• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-Dependence of Microstructure Evolution in a Ferroelectric Single Crystal with Conducting Crack

    2014-04-24 10:53:34HuangCheng黃成GaoCunfa高存法WangJie王杰
    關(guān)鍵詞:網(wǎng)段測(cè)試點(diǎn)圓圈

    Huang Cheng(黃成),Gao Cunfa(高存法)**,Wang Jie(王杰)

    1.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou,310058,P.R.China

    1 Introduction

    Ferroelectric ceramics have received much attention owing to their temperature-dependent spontaneous polarization which can be switched below its Curie temperature by applied electric or/and mechanical loading,making them have wide applications in temperature sensors,actuators,capacitors and transducers.However,the ferroelectric materials are intrinsically brittleness and prone to fracture[1].Therefore,it is necessary to study fracture behavior of ferroelectric materials under applied electric and mechanical loads.Generally,insulating and conducting cracks are two main models simulating the fracture behavior of ferroelectric materials.Under such a high local electric field,air discharge may occur inside the crack,and consequently the crack is converted into a conducting one[2].Thus,conducting cracks in ferroelectric materials have received great theoretical and practical interest in recent years.Mc-Meeking[3]solved the problem of an electric field around a conductive crack in di-electrics,which showed that an electric field caused stress intensification at the tip of a conducting crack.Suo[4]performed the failure behavior of conductive tubular channels in ferroelectric ceramics.Ru and Xiao[5]gave a systematic analysis of conducting cracks in a poled ferroelectric based on the stripsaturation model,showing that an electric field loading,applied parallel to the poling axis,would not induce any stress intensity factor at a conducting crack parallel or perpendicular to the poling axis.Zhang and Gao[6]introduced the strip dielectric breakdown(DB)model to study the failure behavior of ferroelectric ceramics.Zhang and Gao[7]used the DB model in fracture analysis of the electrostictive material with a conducting crack.Their results showed that the electric field loading parallel to the crack would retard its propagation before the occurrence of DB.

    It is well known that the above mentioned models are based on linear piezoelectricity or simplified electrostrictive theories,which can show linear piezoelectric response at low electric field.However,ferroelectric materials exhibit strong nonlinear response under a large mechanical and/or electrical loading.Such nonlinear effect becomes particularly significant near the crack tip due to the singularity and field concentration.Related studies are focused on the toughening of conducting cracks due to domain switching.In the previous research,polarization switching is based on switching criteria,which is proposed by Hwang et al[8].Under small scale conditions,Beom and Youn[9]developed the domain switching model to deal with the effects of electric fields on fracture behavior for a conducting crack.Their results show that the crack tip stress intensity factor is negative at small value of the coercive electric field to the applied electric loading.

    In recent years,phase-field or time-dependent Ginzburg-Landau(TDGL)models,describing the formation and evolution of individual ferroelectric domains around the cracks explicitly,have become an increasingly important approach in the study of nonlinear behavior of ferroelectric materials[10-14].The major advantage of the phase field simulations is that the polarization switching is the result of the total free energy minimization of the simulated system,in which no pre-described switching criteria are given in advance.

    Recently,Wu et al.[15]have exhibited the complex role of temperature and dislocations in the domain switching of ferroelectric single crystal by using phase field simulation.Amir and Arias[16]extended the simulation of the propagation of conducting crack under purely electrical loading.Their results showed oblique crack propagation and crack branching from the crack tip.Although phase field simulations have been employed to investigate the domain switching process around the conducting crack tip,it still lacks of the underlying mechanism of the temperature-dependent behavior of ferroelectrics.In this paper,the effect of a conducting crack on the temperature-dependent behavior is simulated based on TDGL models.

    2 Simulation Methodology

    Consider an isotropic ferroelectric single crystal,the static equilibrium equations in any arbitrary volume Vand its bounding surface Scan be expressed as

    whereσijis the Cartesian components of the Cauchy stress,fithe mechanical body force,Tithe surface traction,and nithe unit vector normal to a surface element.

