. Journal of the Acoustical Society of America, 131 (6): EL468-EL474.

    Waters, Z. J., Dzikowicz, B. R., and Simpson, H. J., 2012. Isolating scattering resonances of an air-filled spherical shell using iterative, single-channel time reversal. Journal of the Acoustical Society of America, 131 (1): 318-326.

    Waters, Z. J., Dzikowicz, B. R., Holt, R. G., and Roy, R. A., 2009. Sensing a buried resonant object by single-channel time reversal. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 56 (7): 1429-1441.

    Ying, Y., Guo, S., Sun, B., Ma, Li., Cai, Z., Fu, H., and Hu, B., 2009. Experimental investigation of bottom target detection by single channel iterative time reversal. Proceedings of Meetings on Acoustics, 6, 070001.

    Zhang, L. G., Sun, N. H., and Marston, P. L., 1992. Midfrequency enhancement of the backscattering of tone bursts by thin spherical shells. Journal of the Acoustical Society of America, 91 (4): 1862-1874.

    (Edited by Xie Jun)

    (Received October 12, 2012; revised February 27, 2013; accepted March 13, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. E-mail: penglh@ouc.edu.cn

    猜你喜歡
    實(shí)驗(yàn)班學(xué)習(xí)成績年齡
    變小的年齡
    山西農(nóng)大鄉(xiāng)村振興“雙創(chuàng)”實(shí)驗(yàn)班開班
    行知實(shí)驗(yàn)班
    實(shí)驗(yàn)班以情促教教學(xué)策略談
    甘肅教育(2020年2期)2020-09-11 08:01:08
    名落孫山
    TOO YOUNG TO LOCK UP?
    卓越司法人才培養(yǎng)實(shí)驗(yàn)班的小樣本考察(2014-2017)——以安徽師范大學(xué)法學(xué)院13級實(shí)驗(yàn)班為樣本
    年齡歧視
    算年齡
    大學(xué)生學(xué)習(xí)動(dòng)機(jī)與學(xué)習(xí)成績的相關(guān)研究
    人間(2015年21期)2015-03-11 15:24:34
    自拍欧美九色日韩亚洲蝌蚪91| 在线观看午夜福利视频| 久久精品国产亚洲av高清一级| а√天堂www在线а√下载| av网站免费在线观看视频| 51午夜福利影视在线观看| 欧美在线一区亚洲| 久久久久久久精品吃奶| tocl精华| 三级毛片av免费| 午夜福利成人在线免费观看| 日本vs欧美在线观看视频| 欧美人与性动交α欧美精品济南到| 黄色片一级片一级黄色片| 久久这里只有精品19| 老司机福利观看| 一卡2卡三卡四卡精品乱码亚洲| 最近最新中文字幕大全电影3 | 欧美精品亚洲一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲三区欧美一区| 国产欧美日韩一区二区三区在线| 午夜福利18| 日韩精品免费视频一区二区三区| 欧美激情 高清一区二区三区| 亚洲av日韩精品久久久久久密| cao死你这个sao货| 亚洲国产色片| 国产精品伦人一区二区| 十八禁国产超污无遮挡网站| 尾随美女入室| 国产熟女欧美一区二区| 