• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration Control and Separation of a Device Scanning an Elastic Plate

    2014-04-28 02:01:36ShueeiMuhLinandMinJunTeng

    Shueei-Muh Linand Min-Jun Teng

    Nomenclature

    1 Introduction

    The problem of moving mass has many engineering applications,most notably in the design of railroad tracks for high-speed train,roadways and airport runways for aircraft,bridges and elevated roadways for moving vehicles[Beskou and Theodorakopoulos,2011],computer storage disk drives[Huang and Mote Jr.,1996]high speed precision machining[Esen,2013]and the motion of moving beams[Lin,(2009a,2009b,2011)].

    This problem is generally simulated using two models:(1)the moving-load model,and(2)the moving-mass model.The major difference is that the inertial effects of the moving body are incorporated into the model formulations in the movingmass model,but not in the moving-load model Due to the complexity of the moving-mass model,the majority of studies available in the literature only consider the vertical translational component of the moving mass acceleration in the full term formulation of the problem,neglecting the other convective acceleration terms leading to error Akin and Mofid[1989]investigated a beam with moving mass and found that the moving-load model causes an error of 2~80%.In addition,Nikkhooet al.[2007]found for an Euler–Bernoulli beam,ignoring the convective terms in the formulation could lead to a remarkable error for mass velocities greater than a socalled critical velocity.Intuitively,for plate problems with more convective terms,this could be even more important.

    In the moving-load model,Gbadeyan and Oni[1995]investigated the dynamic behavior of beams and rectangular plates under moving loads Huang and Thambiratnam[2001]investigated deflection response of plate on Winkler foundation in response to moving accelerated loads.Kim[2004]investigated the buckling and vibration of a plate on an elastic foundation subjected to in-plane compression and moving loads.Lee and Yhim[2004]investigated the dynamic response of composite plates subjected to multi-moving loads based on a third order theory.Moving velocities made greater contributions to the dynamic responses of the composite plates for higher speed.Moreover,the dynamic resistance for plates made of composite materials was excellent and stable.Wu[2005]proposed the approximated method predicting the dynamic responses of a two-dimensional rectangular plate undergoing a transverse moving line load by using the one-dimensional equivalent beam model.Au and Wang[2005]investigated sound radiation from forced vibration of rectangular orthotropic plates under moving loads.Based on the Rayleigh integral and the dynamic response of the plate,the acoustic pressure distributions around the plate were obtained in the time domain.Law et al.[2007]investigated the dynamic identification of moving loads from a vehicle traveling on top of a beam-slab type bridge deck using numerical and experimental studies.Elliottet al.[2007]described the location tracking of a moving load with an unknown,harmonically varying magnitude on a plate using a distributive sensing method.Using this method,the actual position of forces moving at various speeds can be determined to within 2%error at speeds less than 3.2 m/s.Malekzadehet al.[2009,2010]studied the dynamic response of thick laminated rectangular and annular sector plates subjected to moving load by using a three-dimensional hybrid numerical method.The hybrid method is composed of a series solution,layerwise theory and the differential quadrature method in conjunction with the finite difference method.Sheng and Wang[2011]investigated the response and control of functionally graded lami-nated piezoelectric shells under thermal shock and movement loadings.They found that the maximum value of the displacement increases with increase in velocity of moving loads until a critical speed,and then decrease after this critical speed Zhanget al.[2011]proposed an approximate solution for the dual-duct simply supported rectangular plate subjected to a moving load using a stepped plate approximation theory.Mart?’nez-Rodrigo and Museros[2011]studied the optimal design of passive viscous dampers for controlling the resonant response of orthotropic plates under high-speed moving loads.They found that for a particular set of auxiliary beams,there exist optimum parameters of passive viscous dampers that minimized the plate resonance.

    In the moving-mass model,Gbadeyan and Dada[2006]took the finite difference method to solve the moving mass problem.Their study presented that the maximum shearing forces,bending and twisting moments occurred almost at the same time.Also,the values of the maximum deflections were higher for Mindlin plates than for non-Mindlin plates.Wu[2007]proposed the finite moving mass element method and studied the influence of moving-load-induced inertia force,Coriolis force and centrifugal force on the dynamic behavior of inclined plates subjected to moving loads.He concluded the effects of Coriolis force and centrifugal force were perceptible only in the case of higher moving-load speed.Rofooei and Nikkhoo[2009]derived the constitutive equation of motion for a thin rectangular plate with a number of piezo patches bonded on its surface under the excitation of a moving mass.Eigenfunction expansion was used to transform the equation of motion into a number of coupled ordinary differential equations.A classical closed-loop optimal control algorithm was employed to effectively suppress the resonant dynamic response of the system.Ghafoori and Asghari[2010]used the finite element method based on the first-order shear deformation theory and the Newmark direct integration method to study the dynamic behavior of composite plate Their research presented that the most sensitive lamination to the inertia of moving mass was[45/45/45/45]lamination so that the moving mass analysis gave poor results in the moving-load model Eftekhari and Jafari[2012]proposed the methodology composed of the Ritz method,differential quadrature method,integral quadrature method and Newmark time integration scheme to study the transient response of rectangular plates subjected to linearly varying inplane stresses and moving masses.Amiriet al.[2013]took into account the moving mass inertia effect all the convective terms of its out-of-plane acceleration components for the Mindlin plate.The eigenfunction expansion method transformed the governing equation into a set of ordinary differential equations and then solved by using the matrix-exponential based solution method.Their results showed,for moderately thick plates,there was the remarkable differences between the results in the Mindlin plate theory and the classical plate theory.Esen[2013]used the finite element method to study the transverse vibration of rectangular thin plates under a moving mass.The literature presented that the vibration effect of the change in velocity was more significant when compared to the change in mass.