    Under the assumptions of linear kinematics,the strainεijis linked to displacements uias

    Meanwhile,the quasi-static forms of Maxwell’s equations in any arbitrary volume Vand its bounding surfaces Sare given by

    where Di,Ei,q,ω,andφare electric displacement,electric field intensity,volume charge density,surface charge density and electric potential,respectively.For the case of ferroelectrics,the paraelectric phase transforms into ferroelectric phase when the temperature is lower than its Curie point.In the present work,the spontaneous polarization Piis assumed to be embedded in a paraelectric background material.It is more suitable to employ the spontaneous polarization as the order parameter to calculate thermodynamic energies of the ferroelectric phase in our phase field models.Note that the electric displacement can be decomposed into two parts such that

    whereκ0andare the permittivity of vacuum and total polarization,respectively.The total polarizationcan be divided into two components

    whereκris the dielectric constant of the background material.Substituting Eqs.(9,10)into Eq.(8)yields

    In this phase field approach,the temporal evolution of the polarization can be calculated from the following TDGL equation[13]

    測(cè)試波形如圖2所示。綠色波形為測(cè)試點(diǎn)在RPT左側(cè)網(wǎng)段的波形,橙色波形為測(cè)試點(diǎn)在RPT右側(cè)網(wǎng)段的波形,黑色圓圈(①)中的數(shù)據(jù)幀為主設(shè)備BA發(fā)送的進(jìn)入RPT之前的0x350端口的主幀,黃色圓圈(②)中的數(shù)據(jù)幀為經(jīng)過(guò)RPT處理之后的0x350端口的主幀,綠色圓圈(③)中的數(shù)據(jù)幀為從設(shè)備D3回復(fù)的0x350端口的從幀。正常情況下,在紅色圓圈(④)位置,應(yīng)該會(huì)出現(xiàn)經(jīng)過(guò)RPT處理之后的0x350端口的從幀,而此時(shí)并沒(méi)有出現(xiàn)。

    where t represents time,Lis the kinetic coefficient related to the domain mobility,δF/δPi(r,t)is the thermodynamic driving force for polarization evolutions,and rthe spatial vector,r= (x1,x2,x3).To solve the TDGL equation,the total free energy Fcan be generally expressed as[13]

    where fbulk,fgrad,felas,fcoup,and felecare the Landau free energy density,the domain wall energy density,the elastic energy density related to the total strain,the coupling energy density,and the electrostatic energy density,respectively.In phase field model,an equilibrium polarization vector field minimizes the total free energy of the system for fixed strain and electric displacement.For computational reasons,following a Legendre transformation,F(xiàn)=+DiEidV,the electrical enthalpy of ferroelectrics is a function of polarization Pi,polarization gradient Pi,j,strainεijand electric field Ei,which can be expressed as

    whereα1= (T-T0)/2κ0C0is the dielectric stiffness.αi,αeij,andαijkare the higher-order stiffness coefficients.T,T0,and C0are the temperature,Curie-Weiss temperature,and Curie constant,respectively.Gijklare the gradient coefficients,cijklthe elastic stiffness constants,and qijklthe electrostrictive coefficients.

    Using the electrical enthalpy through the Legendre transformation,the mechanical equilibrium equations Eq.(1),the electrical equilibrium equations Eq.(5),and the dynamic evolution equation Eq.(12)in the present phase field model have the following forms,respectively.

    Here,the mechanical body force and extrinsic bulk charge are to be negligible.Using the variation of virtual work,a nonlinear multi-field coupling finite element method is employed[13].The governing Eqs.(15-17)are expressed in the weak form as

    Eq.(19)is the foundation of the derivation of finite element equations for the model.For the space of discretization,authors employ an eightnode brick element with seven degrees of freedom containing three mechanical displacement,electrical potential and three spontaneous polarization components at each node.Finally the strain,stress,electric field,the electric displacement and polarization gradient are derived within the elements.The detailed formulation of the threedimensional(3D)finite element method can be found in our previous work[13].

    3 Simulation

    3.1 Simulation model and its parameters

    In order to perform numerical simulations,a 3DPbTiO3ferroelectric single crystal plate with a conducting crack in the center is simulated under the applied electrical and mechanical loadings in the present work.A schematic drawing of the ferroelectric single crystal with a conducting crack is shown in Fig.1.

