• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A feasibility study of using two-component polyurethane adhesive in constructing wooden structures

    2014-04-20 06:58:00MohammadDerikvandGhanbarEbrahimiMehdiTajvidi
    Journal of Forestry Research 2014年2期

    Mohammad Derikvand ? Ghanbar Ebrahimi ? Mehdi Tajvidi

    Introduction

    Gluing of wood is among the most effective joining techniques for building wooden structures (Smardzewski 2002). Different types of adhesives are commonly used in constructing wooden structures but polyvinyl acetate (PVAc) has been among the most popular woodworking adhesives for more than five consecutive decades. PVAc based adhesives have many advantages in comparison with other kinds of adhesives used in the furniture industry; namely, low cost, ease of use, simplicity of application, and minimal harmful environment effects (Qiao and Easteal 2001). However, it is well known that PVAc adhesives do not have good water resistance, heat resistance and creep resistance under a heavy loads for long periods, and these deficiencies limit its wider usage (Qiao and Easteal 2001). Therefore, PVAc adhesive is not generally recommended for wooden structures and joints subjected to high temperature or high humidity (Sellers et al. 1988). In many developing countries, there is still no proper replacement for PVAc adhesive in manufacturing wooden structures for outdoor use under atmospheric conditions. Generally, a proper wood adhesive with an outdoor application should have special characteristics of good water resistance, stability against ultraviolet (UV) and weathering resistance. In these cases, polyurethane adhesives seem more appropriate because of their specific waterproof properties and weathering resistance. There are different kinds of one- and two-component polyurethane (PUR-1K and PUR-2K) adhesives, many of which are waterproof and, if these adhesives show a reliable performance on wood materials, can be used for wood products for outdoor application. However, finding an adhesive appropriate for use in constructing outdoor wooden structures needs comprehensive studies on its bond strength and durability, harmful environment effects, and additional costs for manufacture; specifically, estimation of the adhesive bond strength is the first step in determining a specific adhesive for wood products. In previous studies (Altinok et al. 2011; Keskin et al. 2009; Konnerth et al. 2006; ?rs et al. 2004; Qiao and Easteal 2001; Raftery et al. 2009; Serrano 2004; Vick and Okkonen 1998), shear strength was used as a reliable parameter for the evaluation of adhesive bond strength in solid wood, because it is the most common interfacial stress under service conditions (Pizzo et al. 2003). It was demonstrated that in the radial and tangential surfaces of Calabrian pine (Pinus brutia Ten.) wood, the specimens bonded with PVAc adhesive produced higher shear strength compared to those glued with one-component PUR adhesive (Burdurlu et al. 2006). In a test of resistance to deformation under static loads, one-component PUR bonds withstood extreme exposures of temperature and relative humidity for 60 days without deformation (Vick and Okkonen 1998).

    So far, limited studies have been performed to determine the shear strength of one-component PUR adhesives on wood materials (Keskin et al. 2009; Konnerth et al. 2006; Beaud et al. 2006; ?rs et al. 2004; Serrano 2004), and shear strength of two-component PUR adhesive on wood has not been documented. This study is the first to determine the feasibility of using two-component PUR adhesive in constructing outdoor furniture and wooden structures by evaluating the shear strength and adhesion qualities of PUR and PVAc (as a control) adhesives on the most commonly used wood species in furniture industry.

    Materials and methods

    Wood materials

    Oriental beech (Fagus orientalis L.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), fir (Abies alba Mill.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.) were utilized in construction of test specimens (Table 1). Since wood defects, such as knots and slope of grain, may negatively affect the accuracy of shear strength measurements of the adhesive, the specimens used in the study were cut from straight grain defect-free wood with nominal 12% moisture content.

    Table 1: Specific gravity and shear strength parallel to the grain of woods used in the study (Derikvand et al. 2013)

    Test adhesives

    PVAc and two-component PUR adhesives were used to produce the specimens (Table 2). We seleted PVAc to serve as the standard adhesive in this study because it is widely used in the furniture industry and, therefore, provides a useful basis for comparison with the shear strength and adhesion quality of PUR adhesive. PVAc adhesives are known as contact glues, while the PUR adhesives cure by chemical reaction between their components. The PUR adhesive, used in the study, was completely waterproof and did not contain components affecting the swelling of wood.