    So far,little research has been devoted to the investigation of separation and vibration control of plate in the moving-mass model.This study is investigates the control and separation of a concentrated mass moving along an arbitrary trajectory on a plate.The semi-analytical solutions for these systems are presented.Moreover,the effects of several parameters on the separation and vibration control are investigated also.

    2 Moving mass model

    2.1 Governing Equation and Boundary Conditions

    Figure 1:Geometry and coordinate system of a simply-supported plate subjected to a moving mass.

    A concentrated mass moves along an arbitrary trajectory on a rectangular isotropic elastic plate,as shown in Figure 1a.The governing equation is

    In terms of the dimensionless parameters in the nomenclature,the corresponding dimensionless governing equation is

    2.2 Semi-analytical solution

    From Eq.(12c)the absolute accelerationd2wc/dτ2includes the Coriolis accelerationsand time-dependent coefficients{ξc(τ),ζc(τ)}.Because the forcefcof Eq.(12b)includes the product of the unknown variablewcand the time-dependent coefficients,this system composed of Eqs.(12)-(20)is implicit and very difficult to solve directly The semi-analytical methodology is presented.First,using the approximated acceleration method,the implicit system is transformed into an explicit system.Secondly,the analytical solution of the transformed system can be derived by using the mode superposition method.Finally,error due to transformation must be near zero.The details are demonstrated below

    2.2.1Approximated acceleration method

    It is assumed that the overall dynamic behavior of the general system is composed of the behaviors of several time subintervals.The overall dynamic performance of the system is derived step by step.If each time subinterval?τis very small,the absolute acceleration can be linearly approximated as

    The approximated absolute acceleration is defined asWhen the unknown parameterλis correctly chosen the error of the acceleration atτ=τi+1approaches zero,i.e.,

    It should be noted that ifλis correctly chosen the approximate acceleration(τi+1)/dτ2is calculated via Eq.(21).Substituting Eq.(21)into the governing equation(12),the transformed system is obtained:

    2.2.2Mode superposition method

    The dynamic solution and the forcing term of Eq.(23)are respectively assumed to be

    In summary,if parameterλof Eq.(21)in the domainsatisfies the minimum error condition(22),accurate time functions??can be obtained via Eq.(26).Substituting these back into Eq.(24)will determine the displacement in the domain.Moreover,the overall dynamic behavior can be determined step by step.When the time subinterval?τapproaches to zero,the overall accurate solution is successfully determined[Lin,201].

    Table 1:Convergence of the proposed methodkc=0].

    Table 1:Convergence of the proposed methodkc=0].

    ?

    Without the loss of generality,assume a concentrated mass moving fromx=0 tox=L1with constant speeddξc/dτ=v.Table 1 verifies the effect of the number of time subintervals and the number of terms(M×N)of Eq.24)on the numerical result of the response ratiow(0.5,0.5,τ(ξc=1))/ws(0.5,0.5)wherew(0.5,0.5,τ(ξc=1))is the dynamic displacement atξgζg 0.5 when the concentrated mass moves to the positionξc=1ws(0.5,0.5)is the static displacement at the center of plate,ξgζg 0.5,subjected to the same concentrated weight atξc=ζc=0.5 Szilard[1974]presented the displacement of a s-s-s-s plate subjected to a concentrated load,shown in Figure 1b,as

    The numerical result determined by the proposed method converges very rapidly.Even when the number of subintervals is only one thousand,the difference between the present displacement and the converged displacement is less than 0.29%.However,when the mass ratio and the moving speed are increased,more modes are required for the accurate results.

    Table 2:Comparison of dynamic amplification factors,wmax(0.5,0.5,τ)/ws(0.5,0.5),of a simply supported 2(m)×2(m)×17(cm)aluminum plate by the proposed method compared to the method of Nikkhoo and Rofooei[2012]when the concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5,from ξc=0 to ξc=1.[E=731 × 1010pa,ρ =2700 kgm-3,μg=0.33c=cc=k=kc=0,r=1.0,and the moving speed V= βv′,v′=2L1/T1in which T1is the first period of vibration of the plate].

    Table 2 demonstrates the comparison of dynamic amplification factors(DAF),wmax(0.5,0.5,τ)/ws(0.5,0.5),of a simply supported 2(m)×2(m)×17(cm)aluminum plate by the presented method versus the results from Nikkhoo and Rofooei[34]when the concentrated mass moves at a constant speed along a parallel trajectory to the plate edge,i.e.,ζc(τ)=0.5,fromξc=0 toξc=1.The dynamic amplification factor is the ratio of the plate’s absolute maximum dynamic deflection to its maximum static response at the plate’s center point.If the mass ratio mcand the moving speedvare small,the results determined by the presented method and Nikkhoo and Rofooei[2012]are very consistent.However,for larger mass ratio mcand the moving speed,the difference between the approaches is significant.By the presented method,the separation phenomenon is found.

    2.3 Mechanism of Separation and Factors

    2.3.1Critical condition of separation

    The mechanism of a vehicle separating from a plate is described in the following.If there is no guide keeping the vehicle in connection with the plate as shown in Figure 1a,the vehicle may separate from the plate when the interacting contact forcefcchanges from compressive to tensional.When compressive or positive contact forcefcexists,the vehicle will move along the plate.However,when normal contact forcefcis decreased to be zero,the vehicle will separate from the plate.Therefore,the critical condition of separation is‘fc(τ)=0’.

