• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Physics-Based Dual-Frequency Approach for Altimeter Wind Speed Retrieval

    2014-05-05 13:00:11LIShuiqingZHOULiangmingLIZhanbinMIAOQingshengMOULinandWANGAifang
    Journal of Ocean University of China 2014年4期

    LI Shuiqing, ZHOU Liangming,, LI Zhanbin, MIAO Qingsheng, MOU Lin, and WANG Aifang

    1) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, P. R. China

    3) National Marine Data and Information Service, State Oceanic Administration of People’s Republic of China, Tianjin 300171, P. R. China

    4) Engineering Reconnaissance and Design Institute, Ocean University of China, Qingdao 266100, P. R. China

    A Physics-Based Dual-Frequency Approach for Altimeter Wind Speed Retrieval

    LI Shuiqing1),2), ZHOU Liangming2),*, LI Zhanbin3), MIAO Qingsheng3), MOU Lin3), and WANG Aifang4)

    1) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, P. R. China

    3) National Marine Data and Information Service, State Oceanic Administration of People’s Republic of China, Tianjin 300171, P. R. China

    4) Engineering Reconnaissance and Design Institute, Ocean University of China, Qingdao 266100, P. R. China

    The altimeter normalized radar cross section (NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use (Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach (Chenet al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.

    altimeter; mean square slope; dual-frequency; wind speed retrieval

    1 Introduction

    The ocean specular return received by the altimeter at Ku-band has been widely used to retrieve the sea surface winds for several decades. It is of special interest for its providing simultaneous measurements of surface winds and waves at global scale with high spatial resolution. For an isotropic rough surface of Gaussian distribution, the specular return in terms of normalized radar cross section (NRCS) can be expressed as (Valenzuela, 1978):

    whereσ0is the NRCS. The altimeter works on dual- frequency:Ku-band at 13.6 (GHz) (σ0Ku) andC-band at 5.3 (GHz) (σ0C). In Eq.(1),ρnis an effective nadir reflection coefficient,s2is the mean square slope (MSS), which directly describes the sea surface roughness and is mainly determined by the surface waves induced by the winds. Generally, a higher wind speed corresponds to a rougher sea surface with a higher MSS value. Therefore, the sea surface wind speed could be retrieved from the NRCS directly by establishing an explicit relationship between wind speed at 10 m heightU10andσ0Ku, either by statistical techniques (Brown, 1978; Witter and Chelton, 1991) or by analytical methods (Wu, 1994; Hwanget al., 1998).

    Based on continuing studies on the wind speed retrieval, it is found that a wave-dependent bias persists in the single-parameter algorithms (Glazman and Pilorz, 1990; Gommengingeret al., 2002). In order to account for the bias, an additional parameter is introduced besidesσ0Ku, for which the significant wave height (Hs) measured by the altimeter is generally used, and some improvements have been yielded in this way (Lefevreet al., 1994; Gourrionet al., 2002; Zhao and Toba, 2003; Liet al., 2013). However, Gourrionet al.(2002) argued that theHsis a limited proxy for variable wave conditions that have impact on the NRCS. In place ofHs, Chenet al.(2002) showed that theσ0Cappears to be more effective and they proposed a statistical approach using both theσ0Kuandσ0Cas input. Zhaoet al.(2012) also emphasized thatσ0Cshould be included in the winds retrieval.

    Recent studies on the wave dependence of MSS appears to offer a new opportunity to improve the wind speed retrieval. Vandermarket al.(2004) suggested that the wave dependence of total MSS could be mainly ascribed to long-wave (wave length larger than 3 m) titling effect. We studied this with a collocated dataset of buoys and altimeter measurements, and found that the MSS of long gravity waves strongly depend on wave age, while the MSS corresponding to the rest short-waves are modulated dominantly by the surface winds (Liet al., 2013). These results imply that the sea surface wind speed could be more effectively retrieved from the MSS of shortwaves. Elfouhailyet al.(1998) proposed an analytical wind stress algorithm using theKu-Cband difference (i.e., MSSKu-MSSC), and an improved accuracy was derived comparing with the single-parameter algorithm (Witter and Chelton, 1991).