    Fig.1 Schematic drawing of ferroelectric crystal

    The dimension of simulated ferroelectric plate in the x,y,zdirections are 120,90,1nm,respectively.Here,the conducting crack is treated as a narrow but open ellipse.The sizes of semi-axis for the elliptical crack are 20nm and 1nm,respectively.To create a conducting crack,the electric potential is fixed to zero along the crack surface.The electric potentials on the left and right sides are set as-Vand V,respectively.Therefore,different electric loadings can be applied in the xdirection by giving different values for driving voltage V.The electric boundary conditions on other surfaces are set as zero surface charges(i.e.,Dini=0).On the upper and bottom surfaces,a uniform tensile stress is applied.The mechanical boundary conditions on the other surfaces are chosen to ensure the traction free condition.Here,free-polarization boundary conditions are commonly assumed,corresponding to zero gradient flux(i.e.=0).In the sim-ulation,3Dbrick elements are used.For computational reasons,the element thickness in the z direction equals the plate thickness,so the simulation can degenerate into the plane stress problem.Fig.2(a)shows the details of the mesh partition of the ferroelectric single domain.A refined mesh is generated in a small region of interest around the crack tip as shown in Fig.2(b),where the size is small enough relative to the width of domain walls.

    The material parameters of PbTiO3are listed in Table 1[13].In order to avoid divergence,authors employ the following set of dimensionless variables in the simulations.

    Fig.2 Mesh partitions of simulated ferroelectric single crystal with a conduction crack

    Table 1 Values of material coefficients for PbTiO3used insimulations

    The normalized material coefficients are listed in Table 2.

    Table 2 Values for the normalized coefficients in simulations

    3.2 Simulation results and discussion

    Figs.3shows the effects of the applied electrical loading on the microstructure evolution,electric field and stress field distribution ahead of the conducting crack tip under the room temperature.

    Fig.3 Effects of the applied electrical loading on ferroelectric domain structures at room temperature

    Figs.3(a,c,e)correspond to the distributions of spontaneous polarization,the electric field and the normalized stress fieldσ*yyahead of the conducting crack with E*=0.166 7,respectively.Figs.3(b,d,f)show the same physical quantities as Figs.3(a,c,e)with E*=1.667,respectively.The arrows in all the figures denote the direction of the spontaneous polarization.From Fig.3,it is found that the region beside the crack tip forms a nearly 90°angle to the poling direction in a small scale.The shape of the switched zone is almost symmetrical with respect to the crack,but the switching direction is asymmetrical.Therefore,the applied electric field induces the charge accumulation ahead of the crack tip,which in turn causes a high electric field around the crack tip.The intensified electric field contains huge electrostatic energy,and further brings forth the domain switch of 90°.Since domain switch near the crack tip reduces the poten-tial energy of the system,the microstructure evolution finally generates an internal stress field,resulting in switch-toughening,as shown in Figs.3(e,f).Figs.3(e,f)show that the normalized stress fieldσ*yyahead of the crack tip is found to be positive at the right side,but it lowers the stress at the left side.From Fig.3,it is found that the positive electric field tends to keep the stress intensity factors negative.Nevertheless,the increasing electric field leads to high local electric field ahead of the crack tip,which will enhance the electric field intensity factor.The result is consistent with many previous theoretical works and experimental observations[1].

    To investigate the mechanism on the temperature-induced switching behavior in a single crystal,the temperature-dependence of the spontaneous polarization and stress field near the crack tip with E*=1.667is shown in Fig.4.

    Fig.4 Temperature dependence of spontaneous polarization and stress field near crack tip with E* =1.667

    From Fig.4,it is found that with the temperature increasing,the spontaneous polarization increases along the ydirection while decreases along the x direction.The temperature-induced microstructure evolution,expanding the typical 90°domain switching region along the conducting crack surface,in turn,causes the stress fieldσ*yyto increas.It is indicated that increasing the temperature will enhance the crack propagation with E*=1.667,resulting in switch-weakening.

    Furthermore,the effects of applied E*=1.667andσe,*yy=20on the temperature-dependence of the spontaneous polarization and stress field near the crack tip are shown in Fig.5.