神马国产精品三级电影在线观看| 国产高清激情床上av| 亚洲av成人av| 最近中文字幕高清免费大全6 | 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一| 亚洲色图av天堂| 亚洲第一区二区三区不卡| 99国产极品粉嫩在线观看| 3wmmmm亚洲av在线观看| 国产蜜桃级精品一区二区三区| 波多野结衣高清作品| 精品久久国产蜜桃| 男人和女人高潮做爰伦理| 日本黄色片子视频| 九色国产91popny在线| 国产亚洲精品综合一区在线观看| 国语自产精品视频在线第100页| 不卡一级毛片| 美女免费视频网站| 长腿黑丝高跟| 一区二区三区四区激情视频 | 亚洲av二区三区四区| 日本黄大片高清| 3wmmmm亚洲av在线观看| 国产精品日韩av在线免费观看| 欧美激情在线99| 久久久国产成人免费| 久久草成人影院| 桃色一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品国内亚洲2022精品成人| 欧美激情久久久久久爽电影| 久久久久久九九精品二区国产| 3wmmmm亚洲av在线观看| 精品久久国产蜜桃| 最后的刺客免费高清国语| 两人在一起打扑克的视频| 中文字幕人妻熟人妻熟丝袜美| 精品99又大又爽又粗少妇毛片 | 国产精品福利在线免费观看| 99热网站在线观看| 偷拍熟女少妇极品色| 亚洲欧美清纯卡通| 亚洲人与动物交配视频| 蜜桃久久精品国产亚洲av| 午夜精品一区二区三区免费看| 欧美激情国产日韩精品一区| 精品一区二区三区人妻视频| 国产高清激情床上av| 久久精品综合一区二区三区| 久久亚洲真实| 99热6这里只有精品| 黄色丝袜av网址大全| 波多野结衣巨乳人妻| 波野结衣二区三区在线| 欧美三级亚洲精品| 少妇人妻一区二区三区视频| 国产精品,欧美在线| 久久久久久大精品| 亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 干丝袜人妻中文字幕| 一本精品99久久精品77| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品电影网| 热99在线观看视频| 嫩草影院精品99| 男人的好看免费观看在线视频| 免费黄网站久久成人精品| 中文字幕av在线有码专区| 亚洲经典国产精华液单| 久久久午夜欧美精品| 在线观看一区二区三区| 国产黄a三级三级三级人| 美女xxoo啪啪120秒动态图| a在线观看视频网站| 亚洲成a人片在线一区二区| 十八禁国产超污无遮挡网站| 免费无遮挡裸体视频| 搡老岳熟女国产| 日本爱情动作片www.在线观看 | 亚洲在线自拍视频| 99视频精品全部免费 在线| 精品乱码久久久久久99久播| 最近在线观看免费完整版| 亚洲男人的天堂狠狠| 人妻制服诱惑在线中文字幕| 少妇丰满av| 国产伦人伦偷精品视频| 亚洲av不卡在线观看| 一个人看视频在线观看www免费| 午夜影院日韩av| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区免费毛片| 国产精品久久久久久av不卡| 一级毛片久久久久久久久女| 成年人黄色毛片网站| 99久国产av精品| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久亚洲av鲁大| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 久久天躁狠狠躁夜夜2o2o| 午夜爱爱视频在线播放| 日韩欧美国产在线观看| 波多野结衣巨乳人妻| 国产一区二区三区视频了| 搡老岳熟女国产| 舔av片在线| 久久九九热精品免费| 亚洲av电影不卡..在线观看| 亚洲精华国产精华液的使用体验 | 男女之事视频高清在线观看| 午夜精品在线福利| 亚洲久久久久久中文字幕| 亚洲精华国产精华液的使用体验 | 丝袜美腿在线中文| 两人在一起打扑克的视频| 免费人成在线观看视频色| 免费无遮挡裸体视频| 亚洲精品日韩av片在线观看| 亚洲精品粉嫩美女一区| 国产亚洲av嫩草精品影院| 中文字幕免费在线视频6| 人人妻人人看人人澡| 免费观看在线日韩| 日日啪夜夜撸| 国产欧美日韩精品亚洲av| 嫩草影院入口| 99久国产av精品| 亚洲国产精品久久男人天堂| 特级一级黄色大片| 免费看a级黄色片| 99在线人妻在线中文字幕| 嫩草影院新地址| 亚洲人与动物交配视频| 老司机午夜福利在线观看视频| 中文字幕久久专区| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看 | 18禁黄网站禁片午夜丰满| 