    2.3.2Effect of parallel trajectory

    Consider a concentrated mass moves at a constant speed along a parallel trajectory to the plate edge,i.e.,ζc=0.5 andξc=vτfromξc=0 toξc=1.One investigates the influence of the moving speedvand the aspect ratio(L1/L2)ron two dynamic responses{w(0.5,0.5,τ),w(ξc,ζc,τ)}wherew(0.5,0.5,τ)is the dynamic displacement at the center of plate andw(ξc,ζc,τ)is the dynamic displacement of the vehicle position.From Figure 2a when the aspect ratior=0.5 and moving speedv=0.5 if the coordinate of vehicleξcis increased fromξc=0,the vibration responses are increased.When the vehicle moves toξc=0.5,the maximum responses{wmax(0.5,0.5,τ),wmax(ξc,ζc,τ)}occur.Forv=1.0 when the vehicle moves toξc=0.43,the maximum responses occur.In addition,forv=2.0 whenξc=0.7,the maximum responsewmax(ξc,ζc,τ)occurs.However,the maximum responsewmax(0.5,0.5,τ)happens atξc=0.75.Obviously,the higher the moving speedvis,the larger the maximum responses are.Moreover,for higher speedv=2.0,when the vehicle moves toξc=0.9235,the vehicle will separate from the plate.In other words,for the aspect ratio r=0.5 if the moving speed is increased to v=2.0 separation will occur.

    Figure 2:Influence of moving speed v and aspect ratio r on response ratio w/ws(0.5,0.5)when a concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5 from ξc=0 to ξc=1[mc=0.1,ˉg=0.1,ξc(τ)=vτ,c=cc=k=kc=0;(a):r=0.5,(b):r=1.0,(c):r=2.0].

    Furthermore,in Figure 2b with aspect ratior=1 andv=2.0 when the concentrated mass moves fromξc=0 toξc=1,separation will not occur.This differs to the plate withr=0.5 as shown in Figure 2a.The reason is that the plate withr=0.5 is more flexible than the plate withr=1.Moreover,if moving speedvis increased to the value of 3,the vehicle will separate from the plate atξc=0.9526 Finally,in Figure 2c with the aspect ratior=2 though the moving speed is increased tov=5,separation will not occur.Finally,if the moving speed v is increased to the value of 10,the vehicle will separate from the plate atξc=0.6921 It is concluded from Figure 2 that the effect of moving speedvon the maximum responses is significant.When the moving speed is over the critical speed,the moving mass will separate from the plate.Also,the larger the aspect ratioris,the higher the critical speedvcriticalis.

    2.3.3Effect of diagonal trajectory

    Consider a concentrated mass moving at a constant speed along a diagonal trajectory from{ξc,ζc}={0,0}to{ξc,ζc}={1,1/r},i.e.,ξc(τ)=v1τ,ζc(τ)=(v1/r)τ.We investigate the influence of the moving speedv1on two dynamic responses{w(0.5,0.5,τ),w(ξc,ζc,τ)}and separation From Figure 2b where v=1.0 or 2.0,the moving mass does not separate from plate However,when the speed increased to 3.0,the moving mass will separate from plate at the 0.9526 position.Figure 3 shows when v=2 or 3 and the vehicle moves toξc=0.9575 or 0.8858,it will separate from the plate.Further,it is observed from Figures 2b and 3 with aspect ratior=1 and moving speedv=2,separation will occur along a diagonal trajectory instead of a parallel to the plate edge.This demonstrates the effects of aspect ratiorand moving trajectory on critical speed are significant.A detailed investigation follows.

    2.3.4Effects of aspect ratio and mass ratio

    Figure 4 demonstrates the relationship among the aspect ratior,the concentrated mass ratiomcand the critical speedvcritical.It shows the larger the aspect ratioris,the higher the critical speedvcritical.However,the larger the concentrated massmcis,the lower the critical speedvcritical.Moreover,if aspect ratioris small,the critical speed of a diagonal trajectory is lower than that of a trajectory parallel to the plate edge.On the other hand,if the aspect ratioris large,the critical speed of a diagonal trajectory is higher than that of a parallel one.At the critical aspect ratiorcritical,the critical speeds are same.Note the larger the massmcis,the smaller the critical aspect ratiorcritical.

    2.3.5Effect of foundation

    Figure 3:Influence of moving speed v on response ratio w/ws(0.5,0.5)when a concentrated mass moves at a constant speed along a diagonal trajectory from{ξc,ζc}={0,0}to{ξc,ζc}={1,1}[mc=0.1,ˉg=0.1ξc(τ)=v1τ;ζc(τ)=(v1/r)τ?r=1,c=cc=k=kc=0].

    Figure 4:Influence of moving mass mcand aspect ratio ron critical speed v1,critical when a concentrated mass moves at a constant speed.[ˉg=0.01c=cc=k=kc=0;solid line:along the trajectory parallel to the plate edge, ξc(τ)=v1τ;ζc(τ)=0.5;dashed line:along the diagonal trajectory ξc(τ)=v1τ;ζc(τ)=v2τv1/v2=r].

    Figure 5:Influence of the spring constant k and damping coefficientc on the critical speed when a concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5 from ξc=0 to ξc=1[mc=0.1,ˉg=0.1,r=1].

    Figure 5 demonstrates the influence of the spring and damping constants{k,c}of foundation on the critical speedvcriticalwhen the concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5,fromξc=0toξc=1We find the spring constantkis smaller than the value of105and the critical speedvcriticalis almost constant.Further,the critical speedvcriticalincreases greatly with the spring constantkMoreover,the larger the damping coefficientsc,the higher the critical speedvcritical.