    The goal of this study is to develop a new approach to retrieve wind speed from altimeter mean square slope of short-waves. In Section 2, the collocated dataset used in this study is described. The development of the approach is presented in Section 3. The validation and intercomparison are given in Section 4. Finally, conclusions are presented in Section 5.

    2 Collocated Dataset

    A dataset of collocated Topex/Poseidon (T/P) altimeter andin-situmeasurements was constructed. T/P provides NRCS measurements every second, corresponding to approximately a 6.8-km resolution along the satellite track. For theσ0Cmeasurements an additional correction was made to account for the atmosphere attenuation, following the procedures given by Frewet al.(2007). Quality checks were performed by eliminating the erroneous altimeter estimates based on the conventional data quality flagging suggested by Glazman and Pilorz (1990).

    Thein-situmeasurements were obtained from the buoys operated by the U.S. National Data Buoy Center (NDBC), which were widely used as the sea truth for algorithm validation. In order to remove shallow water effects and the coastal sheltering, we chose the buoys located in deep water and at least 200 km from the land, as shown in Fig.1, and a total of 19 buoys were selected.

    Fig.1 Locations of the NDBC buoys used in the dataset.

    Some of the buoys measured the winds at the height of 5 m, and these winds were converted to those at 10 m based on the drag coefficient proposed by Wu (1980).

    The collocated space and time windows were chosen to be 50 km and 1h as recommended by Chen and Lin (2001). In order to make the analysis more objective, separated datasets were used for the development and validation of the approach. The dataset for the method development ranges from January 2003 to August 2005, with a total of 2623 groups, while the dataset consisting of 914 pairs and covering the period from January 2001 to December 2002 was used for the method validation.

    3 Development of the Approach

    Based on the supported evidence that specular return from long-waves are strongly contaminated by wave state and that short waves are essentially perturbed by local winds (Vandermarket al., 2004; Liet al., 2013), we attempted to estimate wind speed from the MSS of short waves. The MSS can be obtained from the integration of wave spectrum (Phillips, 1977): whereis the wavenumber spectrum of ocean waves,wavenumber vector,kdis the cutoff wavenumber. Brown (1990) suggested that cutoff wavelength is nearly 3 times the incidence wave length, inferring that the cutoff wavenumber forKu-band andC-band are approximately 100 rad m-1and 40 rad m-1respectively. As a result, MSS in the range of 40–100 rad m-1can be derived from the dual-frequency difference:

    Fig.2 Scatter diagram of buoy wind speeds vs MSS (40–100 m-1). The fitted relationship of Eq. (5) is shown with an overlaid curve.

    Fig.3 Scatter diagrams of T/P versus buoy wind speeds. A 1:1 perfect line is also overlaid on each subplot. (a) MCW, (b) LCM and (c) SWM.

    Based on regression analysis, the best fit is:

    4 Comparison and Validation

    In this section, the new approach is validated against the buoy measurements. The algorithms proposed by Witter and Chelton (1991) (denoted as MCW) and Chenet al.(2002) (denoted as LCM) are also used for comparison. The former is single-parameter based and operationally used for altimeter, while the latter uses both the NRCS ofKuandCband, which is regarded as one of the most accurate algorithms so far.

    The scatter diagrams of altimeter winds with respect to the buoy winds are shown in Fig.3, together with the meanbias and root mean square error (RMSE) of the three algorithms. Compared to the MCW results, the SWM and LCM results are more concentrated with respect to the 1:1 perfect line, especially at low winds. The SWM performs best in terms of both mean bias and RMSE, with almost unbiased estimates and reduced RMSEs of 5.3% and 2.4% compared to MCW and LCM, respectively.

    Fig.4 shows the probability distribution function (PDF) of winds from the buoy measurements, as well as the altimeter estimates by the three algorithms. The discrepancy between the measurements by the buoy and altimeter mainly occurs for the moderate winds (5–9 m s-1). The altimeter favors more the wind speed around 6 m s-1and less the wind speed around 8 m s-1. the SWM is seen to represent a medium case among the three algorithms.

    Fig.4 Probability distribution functions of wind speeds by buoy, MCW, LCM and SWM.