中文字幕人妻熟人妻熟丝袜美| 黄色一级大片看看| 少妇人妻一区二区三区视频| 国产一区二区三区在线臀色熟女| 亚洲精华国产精华精| 99久国产av精品| 搡老熟女国产l中国老女人| 搞女人的毛片| 日韩精品青青久久久久久| 欧美黑人欧美精品刺激| 中国美女看黄片| 女的被弄到高潮叫床怎么办 | 亚洲精品成人久久久久久| 琪琪午夜伦伦电影理论片6080| 久久国内精品自在自线图片| 级片在线观看| 国语自产精品视频在线第100页| 久久精品久久久久久噜噜老黄 | 亚洲av二区三区四区| www日本黄色视频网| 有码 亚洲区| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| av国产免费在线观看| 超碰av人人做人人爽久久| 久久99热6这里只有精品| 亚洲欧美日韩高清在线视频| 国产伦一二天堂av在线观看| av在线蜜桃| 国产三级在线视频| 我要看日韩黄色一级片| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 成年女人看的毛片在线观看| 丰满的人妻完整版| 久久午夜福利片| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 国产男靠女视频免费网站| www日本黄色视频网| 免费看美女性在线毛片视频| xxxwww97欧美| 在线观看舔阴道视频| 在线观看av片永久免费下载| 久久精品影院6| 国产亚洲精品久久久com| 级片在线观看| 在线天堂最新版资源| 国产精品一及| 日本 欧美在线| 久久久久精品国产欧美久久久| 亚洲av二区三区四区| 日韩欧美国产一区二区入口| 97超视频在线观看视频| 99久久精品国产国产毛片| 尤物成人国产欧美一区二区三区| 久久香蕉精品热| 久久中文看片网| 美女cb高潮喷水在线观看| 国产视频内射| 国产精品不卡视频一区二区| 午夜福利在线在线| 国模一区二区三区四区视频| 婷婷色综合大香蕉| 长腿黑丝高跟| 午夜福利成人在线免费观看| 国产精品久久久久久亚洲av鲁大| 午夜福利在线观看吧| 色综合婷婷激情| 精品一区二区免费观看| 97超级碰碰碰精品色视频在线观看| av天堂中文字幕网| 极品教师在线免费播放| 亚洲av成人精品一区久久| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 搡老妇女老女人老熟妇| av专区在线播放| 日本 av在线| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 日本a在线网址| 联通29元200g的流量卡| 久久婷婷人人爽人人干人人爱| 美女 人体艺术 gogo| av天堂中文字幕网| 日本a在线网址| 国产精品野战在线观看| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| 国模一区二区三区四区视频| 亚洲最大成人中文| 我要看日韩黄色一级片| 国产精品电影一区二区三区| 久久中文看片网| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 99在线视频只有这里精品首页| 国产毛片a区久久久久| 国产精品日韩av在线免费观看| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 亚洲欧美激情综合另类| 欧美一区二区精品小视频在线| 97热精品久久久久久| 色5月婷婷丁香| 床上黄色一级片| 国产久久久一区二区三区| av天堂在线播放| 给我免费播放毛片高清在线观看| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 中文字幕人妻熟人妻熟丝袜美| 18禁黄网站禁片免费观看直播| 简卡轻食公司| 夜夜看夜夜爽夜夜摸| 亚洲黑人精品在线| 亚洲精华国产精华液的使用体验 | 波多野结衣高清无吗| 国内精品宾馆在线| 亚洲专区国产一区二区| 69人妻影院| 国产在线男女| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 久久精品国产自在天天线| 99热6这里只有精品| 精品一区二区三区人妻视频| 桃红色精品国产亚洲av| 在线观看66精品国产| 免费观看人在逋| 免费一级毛片在线播放高清视频| 亚洲熟妇中文字幕五十中出| 十八禁国产超污无遮挡网站| 亚洲av.av天堂| 亚洲人成网站在线播| 最好的美女福利视频网| 韩国av在线不卡| 国产精品98久久久久久宅男小说| 日本a在线网址| 韩国av一区二区三区四区| 