    2.3.6Effect of nonconstant moving speed

    We investigate the effects of three different movements on the dynamic response ratiow(ξc,ζc,τ)/ws(0.5,0.5)when the concentrated mass moves along a parallel trajectory to the plate edge and the required time fromξc=0 toξc=1,is ‘T’.The three movements are described as the following:

    1.The first moving speed is constant,dξc/dτ=v0.The corresponding position of the vehicle isξc(τ)=v0τand the required time period to cross the plate fromξc=0 toξc=1,isT=1/v0.

    2.The second moving speed isdξc/dτ=vs0[1-sin(πτ/T)].The corresponding position of vehicle isξc(τ)=vs0[τ+(T/π)(cos(πτ/T)-1)].The corresponding parametervs0=1/[T(1-2/π)]

    3.The third moving speed isThe corresponding position of vehicle isξc(τ)=ˉvs0(T/π)[1-cos(πτ/T)].The corresponding parameter

    From Figure 6a withT=1 the vibration response of the third movement is the smoothest and that of the second movement is the worst.For the second movement when the vehicle moves toξc=0.9593,the vehicle will separate from the plate.In Figure 6b withT=0.5 the vibration response of the second movement is the worst.When the vehicle moves toξc=0.9868,it will separate from the plate.This shows that if the moving speeddξc/dτ=ˉvs0sin(πτ/T),the vibration response can be significantly suppressed.

    Figure 6:Influence of the different movements dξc/dτby the response ratio w(ξc,ζc,τ)/ws(0.5,0.5)when a concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5 from ξc=0 to ξc=1.[mc=0.1,ˉg=0.1,c=cc=k=kc=0,r=1 vs0=1/[T(1-2/π)]ˉvs0=π/2T;(a)T=1/v=1,(b):T=1/v=0.5].

    3 Active Control of moving mass

    Based on the above facts,there exists the phenomenon of separation and significant vibration response when there is no active control.For suppressing vibration and preventing separation the following active control law is presented.

    3.1 Governing Equation and Boundary Conditions

    Consider a scanning device is supported by spring and damper and moving on a plate.This can be expressed as a mass-spring-damper model moving on a plate as shown in Figure 1b.In addition to the x-y movement in the horizontal plane,z-direction movement is considered.In other words,the supporting displacementηcis time-dependent.The dimensionless governing equation is the same as Eq.(12a)excepting the contact force:

    The associated boundary conditions are the same as Eqs.(13-2).This model is applied to simulate the system of a device scanning a plate.

    3.2 Solution method

    In a similar approach,the time variabletis divided intonsections and the dynamic performance of the system is derived step by step.The contact force is approximated by

    Except Eqs.(30,31),the solution method is the same as the moving mass system.

    3.3 Control Law

    For suppression of vibration the following control law is assumed:

    The velocity of scanner foundationdηc(τ)/dτis proportional to the acceleration of the scanner device position.If the control parameterGis positive,velocity is increased with acceleration.Conversely,if parameterGis negative,velocity is decreased with acceleration.The scanner device moves at a constant speed along a trajectory parallel to the plate edge fromξc=0 toξc=1 The effect of control parameterGon the dynamic response is investigated and plotted in Figure 7.It shows when the control parameterG=-2000,the vibration of the scanner device approaches zero demonstrating this control law is effective.Further,Figure 8 demonstrates the influence of the spring constantkcand the damping coefficientccon the suppression of vibration.It is found that the effect of the spring constantkcon the suppression of vibration displacement is significant,but that of the damping coefficientccnegligible.

    4 Applicability of the moving-load model

    Figure 7:Influence of control gain G on the suppression of vibration when a concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e., ζc(τ)=0.5 from ξc=0 to ξc=1.[cc=5kc=5?c=k=0,mc=0.1ˉg=0.1?ξc(τ)=2τr=1].

    Figure 8:Influence of the spring constant kcand the damping coefficient ccon the suppression of vibration when a concentrated mass moves at a constant speed along a trajectory parallel to the plate edge,i.e.,ζc(τ)=0.5,from ξc=0 to ξc=1.[G=-10,c=k=0mc=0.1?ˉg=0.1ξc(τ)=2τ?r=1].

    This theory refers to the Appendix(moving load model).It is well known that separation cannot be studied using the moving load model.Figure 9 compares the vibration displacements at the moving position in the moving-load and movingmass models.From Figure 9a and 9b with aspect ratior=1,the displacementsw(ξc,ζc,τ)in the two models are almost consistent at the initial part of trajectory.But the difference gradually increases with the coordinates of the vehicle,ξc.Forr=1 or 2,when the vehicle moves with the speed ofv=3 or 10,it will separate from the plate atξc=0.9526 or 0.6921,respectively Note,the larger the aspect ratiorand the moving speedvare,the greater their difference between the displacementsw(ξc,ζc,τ)of the two models.This shows the moving mass problem may be accurately approximated by the moving load model only when the moving speedvis very slow and at the initial part of the trajectory.

    Figure 9:Influence of moving speed v and aspect ratio r on the response ratio w/ws(0.5,0.5)when a concentrated mass moves at a constant speed v along a trajectory parallel to the plate edge,i.e., ζc(τ)=0.5,from ξc=0 to ξc=1[c=cc=k=kc=0,mc=0.1,ˉg=0.1,ξc(τ)=vτ;(a):r=1,(b):r=2;solid line:moving mass model;dashed line:moving load model].