    Fig.5 Temperature dependence of spontaneous polarization and stress field near crack tip with E*=1.667andσe,*yy=20

    Figs.5(a-f)show the domain switching for a ferroelectric single crystal with a conducting crack at temperature from 25°C to 600°C.It should be mentioned that the stress fieldσ*yyahead of the crack tip increases significantly when the combined tensile stressσe,*yyand electric field load-ing are applied.The spontaneous polarization distribution of Fig.5(a)is similar to the saturation state in Fig.3(b),only the size of the 90°domain switching region becomes a little larger.From Figs.5(a-c),it is found that the spontaneous polarization component P*yincreases when the temperature increases from 25°C to 300°C.It can be found that the switched zone moves backwards from the crack direction.Furthermore,the switched zones growing in both xand ydirections cause the increase of stress fieldσ*yyin turn.There is a peak in the curve at T=300°C,where it obtains the maximum stress fieldσ*yy.It is implied that the total free energy of the system accumulates to a energy barrier.Therefore,the two switched zones grow to reduce total free energy,and the stress fieldσ*yydecreases enormously with the temperature increase from 300°C to 600°C.The reduction of the stress fieldσ*yymeans that the increase of temperature from 300°C to 600°C will impede the crack propagation with E*=1.667andσe,*yy=20,thus resulting in switch-toughening.

    4 Conclusions

    The temperature-dependence of the domain switching and nonlinear of a conducting crack in ferroelectric ceramics under the integrated electrical and mechanical loadings has been investigated based on a phase field approach containing the time-dependent Ginzburg-Landau equation.The effects of the applied electric field or/and mechanical loading on the microstructure evolution,electric field and stress field distribution ahead of the conducting crack tip are studied at the increasing temperature.A phase field simulation shows that increasing temperature will enhance the crack propagation with the purely high electric field of E*=1.667,which results in switch-weakening.Especially the increase of temperature from 300°C to 600°C will impede the crack propagation with E*=1.667,andσe,*yy=20,thus resulting in switch-toughening.

    In summary,phase field simulations of ferro-electric materials are capable of exhibting detailed microstructure to investigate the mechanism on the temperature-induced switching behavior in a single crystal by applying combined tensile stress and electric field loading.Therefore,aphase field model of ferroelectric ceramic can simulate or/and predict the fracture behaviors in a conducting crack under applied mechanical or/and electric field loading at unusual temperature.

    Acknowledgements

    We thank the support from the National Natural Science Foundation of China(11232007).Thanks also go to Prof.Zhang Tongyi for helpful discussions to improve the present work.

    [1] Kuna M.Fracture mechanics of piezoelectric materials—Where are we right now?[J].Eng Fract Mech,2010,77:309-326.

    [2] Zhang T Y,Liu G N,Wang T H,et al.Application of the concepts of fracture mechanics to the failure of conductive cracks in piezoelectric ceramics[J].Eng Fract Mech,2007,74:1160-1173.

    [3] McMeeking R M.On mechanical stresses at cracks in dielectrics with application to dielectric breakdown[J].J Appl Phys,1987,62:3119-3122.

    [4] Suo Z.Models for breakdown-resistant dielectric and ferroelectric ceramics[J].J Mech Phys Solids,1993,41:1155-1176.

    [5] Ru C Q,Mao X.Conducting cracks in a piezoelectric ceramic of limited electrical polarization[J].J Mech Phys Solids,1999,47:2125-2146.

    [6] Zhang T Y,Gao C F.Fracture behaviors of piezoelectric materials[J].Theor Appl Fract Mech,2004,41:339-379.

    [7] Zhang N,Gao C F.Effects of electrical breakdown on a conducting crack or electrode in electrostrictive solids[J].European Journal of Mechanics A/Solids,2012,32:62-68.

    [8] Hwang S C,Lynch C S,McMeeking R M.Ferroelectric/ferroelastic interactions and a polarization switching model[J].Acta Metall Mater,1995,43:2073-2084.

    [9] Beom H K,Youn S K.Electrical fracture toughness for a conducting crack in ferroelectric ceramics[J].Int J Solids Struct,2004,41:145-157.

    [10]Song Y C,Soh A K,Ni Y.Phase field simulation of crack tip domain switching in ferroelectrics[J].J Phys D Appl Phys,2007,40:1175-1182.

    [11]Su Y,Landis Chad M.Continuum thermodynamics of ferroelectric domain evolution:Theory,finite element implementation,and application to domain wall pinning[J].J Mech Phys Solids,2007,55:280-305.

    [12]Xu B X,Schrade D,Gross D,et al.Phase field simulation of domain structures in cracked ferroelectrics[J].Int J Fract,2010,165:163-173.

    [13]Wang J,Kamlah M.Three-dimensional finite element modeling of polarization switching in a ferroelectric single domain with an impermeable notch[J].Smart Mater Struct,2009,18:104008.

    [14]Gu H L,Wang J.The influence of crack face electrical boundary conditions on the nonlinear behavior of ferroelectric single crystal[J].Smart Mater Struct,2013,22:065001.