    Table 2: Properties of PUR and PVAc adhesives used in the study

    Preparation of the specimens

    Fabrication and testing of block-shear specimens used in the study were performed in accordance with the principles of ASTM D-905. The size of test specimens affects the accuracy of measurement of adhesive bond strength (Custódio et al. 2009), so that the stress distribution in test specimens tends to be more uniform as the size of the connection decreases (Serrano 2004). Therefore, dimensions of the specimens used in the study were selected from ASTM D-4680. Although dimensions of the D-4680 specimen are smaller than those of the D-905 specimen, its configuration is quite similar to the D-905 specimen. In the first step of constructing the block-shear specimens, wood blocks, of suitable size (ASTM D905), were prepared at dimensions shown in Fig. 1a. The adhesive was applied to the blocks in accordance with the recommendations of the adhesive manufacturer. The glue-coated blocks were assembled and then pressed (7×105MN·m-2) for 24 hours, so that thin glue lines (< 0.1 mm) were achieved. The block-shear specimens were then cut such that the grain direction was parallel to the direction of loading during the tests (Fig. 1b). Ten replicates of each adhesive were constructed from each wood species. The block-shear specimens were then kept in the climatic chamber at relative humidity of 65% ± 3% and a temperature of (20±2) °C for three weeks. After this conditioning period, adhesive achieves its full strength (Altinok et al. 2009; Maleki et al. 2012; Derikvand et al. 2013).

    Description of tests

    Using a standard shear-testing device (Fig. 2), 120 block-shear specimens were tested on a computer-controlled Instron (4486) testing machine. Loading speed was 5 mm·min-1during the tests. The maximum force applied to the specimens was recorded.

    Shear stress values that occurred at the shear area of test specimens under uniaxial compression load were then calculated using following formula:

    where. τ is the maximum shear strength (N·mm-2), Pmaxis the maximum load at failure point (N), and A is the shear area (645.16 mm2).

    After performing the tests, the percentage of wood failure in tested specimens was also estimated to the nearest 5% of shear area according to the principles of ASTM D-5266.

    Data analysis

    Data were analyzed using analysis of variance (ANOVA) and Duncan’s test was used to determine the significance of differences between groups.

    Fig. 1: Shear test specimen configuration (mm), before (a) and after (b) cutting

    Fig. 2: Shear-testing device used in the study

    Results

    Shear strength of PUR and PVAc adhesives

    ANOVA for shear strength of PUR and PVAc adhesives and percentage of wood failure in tested specimens are given in Table 3. The differences between the shear strength values were highly significant in terms of adhesive type, wood species and the interaction between the wood species and type of adhesive (p <0.001).

    Average values of the shear strength of the PUR and PVAc adhesives along with the percentage of wood failure in tested specimens and results of the Duncan test for identification of significant differences between groups for each wood species are given in Table 4. The highest shear strength values for both adhesive types were obtained in beech specimens, while the lowest shear strength values were recorded in specimens constructed of fir. For PUR adhesive, no significant difference was observed between the shear strengths of specimens constructed of beech and oak. There was also no significant difference in the shear strength of the PUR adhesive in specimens constructed of fir and poplar. Likewise, in the case of PVAc adhesive, no significant differences were observed in the shear strength of walnut, oak and sycamore specimens.

    Generally, the shear strength of PUR adhesive was 16.50% higher than that of PVAc adhesive. In specimens constructed of beech, the shear strength of PUR adhesive was 15.52% higher than that of PVAc adhesive, while the differences were 27.44% and 40.56% in the case of specimens constructed of walnut and oak, respectively. However, for specimens constructed of fir and sycamore, the shear strength of PUR adhesive was approximately 14.71% and 4.18% higher than for PVAc adhesive, respectively. In the case of poplar specimens, the shear strength of PUR adhesive was 6.58% less than that of PVAc adhesive.

    Percentage of wood failure in tested specimens

    Percentage of wood failure differed significantly by wood species (p <0.001) (Table 3). There was no significant difference in percentage of wood failure by adhesive type (p >0.05). The interaction between bilateral different groups was statistically significant (p <0.05).