    5 Conclusion

    The moving mass problem may be accurately approximated by the moving load model with constraints of low moving speedvand only at the initial part of the trajectory.Separation cannot be studied by using the moving-load model.An effective control methodology for the suppression of vibration of a device moving on a plate is proposed in this work and the effects of several parameters on the separation and the vibration control of system are discovered as follows:

    1.For a diagonal or parallel trajectory the larger the aspect ratioris,the higher the critical speedvcritical.

    2.For a diagonal or parallel trajectory the larger the concentrated massmcis,the lower the critical speedvcritical.

    3.If the aspect ratioris small,the critical speed of a diagonal trajectory is lower than that of a parallel one.But if the aspect ratio r is large,the critical speed of a diagonal trajectory is higher compared to a parallel trajectory.

    4.If the spring constantkof the Winkler foundation is smaller than the value of 105,critical speedvcriticalis almost constant.At the same time,the larger the damping coefficientscis,the higher the critical speedvcritical.

    5.If varying moving speed such asis considered,vibration response can be significantly suppressed.

    6.The effect of the spring constantkcon the suppression of vibration displacement is significant but the effect of the damping coefficientccis negligible.

    Akin,J.E.;Mofid,M.(1989):Numerical solution for response of beams with moving mass.Journal of Structural Engineering,vol.115,no.1,pp.120–31.

    Amiri,J.V.;Nikkhoo,A.;Davoodi,M.R.;Hassanabadi,M.E.(2013):Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method.Thin-Walled Structures,vol.62,pp.53-64.

    Au,F.T.K.;Wang,M.F.(2005):Sound radiation from forced vibration of rectangular orthotropic plates under moving loads.Journal of Sound and Vibration,vol.281,pp.1057–1075.

    Beskou,N.D.;Theodorakopoulos,D.D.(2011):Dynamic effects of moving loads on road pavements:A review.Soil Dynamics and Earthquake Engineering,vol.31,pp.547567.

    Eftekhari,S.A.;Jafari,A.A.(2012):Vibration of an initially stressed rectangular plate due to an accelerated traveling mass.Scientia Iranica A,vol.19,no.5,pp.1195-1213.

    Elliott,M.T.;Ma,X.;Brett,P.N.(2007):Tracking the position of an unknown moving load along a plate using the distributive sensing method.Sensors and Actuators A,vol.138,pp.28–36.

    Esen,I.(2013):A new finite element for transverse vibration of rectangular thin plates under a moving mass.Finite Elements in Analysis and Design,vol.66,pp.26–35

    Gbadeyan,J.A.;Oni,S.T.(1995):Dynamic behaviour of beams and rectangular plates under moving loads.Journal of Sound and Vibrations,vol.182,no.5,pp.677–695.

    Gbadeyan,J.A.;Dada,M.S.(2006):Dynamic response of a Mindlin elastic rectangular plate under a distributed moving mass.International Journal of Mechanical Sciences,vol.48,pp.323–340.

    Ghafoori,E.;Asghari,M.(2010):Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory.Composite Structures,vol.92,no.8,pp.1865–1876.

    Huang,M.H.;Thambiratnam,D.P.(2001):Deflection response of plate on Winkler foundation to moving accelerated loads.Engineering Structures,vol.23,no.9,pp.1134–1141.

    Huang,F.Y.;Mote Jr.C.D.(1996):Mathematical analysis of stability of spinning disc under rotating,arbitrary large damping forces.ASME Journal of Vibration and Acoustics,vol.118,pp.657–662.

    Kim,S.M.(2004):Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads.International Journal of Solids and Structures,vol.41,no.20,pp.5647–5661.

    Law,S.S.;Bu,J.Q.;Zhu,X.Q.;Chan S.L.(2007):Moving load identification on a simply supported orthotropic plate.International Journal of Mechanical Sciences,vol.49,pp.1262–1275.

    Lee,S.Y.;Yhim,S.S.(2004):Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory.International Journal of Solids and Structures,vol.41,pp.4457–4472.

    Lin,S.M.(2009a):Vibration suppression of a moving beam subjected to an activecontrol electrostatic force.CMES Computer Modeling in Engineering and Science,vol.43,no.1,pp.73-90.

    Lin,S.M.(2009b):Vibrations of in-plane non-constant inward and outward rotating beams.CMES Computer Modeling in Engineering and Science,vol.52,no.1,pp.105-124.

    Lin,S.M.(2010):Nonlinear vibration of the double-beams assembly subjected to a.c.electrostatic force.CMES Computer Modeling in Engineering and Science,vol.60,no.1,pp.95-114.

    Lin,S.M.(2011):In-plane vibration of a beam picking and placing a mass along arbitrary curved tracking.CMES Computer Modeling in Engineering and Science,vol.72,no.1,pp.17-35.

    Malekzadeh,P.;Fiouz,A.R.;Razi,H.(2009):Three-dimensional dynamic analysis of laminated composite plates subjected to moving load.Composite Structures,vol.90,no.2,pp.105–114.

    Malekzadeh,P.;Haghighi,M.R.G.;Gholami,M.(2010):Dynamic response of thick laminated annular sector plates subjected to moving load.Composite Structures,vol.92,no.1,pp.155–163.

    Mart?’nez-Rodrigo,M.D.;Museros,P.(2011):Optimal design of passive viscous dampers for controlling the resonant response of orthotropic plates under high speed moving loads.Journal of Sound and Vibration,vol.330,pp.1328–1351.

    Nikkhoo,A.;Rofooei,F.R.;Shadnam,M.R.(2007):Dynamic behavior and modal control of beams under moving mass.Journal of Sound and Vibrations,vol.306,pp.712–724.