    [15]Wu H H,Wang J,Cao S G,et al.The unusual temperature dependence of the switching behavior in a ferroelectric single crystal with dislocations[J].Smart Mater Struct,2014,23:025004.

    [16]Abdollahi A,Arias I.Conducting crack propagation driven by electric fields in ferroelectric ceramics[J].Acta Materialia,2013,61:7087-7097.

    猜你喜歡
    網(wǎng)段測(cè)試點(diǎn)圓圈
    一種新型模擬電路故障字典測(cè)點(diǎn)選擇方法研究
    基于信息熵可信度的測(cè)試點(diǎn)選擇方法研究
    邏輯內(nèi)建自測(cè)試雙重過(guò)濾測(cè)試點(diǎn)選取策略
    單位遭遇蠕蟲(chóng)類(lèi)病毒攻擊
    移圓圈
    奇思妙想話圓圈
    悠悠的圓圈圈
    Onvif雙網(wǎng)段開(kāi)發(fā)在視頻監(jiān)控系統(tǒng)中的應(yīng)用
    咣哧咣哧國(guó)
    兒童繪本(2015年5期)2015-05-25 18:03:01
    測(cè)試點(diǎn)的優(yōu)化選擇
    9色porny在线观看| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 18美女黄网站色大片免费观看| 99久久精品国产亚洲精品| 亚洲在线自拍视频| 国产无遮挡羞羞视频在线观看| 国产不卡一卡二| 欧美日韩亚洲综合一区二区三区_| 99精品久久久久人妻精品| 中出人妻视频一区二区| 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲| 免费高清在线观看日韩| 欧美人与性动交α欧美精品济南到| 级片在线观看| 一二三四在线观看免费中文在| 精品一区二区三卡| 日韩av在线大香蕉| 精品无人区乱码1区二区| xxxhd国产人妻xxx| 三上悠亚av全集在线观看| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 可以在线观看毛片的网站| 妹子高潮喷水视频| 他把我摸到了高潮在线观看| www.www免费av| 日本三级黄在线观看| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 男女下面插进去视频免费观看| 女人被狂操c到高潮| 午夜91福利影院| 18禁观看日本| 淫秽高清视频在线观看| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看 | 久久中文字幕人妻熟女| 中文字幕色久视频| 免费日韩欧美在线观看| 国产真人三级小视频在线观看| 国产精品九九99| 丝袜美腿诱惑在线| 久久精品成人免费网站| 久久这里只有精品19| 亚洲欧洲精品一区二区精品久久久| 岛国在线观看网站| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 精品一区二区三区四区五区乱码| 无限看片的www在线观看| av中文乱码字幕在线| 精品久久久久久久毛片微露脸| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 欧美日本亚洲视频在线播放| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 久久人人精品亚洲av| 国产精品av久久久久免费| 老司机午夜十八禁免费视频| 18禁国产床啪视频网站| 18美女黄网站色大片免费观看| 在线播放国产精品三级| 亚洲精品在线美女| 国产三级黄色录像| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久av美女十八| 在线看a的网站| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 国产精品国产av在线观看| 久久精品91无色码中文字幕| 久久久久久久久免费视频了| 自线自在国产av| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 欧美在线黄色| 国产精品久久视频播放| 国产99久久九九免费精品| 亚洲成人久久性| 日韩精品青青久久久久久| 黄色女人牲交| 亚洲一区二区三区欧美精品| 我的亚洲天堂| 午夜视频精品福利| 亚洲九九香蕉| 久久久久精品国产欧美久久久| 亚洲欧美日韩另类电影网站| 一二三四社区在线视频社区8| 久久香蕉激情| 亚洲专区字幕在线| 国产av一区二区精品久久| 十八禁人妻一区二区| 久久久久久久久免费视频了| 91字幕亚洲| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| a级毛片黄视频| 日韩欧美一区二区三区在线观看| 精品熟女少妇八av免费久了| 一本综合久久免费| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 人人澡人人妻人| 久久久久久人人人人人| 淫秽高清视频在线观看| 久久草成人影院| 一边摸一边抽搐一进一出视频| 