    The wave-dependent biases in the three algorithms are also examined. Fig.5 shows the bin-averaged bias versus SWH. It is obvious that the MCW biases correlate with the SWH, which underestimates the wind speed with small waves and overestimates the wind speed with high SWH. This trend is largely reduced by both LCM and SWM, indicating thatσ0Cis effective for improving the wave-dependent bias.

    Fig.5 The bin-averaged wind speed bias versus SWH.

    Both the LCM and SWM show improvements over the MCW due to the use ofσ0Cas input. Chenet al.(2002) found a close correlation among the three parameters (σ0Ku,σ0C,U10) from a statistical point of view, while our algorithm may explain their inner relationship and gives more accurate results; the LCM may be limited to the data used for the development of algorithm. Furthermore, the SWM is much simpler in form and is expected to be more applicable in practical use.

    It should be mentioned that both the MCW and LCM were not designed for wind speed above 20 m s-1, and it was also not clear whether the SWM could be effectively extrapolated to the high winds due to the lack of observations. Based on the wind speed estimated from a typhoon model, Young (1993) and Guet al.(2011) proposed high winds algorithms in a linearU10-σ0Kurelationship independently, termed as Y1993 and G2011, respectively. Fig.6 shows the two high winds relations, as well as that for the SWM, which was constructed from the measurements of T/P cycles 232-247. A large discrepancy can be seen between Y1993 and G2011, which increases with decreasingσ0Kuand is as large as about 8 m s-1atσ0Ku=6.0 dB. The SWM results are seen to be close to those in G2011, and the spreading band at a givenσ0Kumay account for the wave-dependent bias. Zhao (2002) suggested that the wave effect is even obvious under high winds conditions, andis expected to be a more appropriate candidate for high winds retrieval in this sense.

    Fig.6 The high-wind relationship of U10and σ0Kufrom Young (1993), Gu et al. (2011) and SWM.

    5 Concluding Remarks

    The retrieval of wind speed from altimeter measurements has been studied for decades, with more than a dozen of algorithms having been proposed for such purpose. The accuracy is limited as a wave-dependent bias typically exists in the retrieval. Based on the physical characters of MSS of short waves, we developed a newapproach (SWM) to estimate the wind speed from the altimeter dual-frequency NRCS difference. The RMSE of the SWM is 1.24 m s-1, 15% relative to the mean wind speed. Compared with the MCW and LCM, it has a reduction of RMSE of 5.3% and 2.4%, respectively. The wave-dependent bias is reduced in comparison with the single-based MCW. However, the approach is limited at wind speeds below 3 m s-1, which may be due to the fact that such winds do not efficiently contribute to the MSS of short waves in this range.

    The high wind speed retrieval from the altimeter is of special interest as it provides simultaneous wind/wave measurements, which makes it very useful in the studies of wave growth and air-sea interaction (Chen et al., 2002). We showed that there is a large discrepancy in the existing σ0Ku-based high wind algorithms, which appears to be partly attributed to the wave-dependent bias. Since the wave conditions are expected to be more complicated at high winds, the MSS of short waves appears to be a more proper candidate than σ0Ku. Thetionship at high winds needs to be further studied and validated in the future study.

    Acknowledgements

    This work is supported by the National High Technology Research and Development Program of China (2013 AA09A505). TOPEX altimeter and buoy data are provided by the NASA TOPEX/POSEIDON Project and the National Data Buoy Center.

    Brown, G. S., 1978. Estimation of surface wind speeds using satellite-borne radar measurements at normal incidence. Journal of Geophysical Research, 84 (B8): 3974-3978.

    Brown, G. S., 1990. Quasi-specular scattering from air-sea interface. In: Surface Waves and Fluxes. Geerneart, G., and Plant, W., eds., Springer Press, New York, 1-40.

    Chen, G., Chapron, B., Ezraty, R., and Vandemark, D., 2002. A dual-frequency approach for retrieving sea surface wind speed from TOPEX altimetry. Journal of Geophysical Research, 107 (C12): 3226-3235.

    Chen, G., and Lin, H., 2001. Impacts of collocation window on the accuracy of altimeter/buoy wind-speed comparison–A simulation study. International Journal of Remote Sensing, 22 (1): 35-44.