国产亚洲91精品色在线| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| x7x7x7水蜜桃| 国产爱豆传媒在线观看| 午夜精品在线福利| 在线天堂最新版资源| 亚洲五月天丁香| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 亚洲成av人片在线播放无| 亚洲熟妇中文字幕五十中出| 淫妇啪啪啪对白视频| 成人国产麻豆网| 99热6这里只有精品| 精品一区二区三区视频在线观看免费| 一本久久中文字幕| 在线天堂最新版资源| 久久午夜福利片| 成人国产综合亚洲| 亚洲七黄色美女视频| 伦精品一区二区三区| 嫩草影院精品99| 麻豆一二三区av精品| 亚洲18禁久久av| 级片在线观看| 国产伦精品一区二区三区视频9| 久久草成人影院| 亚洲美女黄片视频| 两人在一起打扑克的视频| 国产三级中文精品| 亚洲人与动物交配视频| 国产三级中文精品| 国内精品久久久久久久电影| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 国产精品久久久久久久电影| 午夜老司机福利剧场| 成人国产综合亚洲| 欧美黑人巨大hd| 欧美日韩瑟瑟在线播放| 国产成人影院久久av| 韩国av一区二区三区四区| a级毛片a级免费在线| 成人欧美大片| 床上黄色一级片| 欧美最黄视频在线播放免费| 99久久中文字幕三级久久日本| 欧洲精品卡2卡3卡4卡5卡区| 国内揄拍国产精品人妻在线| 直男gayav资源| 久久婷婷人人爽人人干人人爱| 免费黄网站久久成人精品| 美女免费视频网站| 国产精品伦人一区二区| 一a级毛片在线观看| 精品午夜福利视频在线观看一区| 国产一区二区三区av在线 | 美女cb高潮喷水在线观看| 久久香蕉精品热| 一个人观看的视频www高清免费观看| 伊人久久精品亚洲午夜| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 久久精品国产亚洲av涩爱 | 十八禁网站免费在线| 最近最新中文字幕大全电影3| 色吧在线观看| 亚洲三级黄色毛片| 丰满乱子伦码专区| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| 伦精品一区二区三区| 男女之事视频高清在线观看| 亚洲色图av天堂| 国产精品久久视频播放| 午夜福利在线观看免费完整高清在 | 午夜福利18| 国产69精品久久久久777片| 久久久午夜欧美精品| 日本黄色片子视频| 少妇丰满av| 国产精品永久免费网站| 国产精品,欧美在线| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 国产在线男女| 搡老妇女老女人老熟妇| 波野结衣二区三区在线| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 啦啦啦啦在线视频资源| 国产主播在线观看一区二区| 高清在线国产一区| 免费高清视频大片| 国产亚洲精品av在线| 国产伦人伦偷精品视频| 国语自产精品视频在线第100页| 久久久久国内视频| 99久久久亚洲精品蜜臀av| 国产精品一区www在线观看 | 中文字幕免费在线视频6| 国产免费av片在线观看野外av| av黄色大香蕉| 亚洲国产欧洲综合997久久,| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 久久6这里有精品| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 精品一区二区三区人妻视频| 在线看三级毛片| 亚洲成人精品中文字幕电影| 亚洲图色成人| АⅤ资源中文在线天堂| av在线亚洲专区| 精品免费久久久久久久清纯| 成年版毛片免费区| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 三级毛片av免费| 国产真实伦视频高清在线观看 | 亚洲av美国av| 国产激情偷乱视频一区二区| 欧美激情国产日韩精品一区| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 国产成人影院久久av| 一区二区三区高清视频在线| aaaaa片日本免费| 久久人人精品亚洲av| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 久久久精品大字幕| 91久久精品国产一区二区三区| 搡老熟女国产l中国老女人| 日本爱情动作片www.