国产精品国产av在线观看| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| 亚洲伊人色综图| 91av网站免费观看| 亚洲avbb在线观看| 丰满饥渴人妻一区二区三| 欧美日本中文国产一区发布| 久久久国产成人精品二区 | 嫁个100分男人电影在线观看| 黄色a级毛片大全视频| 999久久久国产精品视频| 午夜福利在线免费观看网站| 校园春色视频在线观看| 妹子高潮喷水视频| 国产有黄有色有爽视频| 免费av中文字幕在线| 国产亚洲精品久久久久久毛片| 男女床上黄色一级片免费看| 十分钟在线观看高清视频www| 老司机亚洲免费影院| 99re在线观看精品视频| 国产色视频综合| 国产精品野战在线观看 | 国产av一区在线观看免费| 精品一区二区三区视频在线观看免费 | 琪琪午夜伦伦电影理论片6080| 极品人妻少妇av视频| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 在线av久久热| 黄网站色视频无遮挡免费观看| 天堂√8在线中文| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 国产一区二区激情短视频| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | 咕卡用的链子| 国产精品久久久人人做人人爽| 后天国语完整版免费观看| 热re99久久国产66热| 国产精品久久久av美女十八| 国产av又大| 亚洲欧美一区二区三区久久| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 色老头精品视频在线观看| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 久久精品91蜜桃| 视频区欧美日本亚洲| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 免费观看人在逋| 国产高清videossex| 纯流量卡能插随身wifi吗| 日本免费a在线| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放 | 免费观看人在逋| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 男人的好看免费观看在线视频 | 久久精品91无色码中文字幕| 91在线观看av| 美女高潮喷水抽搐中文字幕| 精品欧美一区二区三区在线| 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 一级毛片精品| 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 五月开心婷婷网| 美女扒开内裤让男人捅视频| 18禁观看日本| 十八禁人妻一区二区| 丝袜美足系列| 亚洲成人国产一区在线观看| 中文字幕色久视频| 亚洲精品在线美女| 精品福利永久在线观看| 亚洲av成人一区二区三| 亚洲视频免费观看视频| 欧美中文日本在线观看视频| 午夜视频精品福利| 超色免费av| 咕卡用的链子| 在线天堂中文资源库| 国产xxxxx性猛交| 色精品久久人妻99蜜桃| 女人爽到高潮嗷嗷叫在线视频| 欧美午夜高清在线| 最新在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 午夜福利在线观看吧| 怎么达到女性高潮| 麻豆久久精品国产亚洲av | 久久人妻av系列| 伊人久久大香线蕉亚洲五| 国产精品久久久久久人妻精品电影| 一级毛片女人18水好多| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 超碰成人久久| 亚洲人成77777在线视频| 国内久久婷婷六月综合欲色啪| 自线自在国产av| 视频在线观看一区二区三区| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 婷婷丁香在线五月| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 女同久久另类99精品国产91| 欧美激情高清一区二区三区| 国产精品野战在线观看 | 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 日本五十路高清| 久久性视频一级片| 国产精品98久久久久久宅男小说| 日本a在线网址| 99精品在免费线老司机午夜| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站| 身体一侧抽搐| 久久久久国内视频| 成年版毛片免费区| 日韩欧美免费精品| xxx96com| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 妹子高潮喷水视频| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 亚洲成av片中文字幕在线观看| 99久久综合精品五月天人人| 国产男靠女视频免费网站| 欧美成狂野欧美在线观看| 欧美激情久久久久久爽电影 | 97超级碰碰碰精品色视频在线观看| 一边摸一边做爽爽视频免费| 老鸭窝网址在线观看| 咕卡用的链子| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 日韩欧美免费精品| 午夜91福利影院| 免费高清视频大片| 久久午夜综合久久蜜桃| avwww免费| av片东京热男人的天堂| 97碰自拍视频| 