    Table 3: Results of ANOVA for amounts of shear strength and percentage of wood failure

    NS: Not significant; ??? Highly significant with probability less than 0.001; ? significant with probability less than 0.05

    Table 4: Average shear strength of PUR and PVAc adhesives along with percenrage of wood failure values on different wood species

    The highest percentage of wood failure for PVAc adhesive was recorded for specimens fabricated of poplar. No significant differences in the percentage of wood failure were recorded for specimens constructed of sycamore, fir, and poplar (Table 4). The lowest percentage of wood failure was obtained in specimens constructed of beech. There was no significant difference between percentage of wood failure in beech and walnut specimens. In the case of PUR adhesive, maximum percentage of wood failure was recorded for specimens constructed of fir. There were no significant differences between percentages of wood failure for specimens constructed of sycamore, fir, and poplar. The lowest percentage of wood failure was recorded for specimens constructed of oak and no statistically significant difference in the percentage of wood failure was observed between specimens constructed of oak and beech. Generally, the percentage of wood failure increased with increase in the shear strength of test adhesives, so that the percentage of wood failure in specimens constructed with PUR adhesive was approximately 5.5% higher than for those of specimens made with PVAc adhesive. However, oak specimens showed an inverse behavior so that the percentage of wood failure in oak specimens constructed with PUR adhesive was 19.5% less than for oak specimens fabricated with PVAc adhesive. Overall, ANOVA results showed that there was no statistically significant difference between percentage of wood failure in specimens made with PUR and PVAc adhesives.

    Discussion

    Although shear strength and adhesion quality of an adhesive directly depends on its formulation and chemical properties, physical-mechanical properties of wood used in construction of our test specimens had a significant effect on the shear strength of test adhesives. These results for the PUR and PVAc adhesives support those reported by Altinok et al. (2011) for the shear strength of PVAc and urea-formaldehyde (UF) adhesives on various wood species. Overall, the shear strength of PUR adhesive was significantly higher than that of PVAc adhesive. However, in the case of poplar specimens, unlike the other wood species, PVAc adhesive showed higher shear strength than did PUR adhesive. This unusual instability in the results obtained from poplar specimens was probably due to weak shear strength parallel to the grain of wood. In fact, in the case of poplar, sycamore, and fir specimens, the shear strength values of tested adhesives were higher than shear strength parallel to the grain of wood; hence, failures occurred mostly in the test blocks rather than at the adhesive line in specimens constructed of these three wood species (Fig. 3). Differences in specific gravity, pore diffusion, extractive and surface roughness of wood are the main reasons for differences in shear strengths and adhesion qualities of a given adhesive on different wood species. Shear strength parallel to the grain of wood directly affected the accuracy of the bond line strength measurement: when the shear strength of wood was lower than the shear strength of the adhesive, test specimens were destroyed before the adhesive line could achieve its final strength under loading such as the modulus of failure in poplar, fir, and sycamore specimens (Fig. 3). Thus, the results obtained from poplar, fir and sycamore specimens did not provide a good comparison of the shear strength of the test adhesives. In contrast, beech, walnut and oak specimens yielded more reliable comparisons of differences between shear strength values of the PVAc and PUR adhesive, specifically, because of their high density and shear strength parallel to the grain.

    Fig. 3: Some failure modes of block-shear specimens (a: fir, b: poplar, c: sycamore)

    Conclusions

    Shear strength of the PUR adhesive used in this study was significantly higher than that of the conventional PVAc adhesive.

    Generally, with the exception of oak specimens, there was no significant difference between percentage wood failure in specimens constructed with PUR and PVAc adhesives.

    The PUR adhesive with perfect waterproof properties can be recommended as a replacement for PVAc adhesive in constructing furniture for outdoor use under atmospheric conditions. However, we assessed only shear strength and adhesion performance of the PUR adhesive. Other factors that might influence the choice of an adhesive include harmful effects on human health and durability of the adhesive under different temperature and humidity conditions. Such factors should be assessed in future studies to enable confident recommendation of PUR adhesive for use in the furniture industry.

    The accuracy of the shear strength measurements of different wood adhesives directly depends on wood species used in constructing test specimens.

    Beech, walnut and oak species can be recommended for use in future studies to achieve a reliable comparison between shear strength of different wood adhesives. This is because of their high density, low percentage of wood failure, and high shear strength parallel to the grain.