    Nikkhoo,A.;Rofooei,F.R.(2012):Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass.Acta Mechanica,vol.223,no.1,pp.15–27.

    Rofooei,F.R.;Nikkhoo,A.(2009):Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass.International Journal of Solids and Structures,vol.46,pp.2429–2443.

    Sheng,G.G.;Wang,X.(2011):Response and control of functionally graded laminated piezoelectric shells under thermal shock and moving loadings.Composite Structures,vol.93,no.1,pp.132–141.

    Szilard,R.(1974):Theory and analysis of plates:classical and numerical methods.Prentice-Hall,Inc.

    Wu,J.J.(2007):Vibration analyses of an inclined flat plate subjected to moving loads.Journal of Sound and Vibration,vol.299,no.12,pp.373-387.

    Wu,J.J.(2005):Dynamic analysis of a rectangular plate under a moving line load using scale beams and scaling laws.Computers and Structures,vol.83,pp.1464–1658.

    Zhang,Q.M.;Wang,X.C.;Liu,H.(2011):Theoretical analysis of load-carrying characteristics of a simply supported dual-duct rectangular plate under moving loads.Computers and Mathematics with Applications,vol.61,pp.2306–2312.

    国产亚洲一区二区精品| 各种免费的搞黄视频| 视频中文字幕在线观看| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 高清毛片免费看| 久久av网站| 国产乱人视频| 激情五月婷婷亚洲| 97精品久久久久久久久久精品| 国产免费又黄又爽又色| 大话2 男鬼变身卡| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频 | 精品国产露脸久久av麻豆| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 国产欧美日韩一区二区三区在线 | 国产色爽女视频免费观看| www.av在线官网国产| 久久99蜜桃精品久久| 97在线视频观看| 2021少妇久久久久久久久久久| 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 少妇丰满av| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 国产淫语在线视频| 91久久精品电影网| 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的 | 日韩成人伦理影院| 日日啪夜夜撸| 亚洲精品国产成人久久av| 国产精品一区www在线观看| 在线观看一区二区三区激情| 99视频精品全部免费 在线| 精品国产三级普通话版| 美女福利国产在线 | 亚洲精品乱码久久久久久按摩| 国产亚洲欧美精品永久| 人妻少妇偷人精品九色| 欧美老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 免费大片18禁| 99热这里只有精品一区| 国产av码专区亚洲av| www.色视频.com| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| av卡一久久| 成年av动漫网址| 亚洲中文av在线| 最黄视频免费看| 亚洲欧美日韩卡通动漫| 国产日韩欧美亚洲二区| av在线蜜桃| 一级片'在线观看视频| 在现免费观看毛片| 97超碰精品成人国产| 免费高清在线观看视频在线观看| 观看美女的网站| 欧美3d第一页| 黄色日韩在线| 中文精品一卡2卡3卡4更新| 我要看黄色一级片免费的| tube8黄色片| 男女免费视频国产| 国产高清国产精品国产三级 | 少妇人妻 视频| 91精品伊人久久大香线蕉| 亚洲美女搞黄在线观看| 色网站视频免费| 亚洲综合色惰| 毛片女人毛片| av专区在线播放| 日韩av不卡免费在线播放| av一本久久久久| 亚洲欧美一区二区三区国产| 99国产精品免费福利视频| 亚洲天堂av无毛| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 精品国产露脸久久av麻豆| 18禁裸乳无遮挡动漫免费视频| 春色校园在线视频观看| 大又大粗又爽又黄少妇毛片口| 成人毛片a级毛片在线播放| 国产男女内射视频| a级毛色黄片| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 春色校园在线视频观看| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 久久久久精品性色| 中文资源天堂在线| 色婷婷av一区二区三区视频| 亚洲四区av| 免费人成在线观看视频色| 两个人的视频大全免费| 日本av手机在线免费观看| 国产爽快片一区二区三区| 欧美区成人在线视频| 五月玫瑰六月丁香| 韩国高清视频一区二区三区| 久久久成人免费电影| 欧美成人一区二区免费高清观看| 欧美97在线视频| 久久精品人妻少妇| 少妇猛男粗大的猛烈进出视频| videos熟女内射| 国产成人精品久久久久久| 高清av免费在线| 在线免费观看不下载黄p国产| 色5月婷婷丁香| 哪个播放器可以免费观看大片| 亚洲成人手机| 日韩一区二区视频免费看| 国产极品天堂在线| 99久久综合免费| 国产成人精品一,二区| 久久热精品热| 亚洲成人手机| 另类亚洲欧美激情| 亚洲av男天堂| a级毛色黄片| www.av在线官网国产| 国产精品一及| a 毛片基地| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 一个人看视频在线观看www免费| 日本wwww免费看| 日本一二三区视频观看| 伦精品一区二区三区| 一区二区av电影网| 最近2019中文字幕mv第一页| 亚洲成色77777| av免费在线看不卡| 99热6这里只有精品| 亚洲久久久国产精品| 99久久精品热视频| 精品人妻熟女av久视频| 欧美人与善性xxx| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 亚洲久久久国产精品| 久久久久久久久大av| 国产精品一区www在线观看| 人人妻人人爽人人添夜夜欢视频 | 