在线观看 | 久久精品国产亚洲av香蕉五月| 一本精品99久久精品77| АⅤ资源中文在线天堂| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 在线观看66精品国产| 久久久国产成人免费| 亚洲精品一区av在线观看| 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 国内精品久久久久精免费| 亚洲av日韩精品久久久久久密| 国产探花极品一区二区| 中国美女看黄片| 色哟哟哟哟哟哟| 欧美xxxx性猛交bbbb| 91av网一区二区| 高清在线国产一区| 久久久久久久午夜电影| 不卡视频在线观看欧美| 禁无遮挡网站| 久久久午夜欧美精品| 一卡2卡三卡四卡精品乱码亚洲| 97超视频在线观看视频| 在线观看舔阴道视频| 性插视频无遮挡在线免费观看| 欧美三级亚洲精品| 成年免费大片在线观看| 久久这里只有精品中国| av专区在线播放| 最近中文字幕高清免费大全6 | 最近视频中文字幕2019在线8| 欧美不卡视频在线免费观看| 久久久久九九精品影院| 欧美+亚洲+日韩+国产| 色av中文字幕| 黄片wwwwww| 亚洲国产精品久久男人天堂| 有码 亚洲区| 国产精品乱码一区二三区的特点| 久久国内精品自在自线图片| av在线观看视频网站免费| 亚洲国产精品久久男人天堂| 女生性感内裤真人,穿戴方法视频| 一个人看视频在线观看www免费| 久久久久国内视频| 欧美又色又爽又黄视频| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 内射极品少妇av片p| 亚洲欧美清纯卡通| 人人妻人人澡欧美一区二区| 国产精品永久免费网站| 亚洲无线在线观看| 少妇高潮的动态图| 简卡轻食公司| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 精品免费久久久久久久清纯| 不卡一级毛片| 国产精品久久久久久久久免| 国产精品免费一区二区三区在线| 国产欧美日韩精品一区二区| 亚洲七黄色美女视频| 日本黄大片高清| 成年女人毛片免费观看观看9| 久久久久久久久大av| 看片在线看免费视频| 免费搜索国产男女视频| 亚洲成人久久性| 女的被弄到高潮叫床怎么办 | 国产伦在线观看视频一区| 欧美xxxx黑人xx丫x性爽| 久久久久久九九精品二区国产| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 久久精品国产亚洲av涩爱 | 亚洲av第一区精品v没综合| 熟女电影av网| 国产69精品久久久久777片| 精品乱码久久久久久99久播| 国产精品亚洲美女久久久| 美女cb高潮喷水在线观看| 亚洲自拍偷在线| 亚洲在线自拍视频| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久 | av在线蜜桃| 女的被弄到高潮叫床怎么办 | 九色国产91popny在线| 深爱激情五月婷婷| 熟女电影av网| 国产单亲对白刺激| 国产成年人精品一区二区| 内射极品少妇av片p| 久久久色成人| 一a级毛片在线观看| 99久久精品一区二区三区| 91久久精品国产一区二区成人| 亚洲成人久久性| 精品久久久久久成人av| 亚洲无线在线观看| 99视频精品全部免费 在线| 日本黄色片子视频| 亚洲国产欧洲综合997久久,| 黄色一级大片看看| 国产精品嫩草影院av在线观看 | 日韩 亚洲 欧美在线| 国内揄拍国产精品人妻在线| 中文字幕av在线有码专区| 亚洲精品久久国产高清桃花| 精品人妻1区二区| 午夜久久久久精精品| 欧美性猛交╳xxx乱大交人| 亚洲专区国产一区二区| 成年免费大片在线观看| 天堂动漫精品| 国内精品一区二区在线观看| 日韩 亚洲 欧美在线| 亚洲综合色惰| 韩国av一区二区三区四区| 毛片女人毛片| 国产不卡一卡二| 国产精品野战在线观看| 国模一区二区三区四区视频| 亚洲自拍偷在线| 精品国内亚洲2022精品成人| 嫩草影院入口| 日日啪夜夜撸| 国产成人a区在线观看| 日本爱情动作片www.在线观看 | 有码 亚洲区| av天堂中文字幕网| 女人被狂操c到高潮| 亚洲熟妇熟女久久| 亚洲色图av天堂| 亚洲成a人片在线一区二区| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 在线看三级毛片| 亚洲18禁久久av| 精品福利观看| 久久精品国产亚洲网站| 国产精品国产三级国产av玫瑰| 欧美精品啪啪一区二区三区| 美女 人体艺术 gogo| 久久久久久久久久黄片| 国产毛片a区久久久久| 久久久久性生活片| 亚州av有码| 黄色配什么色好看| 三级毛片av免费|