    Cox, C., and Munk, W., 1954. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America, 44: 838-850.

    Elfouhaily, T., Vandemark, D., Gourrion, J., and Chapron, B., 1998. Estimation of wind stress using dual-frequency TOPEX data. Journal of Geophysical Research, 103 (C11): 25101-25108.

    Frew, N. M., Glover, D. M., Bock, E. J., and McCue, S. J., 2007. A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter. Journal of Geophysical Research, 112, C11003, DOI: 10. 1029/2006JC 003819.

    Glazman, R. E., and Pilorz, S. H., 1990. Effects of sea maturity on satellite altimeter measurements. Journal of Geophysical Research, 95 (C3): 2857-2870.

    Gommenginger, C., Srokosz, M., Challenor, P., and David, C., 2002. Development and validation of altimeter wind speed algorithms using an extended collocated buoy/topex dataset. IEEE Transactions on Geoscience and Remote Sensing, 40 (2): 251-260.

    Gourrion, J., Vandemark, D., and Bailey, S., 2002. A two-parameter wind speed algorithm for Ku-band altimeters. Journal of Atmospheric and Oceanic Technology, 19 (12): 2030-2048.

    Gu, Y., Liu, Y., Xu, Q., Liu, Y. H., Liu, X. Y., and Ma, Y. J., 2011. A new wind retrieval algorithm for Jason-1 at high wind speeds. International Journal of Remote Sensing, 32 (5): 1397-1407.

    Hwang, P. A., Teague, W. J., Jacobs, G. A., and Wang, D. W., 1998. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. Journal of Geophysical Research, 103 (C5): 10451-10468.

    Lefevre, J. M., Barckicke, J., and Ménard, Y., 1994. A significant wave height dependent function for TOPEX/POSEIDON wind speed retrieval. Journal of Geophysical Research, 99 (C12): 25035-25049.

    Li, S., Zhao, D., Zhou, L., and Liu, B., 2013. Dependence of mean square slope on wave state and its application in altimeter wind speed retrieval. International Journal of Remote Sensing, 34 (1): 264-275.

    Phillips, O. M., 1977. The Dynamics of the Upper Ocean. 2nd edition. Cambridge University Press, New York, 336pp.

    Valenzuela, G. R., 1978. Theories for the interaction of electromagnetic and oceanic waves–A review. Boundary-Layer Meteorology, 13 (1): 61-85.

    Vandemark, D., Chapron, B., Sun, J., Crescenti, G. H., and Graber, H. C., 2004. Ocean wave slope observations using radar backscatter and laser altimeters. Journal of Physical Oceanography, 34 (12): 2825-2842.

    Witter, D. L., and Chelton, D. B., 1991. A geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development. Journal of Geophysical Research, 96 (C5): 8853-8860.

    Wu, J., 1980. Wind-stress coefficients over sea surface near neutral conditions–A revisit. Journal of Physical Oceanography, 10 (5): 727-740.

    Wu, J., 1994. Altimeter wind and wind-stress algorithms–Further refinement and validation. Journal of Atmospheric and Oceanic Technology, 11 (1): 210-215.

    Wu, J., 1996. Air–sea gas transfer: Mechanisms and parameterization. Journal of Physical Oceanography, 26 (8): 1440-1447.

    Young, I. R., 1993. An estimate of the geosat altimeter wind speed algorithm at high wind speeds. Journal of Geophysical Research, 98 (C11): 20275-20285.

    Zhao, D., Li, S., and Song, C., 2012. The comparison of altimeter retrieval algorithms of the wind speed and the wave period. Acta Oceanologica Sinica, 31 (3): 1-9.

    Zhao, D., and Toba, Y., 2003. A spectral approach for determining altimeter wind speed model functions. Journal of Oceanography, 59 (2): 235-244.

    Zhao, D., 2002. A note on wave state dependence of sea-surface roughness. International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 26-31.