    Altinok M, Atar M, Keskin H, Korkut S, Kocaturk I. 2011. Determination of bonding performance of several modified wood adhesives. International Journal of the Physical Sciences, 6(2): 294-300.

    Altinok M, Ta? HH, Sancak E. 2009. Load carrying capacity of spline joints as affected by board and adhesives type. Scientific Research and Essays, 4(5): 479-473.

    ASTM D-4680. 1998. Standard test method for creep and time to failure of adhesives in static shear by compression loading (Wood-to-Wood). The American Society of Testing and Materials, USA.

    ASTM D-5266. 1999. Standard practice for estimating the percent wood failure in adhesive joints. The American Society of Testing and Materials, USA.

    ASTM D-905. 1998. Standard test method for strength properties of adhesive bonds in shear by compression loading. The American Society of Testing and Materials, USA.

    Beaud F, Niemz P, Pizzi A. 2006. Structure–property relationships in one-component polyurethane adhesives for wood: sensitivity to low moisture content. Journal of Applied Polymer Science, 101(6), 4181-4192.

    Burdurlu E, Kili? Y, Elibol GC, Kili? M. 2006. The shear strength of Calabrian Pine (Pinus brutia Ten.) bonded with polyurethane and polyvinyl acetate adhesives. Journal of Applied Polymer Science, 99(6): 3050-3061.

    Custódio J, Broughton J, Cruz H. 2009. A review of factors influencing the durability of structural bonded timber joints. International Journal of Adhesion and Adhesives, 29(2): 173-185.

    Derikvand M, Smardzewski J, Maleki S, Dalvand M, Ebrahimi G. 2013. Withdrawal force capacity of mortise and loose tenon T-type furniture joints. Turkish Journal of Agriculture and Forestry, 37: 377-384.

    Keskin H, Atar M, Akyildiz MH. 2009. Bonding strengths of poly (vinyl acetate), Desmodur-VTKA, phenol-formaldehyde, and urea-formaldehyde adhesives in wood materials impregnated with vacsol azure. Materials and Design, 30(9): 3789-3794.

    Konnerth J, Gind W, Harm M, Müller U. 2006. Comparing dry bond strength of spruce and beech wood glued with different adhesives by means of scarf- and lap joint testing method. Holz als Roh- und Werkstoff, 64(4): 269-271.

    Maleki S, Derikvand M, Dalvand M, Ebrahimi G. 2012. Load carrying capacity of mitered furniture corner joints with dovetail keys under diagonal tension load. Turkish Journal of Agriculture and Forestry, 36: 636-643.

    ?rs Y, Atar M, Keskin H. 2004. Bonding strength of some adhesives in wood materials impregnated with imersol-aqua. International Journal of Adhesion and Adhesives, 24(4): 287-294.

    Pizzo B, Lavisci P, Misani C, Triboulot P, Macchioni N. 2003. Measuring the shear strength ratio of glued joints within the same specimen. Holz als Roh- und Werkstoff, 61(4): 273-280.

    Qiao L, Easteal A. 2001 Aspects of the performance of PVAc adhesives in wood joins. Pigment & Resin Technology, 30(2): 79-87.

    Raftery GM, Harte AM, Rodd PD. 2009. Bond quality at the FRP-wood interface using wood-laminating adhesives. International Journal of Adhesion and Adhesives, 29(2): 101-110.

    Sellers JR, McSween JR, Nearn WT. 1988. Gluing of eastern hardwoods: A review. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Forest Product Laboratory.

    Serrano E. 2004. A numerical study of the shear-strength-predicting capabilities of test specimens for wood-adhesive bonds. International Journal of Adhesion and Adhesives, 24(1): 23-35.

    Smardzewski J. 2002. Technological heterogeneity of adhesive bonds in wood joints. Wood Science and Technology, 36: 213-227.

    Vick CB, Okkonen EA. 1998. Strength and durability of one-part polyurethane adhesive bonds to wood. Forest Products Journal, 48: 71-76.