99热国产这里只有精品6| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 久久 成人 亚洲| 国产一卡二卡三卡精品| 黄色丝袜av网址大全| 丁香欧美五月| 久久久国产成人精品二区 | 亚洲精品国产一区二区精华液| 久久久久亚洲av毛片大全| 成人黄色视频免费在线看| 亚洲色图av天堂| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区免费| 美女高潮到喷水免费观看| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 国产麻豆69| 国产成人欧美| 香蕉国产在线看| 亚洲五月色婷婷综合| 久久99一区二区三区| 午夜日韩欧美国产| 国产一区二区在线av高清观看| xxx96com| 美女高潮喷水抽搐中文字幕| 9色porny在线观看| 日韩欧美三级三区| 最新美女视频免费是黄的| av欧美777| 在线av久久热| 欧美av亚洲av综合av国产av| 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影 | 欧美亚洲日本最大视频资源| 香蕉国产在线看| 亚洲欧美激情在线| 在线观看午夜福利视频| 国产精品1区2区在线观看.| 天堂中文最新版在线下载| 国产亚洲精品综合一区在线观看 | 在线十欧美十亚洲十日本专区| 日韩三级视频一区二区三区| 可以在线观看毛片的网站| 国产成年人精品一区二区 | 国产成人精品在线电影| 亚洲av片天天在线观看| 成人免费观看视频高清| 久久国产亚洲av麻豆专区| 免费高清视频大片| 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线| svipshipincom国产片| av在线播放免费不卡| 狂野欧美激情性xxxx| 国产野战对白在线观看| 国产97色在线日韩免费| 亚洲国产精品999在线| av片东京热男人的天堂| 亚洲成人精品中文字幕电影 | 久久久久久人人人人人| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 一级作爱视频免费观看| 大型黄色视频在线免费观看| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 成人国语在线视频| 啦啦啦免费观看视频1| www国产在线视频色| 亚洲精品一区av在线观看| bbb黄色大片| 老熟妇仑乱视频hdxx| 久久香蕉激情| 伊人久久大香线蕉亚洲五| 日韩有码中文字幕| 国产精品影院久久| 两人在一起打扑克的视频| 午夜免费成人在线视频| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 精品久久蜜臀av无| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 精品一品国产午夜福利视频| 久久久久精品国产欧美久久久| 国产av一区二区精品久久| 多毛熟女@视频| 男女做爰动态图高潮gif福利片 | 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 91av网站免费观看| 欧美乱色亚洲激情| а√天堂www在线а√下载| 久久精品亚洲熟妇少妇任你| 一个人观看的视频www高清免费观看 | 亚洲午夜理论影院| 久久久久久大精品| 韩国av一区二区三区四区| 久久中文字幕人妻熟女| 久久精品亚洲熟妇少妇任你| 国产精品 国内视频| 一二三四在线观看免费中文在| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 久久精品91无色码中文字幕| 久久精品91蜜桃| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 中文字幕人妻熟女乱码| 嫩草影视91久久| 中文字幕人妻熟女乱码| 午夜免费成人在线视频| 亚洲欧美精品综合久久99| 在线观看一区二区三区| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 一级毛片女人18水好多| 免费高清在线观看日韩| 老司机亚洲免费影院| 免费人成视频x8x8入口观看| 又紧又爽又黄一区二区| 国产精品成人在线| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| 亚洲成人精品中文字幕电影 | 女人高潮潮喷娇喘18禁视频| 老司机福利观看| 国产精品香港三级国产av潘金莲| 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 丰满迷人的少妇在线观看| 男女床上黄色一级片免费看| 看黄色毛片网站| 日韩视频一区二区在线观看| 757午夜福利合集在线观看| a级毛片在线看网站| 亚洲欧美日韩另类电影网站| 久久久国产成人免费| 亚洲专区中文字幕在线| 国产亚洲欧美98| 国产真人三级小视频在线观看| √禁漫天堂资源中文www| 国产精品国产av在线观看| 91老司机精品| 午夜福利在线免费观看网站| 岛国在线观看网站| 一区二区三区精品91| 12—13女人毛片做爰片一| 精品国产一区二区久久| 美女午夜性视频免费| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 在线十欧美十亚洲十日本专区| a级毛片在线看网站| 女警被强在线播放| 好男人电影高清在线观看| 