    (Edited by Xie Jun)

    (Received March 19, 2013; revised May 7, 2013; accepted January 14, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-66781511

    E-mail: zhou5299@ouc.edu.cn

    av在线天堂中文字幕| 99热只有精品国产| 亚洲av成人av| 欧美+亚洲+日韩+国产| 777久久人妻少妇嫩草av网站| 99久久99久久久精品蜜桃| 91大片在线观看| 久久久国产成人精品二区| 精品午夜福利视频在线观看一区| 久久精品国产99精品国产亚洲性色| 亚洲成av人片免费观看| 国产成人精品无人区| 哪里可以看免费的av片| 久久国产乱子伦精品免费另类| www.自偷自拍.com| 国产精品亚洲美女久久久| 国产成人精品久久二区二区免费| 成人一区二区视频在线观看| 成人18禁在线播放| 亚洲欧美精品综合久久99| 一区福利在线观看| 丰满的人妻完整版| 波多野结衣高清作品| 国产高清视频在线播放一区| 老司机在亚洲福利影院| 成人国产综合亚洲| 亚洲精品在线观看二区| 欧美午夜高清在线| av在线天堂中文字幕| 黄片大片在线免费观看| 欧美黄色淫秽网站| 最近最新中文字幕大全电影3 | 免费人成视频x8x8入口观看| 国产成人一区二区三区免费视频网站| 又大又爽又粗| 午夜免费激情av| 亚洲欧美激情综合另类| 人人澡人人妻人| 国产区一区二久久| 热99re8久久精品国产| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 精品国产超薄肉色丝袜足j| 欧美一区二区精品小视频在线| 韩国av一区二区三区四区| 国产精品亚洲一级av第二区| 正在播放国产对白刺激| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 国产在线精品亚洲第一网站| 久99久视频精品免费| 日本免费a在线| 天天躁夜夜躁狠狠躁躁| 亚洲第一电影网av| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| 亚洲精品色激情综合| 好男人电影高清在线观看| 国产高清videossex| 久久久精品欧美日韩精品| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影不卡..在线观看| 日韩欧美国产在线观看| 超碰成人久久| 不卡一级毛片| 国产av在哪里看| 欧美激情 高清一区二区三区| 丰满的人妻完整版| 黄片小视频在线播放| 国产欧美日韩一区二区三| 老司机在亚洲福利影院| 在线观看日韩欧美| 久久精品国产清高在天天线| 自线自在国产av| 男女那种视频在线观看| 亚洲欧美一区二区三区黑人| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 亚洲精品色激情综合| 女同久久另类99精品国产91| 不卡av一区二区三区| 中文字幕高清在线视频| 成年人黄色毛片网站| 国产精品 国内视频| 亚洲七黄色美女视频| 久久精品91无色码中文字幕| 日韩欧美国产一区二区入口| 国产av在哪里看| 欧美午夜高清在线| 久久久国产欧美日韩av| 亚洲av成人不卡在线观看播放网| 国产av在哪里看| 国产精品av久久久久免费| 欧美黄色淫秽网站| 欧美成人午夜精品| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 日本一本二区三区精品| 国产精品影院久久| 欧美成人性av电影在线观看| 一本一本综合久久| 狂野欧美激情性xxxx| a级毛片在线看网站| 欧美黑人精品巨大| 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 好看av亚洲va欧美ⅴa在| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 黄片播放在线免费| 黑人欧美特级aaaaaa片| 午夜日韩欧美国产| 精品少妇一区二区三区视频日本电影| 午夜两性在线视频| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密| 日韩国内少妇激情av| 日本三级黄在线观看| 视频在线观看一区二区三区| 99精品在免费线老司机午夜| 这个男人来自地球电影免费观看| 精品欧美国产一区二区三| 99热6这里只有精品| 非洲黑人性xxxx精品又粗又长| 成年人黄色毛片网站| 免费看日本二区| 精品午夜福利视频在线观看一区| 成人国语在线视频| 国产又黄又爽又无遮挡在线| 亚洲最大成人中文| 搡老岳熟女国产| a级毛片a级免费在线| 亚洲五月婷婷丁香| 久久伊人香网站| 好看av亚洲va欧美ⅴa在| 欧美日韩黄片免| 日韩免费av在线播放| ponron亚洲| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 美女高潮到喷水免费观看| 