    国产欧美日韩一区二区三 | 久久九九热精品免费| 1024香蕉在线观看| 欧美 亚洲 国产 日韩一| 久久精品国产综合久久久| 日韩欧美免费精品| 成年人免费黄色播放视频| 性色av一级| av国产精品久久久久影院| 这个男人来自地球电影免费观看| 老司机亚洲免费影院| 亚洲精品久久午夜乱码| 男女国产视频网站| 日本wwww免费看| 免费不卡黄色视频| 久久久久视频综合| 2018国产大陆天天弄谢| 汤姆久久久久久久影院中文字幕| 国产精品av久久久久免费| 精品国产一区二区三区四区第35| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 国产黄频视频在线观看| 精品人妻在线不人妻| 亚洲国产成人一精品久久久| 在线十欧美十亚洲十日本专区| 一级毛片女人18水好多| 欧美久久黑人一区二区| 黑人欧美特级aaaaaa片| 久久这里只有精品19| 黄色片一级片一级黄色片| 日本91视频免费播放| 国产精品99久久99久久久不卡| av片东京热男人的天堂| 午夜福利在线免费观看网站| 美女中出高潮动态图| 亚洲av成人不卡在线观看播放网 | 国产一区二区激情短视频 | av网站免费在线观看视频| 国产免费现黄频在线看| 精品一品国产午夜福利视频| 热re99久久精品国产66热6| 亚洲国产欧美网| 18禁裸乳无遮挡动漫免费视频| 91国产中文字幕| 狠狠婷婷综合久久久久久88av| 十八禁网站免费在线| 青春草视频在线免费观看| 精品一品国产午夜福利视频| 一区二区日韩欧美中文字幕| 亚洲中文字幕日韩| av电影中文网址| av天堂久久9| 久久久久国产一级毛片高清牌| 亚洲色图 男人天堂 中文字幕| 国内毛片毛片毛片毛片毛片| 亚洲国产精品999| 久久久国产欧美日韩av| a级毛片黄视频| 成人影院久久| 十分钟在线观看高清视频www| 大型av网站在线播放| 精品一区二区三卡| 他把我摸到了高潮在线观看 | 大香蕉久久网| 黑人欧美特级aaaaaa片| 一区二区三区乱码不卡18| av免费在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 美女视频免费永久观看网站| 亚洲欧美清纯卡通| 淫妇啪啪啪对白视频 | 淫妇啪啪啪对白视频 | 狂野欧美激情性bbbbbb| 亚洲全国av大片| 免费在线观看影片大全网站| 一二三四在线观看免费中文在| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻人人澡人人爽人人| 亚洲欧美激情在线| 搡老岳熟女国产| 在线观看一区二区三区激情| a 毛片基地| 一本综合久久免费| 国产精品国产三级国产专区5o| 少妇粗大呻吟视频| 在线十欧美十亚洲十日本专区| av在线播放精品| 国产高清国产精品国产三级| 中文字幕色久视频| 精品国产一区二区久久| 汤姆久久久久久久影院中文字幕| 国产精品偷伦视频观看了| 久久国产精品大桥未久av| 午夜福利一区二区在线看| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲熟妇少妇任你| 国产精品一区二区在线不卡| 99久久国产精品久久久| 亚洲一码二码三码区别大吗| 国产一级毛片在线| 成人国产av品久久久| 国产伦理片在线播放av一区| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 操出白浆在线播放| 亚洲精品在线美女| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 亚洲国产精品一区二区三区在线| 国产日韩欧美视频二区| 亚洲激情五月婷婷啪啪| 日本黄色日本黄色录像| 午夜激情av网站| 国产色视频综合| 黄色视频,在线免费观看| 一级黄色大片毛片| 色视频在线一区二区三区| 熟女少妇亚洲综合色aaa.| 精品一区二区三区四区五区乱码| 久久久精品国产亚洲av高清涩受| 亚洲精品自拍成人| 精品人妻熟女毛片av久久网站| tube8黄色片| 精品国产超薄肉色丝袜足j| 欧美国产精品va在线观看不卡| 精品少妇久久久久久888优播| √禁漫天堂资源中文www| 午夜老司机福利片| 国产精品欧美亚洲77777| 成人国产av品久久久| 老鸭窝网址在线观看| 90打野战视频偷拍视频| 女人高潮潮喷娇喘18禁视频| av免费在线观看网站| 99国产精品99久久久久| 高清欧美精品videossex| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 日本精品一区二区三区蜜桃| 精品国产乱码久久久久久男人| 亚洲精品中文字幕一二三四区 | 中亚洲国语对白在线视频| 