我的女老师完整版在线观看| 国产视频内射| 免费观看在线日韩| 国产黄片视频在线免费观看| av专区在线播放| 久久国产乱子免费精品| 亚洲国产色片| 色综合色国产| 国产亚洲欧美精品永久| 国产久久久一区二区三区| 永久网站在线| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 久久午夜福利片| 久久这里有精品视频免费| 日本色播在线视频| 亚洲人与动物交配视频| 国产男女超爽视频在线观看| 国产视频首页在线观看| 丝袜喷水一区| 国产一区二区在线观看日韩| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 国产精品国产三级国产av玫瑰| 免费黄色在线免费观看| 插逼视频在线观看| 久久久久久久精品精品| 免费少妇av软件| 欧美精品一区二区免费开放| 亚洲综合精品二区| 中文资源天堂在线| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 亚洲av日韩在线播放| 欧美性感艳星| 免费黄频网站在线观看国产| 3wmmmm亚洲av在线观看| 日韩 亚洲 欧美在线| 女人久久www免费人成看片| 国产成人精品婷婷| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 99视频精品全部免费 在线| 在线观看国产h片| 老熟女久久久| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 亚洲性久久影院| 日韩大片免费观看网站| 女的被弄到高潮叫床怎么办| 日日啪夜夜撸| 国产精品熟女久久久久浪| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 少妇裸体淫交视频免费看高清| 日日啪夜夜爽| 国产精品福利在线免费观看| 国产美女午夜福利| 制服丝袜香蕉在线| 啦啦啦视频在线资源免费观看| 成年女人在线观看亚洲视频| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的 | 日韩中字成人| 天堂俺去俺来也www色官网| 欧美日韩一区二区视频在线观看视频在线| 嫩草影院新地址| 黄色欧美视频在线观看| 99热网站在线观看| 中文字幕亚洲精品专区| 久久99精品国语久久久| 久久国内精品自在自线图片| 国产成人freesex在线| 国产国拍精品亚洲av在线观看| 男人狂女人下面高潮的视频| 22中文网久久字幕| 夜夜骑夜夜射夜夜干| 亚洲无线观看免费| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 日韩在线高清观看一区二区三区| 五月玫瑰六月丁香| 中文字幕制服av| 日韩av不卡免费在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文字字幕乱码综合| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频 | av在线观看视频网站免费| 夜夜骑夜夜射夜夜干| 久久鲁丝午夜福利片| 九色成人免费人妻av| 亚洲不卡免费看| 国产极品天堂在线| 51国产日韩欧美| 国产av精品麻豆| 亚洲精品久久午夜乱码| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| 王馨瑶露胸无遮挡在线观看| 丰满迷人的少妇在线观看| 久久久久久久亚洲中文字幕| 99热网站在线观看| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 成年人午夜在线观看视频| 99国产精品免费福利视频| 美女国产视频在线观看| 三级国产精品片| 两个人的视频大全免费| 亚洲av免费高清在线观看| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 国产日韩欧美亚洲二区| www.色视频.com| 如何舔出高潮| 国产 一区精品| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩一区二区| 久久综合国产亚洲精品| 精品一品国产午夜福利视频| 久久人人爽人人爽人人片va| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 22中文网久久字幕| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 王馨瑶露胸无遮挡在线观看| 网址你懂的国产日韩在线| 久久综合国产亚洲精品| 人妻一区二区av| 国产精品欧美亚洲77777| 观看免费一级毛片| 一本—道久久a久久精品蜜桃钙片| 国产91av在线免费观看| 少妇丰满av| 亚洲成人一二三区av| 国产黄色免费在线视频| 在线 av 中文字幕| 国产精品一区二区性色av| 成人无遮挡网站| 看免费成人av毛片| 国产av国产精品国产| 尾随美女入室| 男女边吃奶边做爰视频| 久久这里有精品视频免费| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 少妇丰满av| 蜜桃亚洲精品一区二区三区| 欧美日韩在线观看h| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 久久久久网色| 91久久精品电影网| 水蜜桃什么品种好| 国产乱人视频| 秋霞在线观看毛片| 只有这里有精品99| 成年免费大片在线观看| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 亚洲精品国产av蜜桃| 免费观看av网站的网址| 亚洲内射少妇av| 美女视频免费永久观看网站| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 最黄视频免费看| 国产一级毛片在线| av国产免费在线观看| 啦啦啦啦在线视频资源| av免费观看日本| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 午夜激情福利司机影院| 在线观看免费日韩欧美大片 | 亚洲精品日本国产第一区| 免费观看在线日韩| 亚洲国产精品成人久久小说| av在线蜜桃| 老司机影院成人| 寂寞人妻少妇视频99o| 国产在视频线精品| 亚洲av日韩在线播放| 久久久色成人| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 永久网站在线| 国产 精品1| 我的老师免费观看完整版| 女性被躁到高潮视频| 制服丝袜香蕉在线| 黄色视频在线播放观看不卡| 亚洲激情五月婷婷啪啪| 成年免费大片在线观看| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 视频区图区小说| 丝瓜视频免费看黄片| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 国内揄拍国产精品人妻在线| 国产日韩欧美亚洲二区| 在线观看三级黄色| 国产在线男女| 一级毛片久久久久久久久女| 亚洲国产日韩一区二区| 一区二区三区免费毛片| 亚洲欧美一区二区三区黑人 | 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 一个人免费看片子| 日本猛色少妇xxxxx猛交久久| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 国产在线免费精品| 欧美成人一区二区免费高清观看| 永久网站在线| 久久久久国产精品人妻一区二区| 91aial.com中文字幕在线观看| 国产精品久久久久久精品古装| 日本午夜av视频| 99热这里只有精品一区| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 久久久国产一区二区| 人妻 亚洲 视频| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 大香蕉久久网| 亚洲va在线va天堂va国产| 亚洲电影在线观看av| 中文乱码字字幕精品一区二区三区| 国产爱豆传媒在线观看| 青春草国产在线视频| 亚洲欧美日韩无卡精品| 老熟女久久久| 国产亚洲91精品色在线| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 国产精品.