18禁裸乳无遮挡免费网站照片 | 村上凉子中文字幕在线| 国产三级黄色录像| 国产av又大| 中文字幕人妻熟女乱码| 亚洲人成网站高清观看| 在线观看舔阴道视频| 亚洲五月色婷婷综合| 日韩欧美国产一区二区入口| 国产黄a三级三级三级人| 欧美性猛交╳xxx乱大交人| 久久香蕉激情| 99久久无色码亚洲精品果冻| 国产激情久久老熟女| 黑人操中国人逼视频| 一区二区三区高清视频在线| 天堂√8在线中文| 久久精品成人免费网站| 国内精品久久久久久久电影| 麻豆一二三区av精品| 黄色 视频免费看| 国产私拍福利视频在线观看| 免费看美女性在线毛片视频| 性欧美人与动物交配| 亚洲国产欧美网| 国产精品久久久久久亚洲av鲁大| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 亚洲av电影不卡..在线观看| 午夜两性在线视频| 亚洲一区二区三区色噜噜| 人人妻人人看人人澡| 国产又黄又爽又无遮挡在线| 欧美日韩黄片免| 国产av一区二区精品久久| 美女午夜性视频免费| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| www.熟女人妻精品国产| 精品欧美一区二区三区在线| 性欧美人与动物交配| 精品午夜福利视频在线观看一区| 国产精品久久久久久人妻精品电影| 亚洲avbb在线观看| 一区二区三区高清视频在线| 免费观看人在逋| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 日韩欧美国产一区二区入口| 俺也久久电影网| 国产激情欧美一区二区| 色哟哟哟哟哟哟| 黄片小视频在线播放| 午夜福利视频1000在线观看| 免费在线观看日本一区| 国产成人欧美| 91麻豆精品激情在线观看国产| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 老熟妇仑乱视频hdxx| 久久精品国产99精品国产亚洲性色| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 国产激情久久老熟女| 岛国在线观看网站| 黄片小视频在线播放| 欧美色视频一区免费| 亚洲av成人一区二区三| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 欧美日韩黄片免| 亚洲av电影在线进入| a级毛片在线看网站| 免费av毛片视频| 韩国精品一区二区三区| 99在线人妻在线中文字幕| 变态另类丝袜制服| 两个人看的免费小视频| 性欧美人与动物交配| 亚洲精品国产一区二区精华液| 国产成人欧美在线观看| 亚洲男人的天堂狠狠| 人妻丰满熟妇av一区二区三区| 99久久国产精品久久久| 视频区欧美日本亚洲| 久久久久久久精品吃奶| 日本黄色视频三级网站网址| 国产伦一二天堂av在线观看| 亚洲中文av在线| 国产成人啪精品午夜网站| 妹子高潮喷水视频| 亚洲精华国产精华精| 人人妻人人看人人澡| 国产精品,欧美在线| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 一区二区三区国产精品乱码| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 黄色成人免费大全| 国产精品精品国产色婷婷| 制服人妻中文乱码| 美女午夜性视频免费| 三级毛片av免费| 精品国产亚洲在线| av视频在线观看入口| 国产激情欧美一区二区| 国产精品二区激情视频| 国产片内射在线| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 欧美日韩黄片免| 99国产综合亚洲精品| 黄片播放在线免费| 久久中文看片网| 成人亚洲精品av一区二区| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 超碰成人久久| 香蕉丝袜av| 久久 成人 亚洲| 国产精品,欧美在线| 午夜福利成人在线免费观看| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 亚洲人成网站在线播放欧美日韩| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 免费在线观看完整版高清| www国产在线视频色| 自线自在国产av| 午夜精品在线福利| 少妇 在线观看| 欧美激情高清一区二区三区| 99精品在免费线老司机午夜| 久久久国产欧美日韩av| 91字幕亚洲| 在线十欧美十亚洲十日本专区| 悠悠久久av| 免费电影在线观看免费观看| 一级片免费观看大全| 亚洲色图 男人天堂 中文字幕| 国产又黄又爽又无遮挡在线| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 免费搜索国产男女视频| 国产人伦9x9x在线观看| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 成在线人永久免费视频| 在线观看舔阴道视频| 久久香蕉国产精品| 久久 成人 