国产成人av教育| 久久狼人影院| 高清视频免费观看一区二区| 精品人妻在线不人妻| 国产精品久久久av美女十八| 亚洲精品国产精品久久久不卡| 亚洲av日韩在线播放| 日韩欧美免费精品| 黄色视频不卡| 大型av网站在线播放| 在线看a的网站| 国产在线视频一区二区| 高清视频免费观看一区二区| 69av精品久久久久久 | 搡老岳熟女国产| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线美女| 国产日韩欧美视频二区| 日韩 亚洲 欧美在线| 国产精品99久久99久久久不卡| 女性被躁到高潮视频| 在线观看舔阴道视频| 在线观看免费高清a一片| 亚洲情色 制服丝袜| 国产成人啪精品午夜网站| 人妻久久中文字幕网| 大码成人一级视频| 亚洲国产av影院在线观看| videosex国产| 国产主播在线观看一区二区| 婷婷成人精品国产| 午夜免费鲁丝| 青草久久国产| a级片在线免费高清观看视频| 搡老岳熟女国产| 99国产精品一区二区三区| 亚洲国产欧美在线一区| 性少妇av在线| 91av网站免费观看| 国产精品久久久av美女十八| 狠狠精品人妻久久久久久综合| 婷婷色av中文字幕| 欧美 亚洲 国产 日韩一| 亚洲国产精品成人久久小说| 老司机深夜福利视频在线观看 | 成人免费观看视频高清| 午夜福利免费观看在线| 国产精品成人在线| 制服人妻中文乱码| av免费在线观看网站| 久久久久久免费高清国产稀缺| 免费在线观看影片大全网站| 午夜精品国产一区二区电影| 欧美精品高潮呻吟av久久| 啦啦啦免费观看视频1| 亚洲国产看品久久| 热99久久久久精品小说推荐| 深夜精品福利| 欧美激情极品国产一区二区三区| 91成年电影在线观看| 国产有黄有色有爽视频| 精品福利永久在线观看| 国产成人影院久久av| 99久久国产精品久久久| 精品少妇久久久久久888优播| 国产亚洲av高清不卡| 午夜福利乱码中文字幕| 成年美女黄网站色视频大全免费| 久久久久视频综合| 久久午夜综合久久蜜桃| 黄色毛片三级朝国网站| 国产在视频线精品| 悠悠久久av| 亚洲精品久久成人aⅴ小说| 精品人妻熟女毛片av久久网站| 国产免费现黄频在线看| 人成视频在线观看免费观看| 亚洲精华国产精华精| 香蕉国产在线看| bbb黄色大片| 亚洲第一欧美日韩一区二区三区 | 日本精品一区二区三区蜜桃| 午夜福利免费观看在线| 最近最新中文字幕大全免费视频| 亚洲激情五月婷婷啪啪| 久久香蕉激情| 国产精品亚洲av一区麻豆| 久久久精品94久久精品| 久久国产亚洲av麻豆专区| 手机成人av网站| a 毛片基地| 久久久久久免费高清国产稀缺| 久久久久久人人人人人| 好男人电影高清在线观看| 精品亚洲成国产av| 精品视频人人做人人爽| 人妻一区二区av| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| 中国美女看黄片| 久久ye,这里只有精品| 国产亚洲欧美精品永久| av天堂久久9| 久久国产亚洲av麻豆专区| 99九九在线精品视频| 欧美 日韩 精品 国产| 成人免费观看视频高清| 啪啪无遮挡十八禁网站| 青春草亚洲视频在线观看| 日韩一区二区三区影片| 丝瓜视频免费看黄片| 女人高潮潮喷娇喘18禁视频| 青春草视频在线免费观看| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 亚洲免费av在线视频| 黄色怎么调成土黄色| 老汉色∧v一级毛片| 岛国毛片在线播放| 精品免费久久久久久久清纯 | 高清在线国产一区| av免费在线观看网站| 日韩欧美一区视频在线观看| 69av精品久久久久久 | 91老司机精品| 老司机深夜福利视频在线观看 | 精品久久久久久久毛片微露脸 | 大片电影免费在线观看免费| 国产精品一区二区在线不卡| 老司机在亚洲福利影院| 一区福利在线观看| 国产免费现黄频在线看| 在线观看免费日韩欧美大片| 免费不卡黄色视频| av天堂久久9| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 宅男免费午夜| 91国产中文字幕| 一本色道久久久久久精品综合| 中文字幕最新亚洲高清| 日韩免费高清中文字幕av| 一级黄色大片毛片| 91成人精品电影| 亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| 精品国产一区二区久久| 久久久久精品国产欧美久久久 | 999久久久精品免费观看国产| www.