亚洲免费av在线视频| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区三区四区久久 | 免费不卡黄色视频| 国产真人三级小视频在线观看| 黄色丝袜av网址大全| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| 亚洲av熟女| 亚洲成人免费电影在线观看| 国产成人av教育| 国产三级在线视频| 丰满人妻熟妇乱又伦精品不卡| 99国产精品免费福利视频| 国产成人精品久久二区二区免费| 亚洲一码二码三码区别大吗| 国产99白浆流出| 热99re8久久精品国产| 久久国产乱子伦精品免费另类| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 美女福利国产在线| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 日韩有码中文字幕| 亚洲第一av免费看| 黑人欧美特级aaaaaa片| 日韩视频一区二区在线观看| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区精品| 无遮挡黄片免费观看| 在线播放国产精品三级| 久久香蕉国产精品| 热99国产精品久久久久久7| 丝袜人妻中文字幕| 亚洲全国av大片| 国产单亲对白刺激| 亚洲视频免费观看视频| 久久久久久久久中文| 国产成人精品无人区| 久久精品91蜜桃| x7x7x7水蜜桃| 日韩精品免费视频一区二区三区| 免费观看精品视频网站| 免费观看人在逋| 国产亚洲av高清不卡| 99热国产这里只有精品6| 在线观看一区二区三区激情| 国产日韩一区二区三区精品不卡| 嫩草影院精品99| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 欧美日韩亚洲综合一区二区三区_| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 久久人人爽av亚洲精品天堂| 亚洲性夜色夜夜综合| 一二三四在线观看免费中文在| 亚洲人成电影免费在线| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 18禁美女被吸乳视频| 动漫黄色视频在线观看| 99久久精品国产亚洲精品| 午夜福利一区二区在线看| 久久国产亚洲av麻豆专区| 99国产精品一区二区蜜桃av| 久久婷婷成人综合色麻豆| 久久久国产成人精品二区 | 搡老熟女国产l中国老女人| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 国产精品久久电影中文字幕| av有码第一页| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 天天影视国产精品| 久久青草综合色| 亚洲七黄色美女视频| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 人人妻人人爽人人添夜夜欢视频| 国产免费男女视频| 制服诱惑二区| 波多野结衣av一区二区av| 最近最新中文字幕大全电影3 | 搡老岳熟女国产| 91老司机精品| 亚洲欧美一区二区三区黑人| 老汉色∧v一级毛片| 可以免费在线观看a视频的电影网站| 美女高潮喷水抽搐中文字幕| 国产精品久久久久成人av| 成年人黄色毛片网站| 丁香欧美五月| av国产精品久久久久影院| cao死你这个sao货| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 淫秽高清视频在线观看| 亚洲五月色婷婷综合| 免费不卡黄色视频| 日韩欧美三级三区| 免费在线观看视频国产中文字幕亚洲| 在线观看免费日韩欧美大片| 精品久久久久久,| 我的亚洲天堂| 国产成人精品无人区| 午夜精品国产一区二区电影| 精品久久久久久成人av| 久久久国产精品麻豆| 亚洲欧美日韩另类电影网站| 夜夜夜夜夜久久久久| 88av欧美| 一边摸一边抽搐一进一出视频| 操出白浆在线播放| 久久精品国产亚洲av香蕉五月| 午夜日韩欧美国产| 午夜免费激情av| 亚洲国产精品999在线| 精品国内亚洲2022精品成人| 精品福利永久在线观看| 波多野结衣高清无吗| 久久影院123| 一夜夜www| 丝袜在线中文字幕| 午夜久久久在线观看| 一个人免费在线观看的高清视频| 中文亚洲av片在线观看爽| 可以免费在线观看a视频的电影网站| 亚洲av成人av| 欧美精品亚洲一区二区| 操美女的视频在线观看| 中文字幕人妻丝袜一区二区| 老熟妇乱子伦视频在线观看| 精品久久久久久电影网| 在线免费观看的www视频| 欧美性长视频在线观看| 99热国产这里只有精品6| 另类亚洲欧美激情| 无限看片的www在线观看| 久久香蕉激情| 国产精品久久久人人做人人爽| 成人永久免费在线观看视频| 久久香蕉激情| 他把我摸到了高潮在线观看| 亚洲自偷自拍图片 自拍| 免费在线观看黄色视频的| 亚洲激情在线av| 不卡av一区二区三区| 日韩有码中文字幕| 久久精品国产清高在天天线| 亚洲自偷自拍图片 自拍| 在线观看免费午夜福利视频| 1024香蕉在线观看| 免费日韩欧美在线观看| 99久久国产精品久久久| 午夜免费观看网址| 久久青草综合色| 午夜福利在线观看吧| 亚洲欧美日韩无卡精品| 91老司机精品| 电影成人av| 最好的美女福利视频网| 精品国产乱子伦一区二区三区| a级毛片在线看网站| 日韩成人在线观看一区二区三区| 欧美最黄视频在线播放免费 | 亚洲午夜精品一区,二区,三区| 极品人妻少妇av视频| 老汉色av国产亚洲站长工具| 亚洲专区国产一区二区|