亚洲| 亚洲成人国产一区在线观看| 狠狠狠狠99中文字幕| 男女下面进入的视频免费午夜 | 国产又色又爽无遮挡免费看| 嫩草影院精品99| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 一a级毛片在线观看| 免费一级毛片在线播放高清视频| 国产乱人伦免费视频| 国产精品香港三级国产av潘金莲| 后天国语完整版免费观看| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 性色av乱码一区二区三区2| 欧美国产日韩亚洲一区| 国语自产精品视频在线第100页| 在线永久观看黄色视频| 日韩有码中文字幕| 精品高清国产在线一区| 久久久国产欧美日韩av| 亚洲aⅴ乱码一区二区在线播放 | 午夜激情福利司机影院| 身体一侧抽搐| 欧美乱妇无乱码| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 一级毛片精品| 亚洲精品美女久久久久99蜜臀| svipshipincom国产片| 美女免费视频网站| 国产亚洲欧美精品永久| 国产在线观看jvid| 可以免费在线观看a视频的电影网站| 亚洲真实伦在线观看| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 久久久久国内视频| 久热爱精品视频在线9| 男女视频在线观看网站免费 | 日韩成人在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 国内少妇人妻偷人精品xxx网站 | 一区二区三区精品91| 精品少妇一区二区三区视频日本电影| 久久久久九九精品影院| 欧美国产精品va在线观看不卡| or卡值多少钱| 黑人操中国人逼视频| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av一区在线观看免费| 国产精品乱码一区二三区的特点| 亚洲国产精品合色在线| 亚洲激情在线av| 99re在线观看精品视频| 精品国产国语对白av| www.自偷自拍.com| 久久久久久久久久黄片| 国产av又大| 久久久久久久久中文| 一区二区日韩欧美中文字幕| 一进一出抽搐动态| 久久午夜综合久久蜜桃| 婷婷亚洲欧美| 精品国内亚洲2022精品成人| 精品福利观看| 久久久久久久久久黄片| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 十分钟在线观看高清视频www| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 男人操女人黄网站| 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 999久久久国产精品视频| 久99久视频精品免费| 男人舔奶头视频| 日韩中文字幕欧美一区二区| 人人澡人人妻人| 国产一区二区在线av高清观看| 欧美激情久久久久久爽电影| 91九色精品人成在线观看| 首页视频小说图片口味搜索| 正在播放国产对白刺激| 久久 成人 亚洲| 在线十欧美十亚洲十日本专区| 一边摸一边做爽爽视频免费| 波多野结衣高清无吗| 欧美又色又爽又黄视频| 一级毛片久久久久久久久女| 欧美成人a在线观看| 99热这里只有是精品50| 国产精品一区二区三区四区免费观看 | 亚洲激情五月婷婷啪啪| 九九热线精品视视频播放| 麻豆国产av国片精品| 亚洲三级黄色毛片| 18+在线观看网站| 成人特级黄色片久久久久久久| 国产午夜精品论理片| 午夜影院日韩av| 欧美成人a在线观看| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看| av在线观看视频网站免费| 日韩av在线大香蕉| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 亚洲四区av| 成人二区视频| 精品久久久久久久人妻蜜臀av| av在线观看视频网站免费| 91在线精品国自产拍蜜月| 别揉我奶头 嗯啊视频| 两个人的视频大全免费| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 国产国拍精品亚洲av在线观看| 99在线视频只有这里精品首页| 欧美绝顶高潮抽搐喷水| 久久国产乱子免费精品| 久久国内精品自在自线图片| 中文字幕久久专区| 午夜福利高清视频| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 日本a在线网址| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月| .