久久久| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 在线免费十八禁| freevideosex欧美| 久久久久久久大尺度免费视频| 免费播放大片免费观看视频在线观看| 久久久a久久爽久久v久久| 高清av免费在线| 免费看不卡的av| 校园人妻丝袜中文字幕| 国产精品一区二区在线观看99| 婷婷色综合www| 午夜福利网站1000一区二区三区| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 尤物成人国产欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 嫩草影院新地址| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 国产午夜精品久久久久久一区二区三区| 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频 | 国产成人精品久久久久久| 亚洲欧美一区二区三区国产| 一区在线观看完整版| 亚洲精品一区蜜桃| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 视频中文字幕在线观看| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 国产爽快片一区二区三区| 中国三级夫妇交换| 午夜免费男女啪啪视频观看| 毛片女人毛片| 午夜福利高清视频| 热re99久久精品国产66热6| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 噜噜噜噜噜久久久久久91| 国产一区二区三区综合在线观看 | 中文天堂在线官网| 亚洲精品中文字幕在线视频 | 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 亚洲国产最新在线播放| 久久久亚洲精品成人影院| 超碰97精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 青春草视频在线免费观看| 久久ye,这里只有精品| 国产成人精品福利久久| 五月天丁香电影| 久久99精品国语久久久| 国产深夜福利视频在线观看| 国产男女内射视频| 亚洲最大成人中文| 2021少妇久久久久久久久久久| 久久久午夜欧美精品| 国产爽快片一区二区三区| 大码成人一级视频| 欧美人与善性xxx| 欧美日韩国产mv在线观看视频 | 少妇人妻精品综合一区二区| 黄片wwwwww| 丝袜喷水一区| 丰满迷人的少妇在线观看| 黄色日韩在线| 国产精品一区www在线观看| 国产 一区精品| 国产亚洲av片在线观看秒播厂| 久久久精品94久久精品| 看十八女毛片水多多多| 丝袜脚勾引网站| 欧美日韩视频精品一区| videos熟女内射| 精品一区在线观看国产| 岛国毛片在线播放| 在现免费观看毛片| 亚洲美女黄色视频免费看| 乱码一卡2卡4卡精品| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 国产精品久久久久久精品电影小说 | 婷婷色综合www| 亚洲精品久久久久久婷婷小说| 久久久久久久国产电影| 一级片'在线观看视频| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 亚洲一区二区三区欧美精品| 欧美高清性xxxxhd video| 有码 亚洲区| 国产在线免费精品| 麻豆成人午夜福利视频| av免费观看日本| 久久国产精品男人的天堂亚洲 | 黑丝袜美女国产一区| 久久久久国产精品人妻一区二区| 免费播放大片免费观看视频在线观看| 成人一区二区视频在线观看| 久久青草综合色| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 精品一区二区免费观看| 另类亚洲欧美激情| 美女内射精品一级片tv| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av蜜桃| 精品久久久久久久久av| 99re6热这里在线精品视频| 国产精品久久久久成人av| 久久99精品国语久久久| 乱码一卡2卡4卡精品| 一级二级三级毛片免费看| 一级毛片黄色毛片免费观看视频| 色视频www国产| 免费不卡的大黄色大毛片视频在线观看| 色5月婷婷丁香| 免费观看的影片在线观看| 国产一区二区三区av在线| 在线观看一区二区三区激情| 久久久久久久精品精品| 1000部很黄的大片| 欧美日韩亚洲高清精品| 麻豆国产97在线/欧美| 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 国产精品av视频在线免费观看| 亚洲人成网站在线观看播放| 国产免费一区二区三区四区乱码| 国产黄色免费在线视频| 新久久久久国产一级毛片| 美女xxoo啪啪120秒动态图| 熟女电影av网| 韩国高清视频一区二区三区| 黑人高潮一二区| 一个人看视频在线观看www免费| 在线 av 中文字幕| 26uuu在线亚洲综合色| 成人午夜精彩视频在线观看| 欧美xxxx黑人xx丫x性爽| 免费人妻精品一区二区三区视频| 最近最新中文字幕大全电影3| 欧美日韩视频高清一区二区三区二| 免费观看在线日韩| 欧美成人精品欧美一级黄| 精品久久国产蜜桃| 老司机影院毛片| 美女高潮的动态| 黑人高潮一二区| 欧美激情极品国产一区二区三区 | 亚洲天堂av无毛| 成人一区二区视频在线观看| 嫩草影院入口| 久久99蜜桃精品久久| 国产色婷婷99| 欧美zozozo另类| 国产黄色免费在线视频| av在线老鸭窝| 一区二区三区四区激情视频| 国产爱豆传媒在线观看| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 亚洲av日韩在线播放| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图 | 黄色欧美视频在线观看| 91精品国产国语对白视频| 亚洲精品久久久久久婷婷小说| 亚洲av成人精品一区久久| 久久国产亚洲av麻豆专区| 日产精品乱码卡一卡2卡三| 日本欧美视频一区| 毛片一级片免费看久久久久| 2022亚洲国产成人精品| 国产成人精品一,二区| 91精品伊人久久大香线蕉| 日本与韩国留学比较| 免费人成在线观看视频色| 97热精品久久久久久| 日本色播在线视频| 少妇的逼水好多| 99久国产av精品国产电影| 亚洲欧洲国产日韩| 麻豆成人av视频| 人妻少妇偷人精品九色|