国产精品久久| 最后的刺客免费高清国语| 免费观看在线日韩| 在线免费十八禁| 国产三级中文精品| 美女高潮的动态| eeuss影院久久| 别揉我奶头 嗯啊视频| 亚洲av美国av| 小蜜桃在线观看免费完整版高清| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 99riav亚洲国产免费| 国产精品一区二区性色av| 国产麻豆成人av免费视频| 欧美日韩在线观看h| 欧美另类亚洲清纯唯美| 国产精品一及| 免费人成在线观看视频色| 综合色av麻豆| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 国产成人精品久久久久久| 国产美女午夜福利| 91av网一区二区| 日本在线视频免费播放| 日韩三级伦理在线观看| 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 少妇熟女aⅴ在线视频| 久久午夜福利片| 一个人看的www免费观看视频| 成人特级av手机在线观看| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 六月丁香七月| 波多野结衣巨乳人妻| 草草在线视频免费看| 美女 人体艺术 gogo| h日本视频在线播放| 久久久久久久午夜电影| 91精品国产九色| 精品福利观看| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看 | 一夜夜www| 麻豆一二三区av精品| 免费不卡的大黄色大毛片视频在线观看 | 免费观看的影片在线观看| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 色视频www国产| 精品人妻偷拍中文字幕| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 精品久久久久久成人av| 亚洲av免费在线观看| 久久久久久久久中文| 69人妻影院| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 亚洲激情五月婷婷啪啪| 亚洲久久久久久中文字幕| 国产成年人精品一区二区| 国产精品人妻久久久久久| 亚洲av熟女| 亚洲中文字幕日韩| 亚洲va在线va天堂va国产| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 色吧在线观看| 中文字幕av在线有码专区| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 韩国av在线不卡| 又粗又爽又猛毛片免费看| 欧美成人免费av一区二区三区| 成人三级黄色视频| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 99视频精品全部免费 在线| 久久6这里有精品| 天天一区二区日本电影三级| 观看美女的网站| 国产综合懂色| 99热只有精品国产| 午夜激情福利司机影院| 国产成人精品久久久久久| 一级毛片我不卡| 看十八女毛片水多多多| 丝袜美腿在线中文| 欧美人与善性xxx| 亚洲熟妇熟女久久| 中国美白少妇内射xxxbb| 一级毛片我不卡| 免费看a级黄色片| 在线播放国产精品三级| 国产一区二区在线av高清观看| 色综合色国产| 国产真实乱freesex| av国产免费在线观看| 亚洲在线观看片| 观看美女的网站| 日本黄大片高清| 晚上一个人看的免费电影| 免费搜索国产男女视频| 国产精品综合久久久久久久免费| 国产精品久久电影中文字幕| a级毛片免费高清观看在线播放| .国产精品久久| aaaaa片日本免费| 亚洲综合色惰| 国产伦在线观看视频一区| 俺也久久电影网| 国产真实伦视频高清在线观看| 国产色爽女视频免费观看| 成人特级av手机在线观看| 小说图片视频综合网站| 在线看三级毛片| 香蕉av资源在线| 亚洲国产日韩欧美精品在线观看| 美女cb高潮喷水在线观看| 亚洲乱码一区二区免费版| 国产又黄又爽又无遮挡在线| 俄罗斯特黄特色一大片| 国内精品美女久久久久久| 99久国产av精品| 国产av不卡久久| 久久久久国产精品人妻aⅴ院| 亚洲国产色片| 午夜a级毛片| 波多野结衣巨乳人妻| 性色avwww在线观看| 免费看a级黄色片| 亚洲在线观看片| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 亚洲久久久久久中文字幕| 久久久精品欧美日韩精品| 欧美三级亚洲精品| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 国产美女午夜福利| 色吧在线观看| 成人高潮视频无遮挡免费网站| 美女cb高潮喷水在线观看| 日韩中字成人| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片| 久久国产乱子免费精品| 国产精品野战在线观看| 国产精品久久视频播放| 人人妻人人澡欧美一区二区| 国产在线精品亚洲第一网站| 69人妻影院| 此物有八面人人有两片| 国产大屁股一区二区在线视频| 免费观看人在逋| 日本免费一区二区三区高清不卡| 乱码一卡2卡4卡精品| 91在线精品国自产拍蜜月| 欧美+亚洲+日韩+国产| 久久久久久久亚洲中文字幕| 卡戴珊不雅视频在线播放| 久久精品人妻少妇| 中文字幕人妻熟人妻熟丝袜美| 亚洲av一区综合| 日韩欧美 国产精品| 亚洲精品乱码久久久v下载方式| 久久久精品欧美日韩精品|