自偷自拍.com| 在线观看免费视频网站a站| 亚洲精品国产精品久久久不卡| 日韩人妻精品一区2区三区| 一进一出抽搐动态| 正在播放国产对白刺激| 下体分泌物呈黄色| 午夜福利,免费看| 免费观看av网站的网址| 国产精品秋霞免费鲁丝片| av不卡在线播放| 狠狠精品人妻久久久久久综合| 一区福利在线观看| 大型av网站在线播放| 高清av免费在线| 秋霞在线观看毛片| 美女高潮到喷水免费观看| 国产一区二区在线观看av| 久久 成人 亚洲| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| 精品国产乱子伦一区二区三区 | 日韩三级视频一区二区三区| 久久精品国产亚洲av高清一级| 国产熟女午夜一区二区三区| 亚洲免费av在线视频| xxxhd国产人妻xxx| 99热全是精品| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 国产一区二区 视频在线| 日韩中文字幕欧美一区二区| 国产免费av片在线观看野外av| 国产免费现黄频在线看| tocl精华| 精品一区在线观看国产| 老熟妇乱子伦视频在线观看 | 亚洲欧美一区二区三区黑人| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 丝袜在线中文字幕| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲综合一区二区三区_| 视频区图区小说| 久久青草综合色| 悠悠久久av| 十八禁网站免费在线| 久久免费观看电影| 大片电影免费在线观看免费| 中文字幕精品免费在线观看视频| 99久久人妻综合| 90打野战视频偷拍视频| 超色免费av| 久久影院123| 精品少妇一区二区三区视频日本电影| 国产淫语在线视频| 69av精品久久久久久 | 后天国语完整版免费观看| 黄片播放在线免费| 国产精品一二三区在线看| 在线永久观看黄色视频| 日韩人妻精品一区2区三区| 欧美国产精品一级二级三级| 色婷婷av一区二区三区视频| 成人av一区二区三区在线看 | 91精品三级在线观看| 99精品久久久久人妻精品| 高清欧美精品videossex| kizo精华| 久久久久视频综合| 蜜桃国产av成人99| 国产野战对白在线观看| 新久久久久国产一级毛片| 久久中文字幕一级| 国产高清国产精品国产三级| 亚洲 国产 在线| 午夜福利在线观看吧| 一区二区三区四区激情视频| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 在线观看舔阴道视频| 久久精品熟女亚洲av麻豆精品| 精品国产乱码久久久久久男人| 99热网站在线观看| 日日夜夜操网爽| 中文字幕制服av| 国产精品久久久久久人妻精品电影 | 国产免费福利视频在线观看| 91老司机精品| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕大全免费视频| 淫妇啪啪啪对白视频 | 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 欧美乱码精品一区二区三区| 国产伦理片在线播放av一区| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 久久国产精品影院| 国产主播在线观看一区二区| 一级片免费观看大全| 日本猛色少妇xxxxx猛交久久| 九色亚洲精品在线播放| avwww免费| 国产福利在线免费观看视频| 少妇的丰满在线观看| 少妇 在线观看| 精品免费久久久久久久清纯 | 日韩欧美一区视频在线观看| 伊人亚洲综合成人网| 欧美另类亚洲清纯唯美| 国产精品免费视频内射| 在线永久观看黄色视频| tocl精华| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 在线精品无人区一区二区三| 69精品国产乱码久久久| 精品少妇内射三级| 精品人妻一区二区三区麻豆| av超薄肉色丝袜交足视频| 丰满少妇做爰视频| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 少妇 在线观看| 国产男女超爽视频在线观看| 国产一区二区 视频在线| 每晚都被弄得嗷嗷叫到高潮| 视频区欧美日本亚洲| 狂野欧美激情性xxxx| 曰老女人黄片| 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 9191精品国产免费久久| 久久av网站| 亚洲国产av新网站| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三 | 久久久国产一区二区| 久久久久久免费高清国产稀缺| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 一区二区av电影网| 国产精品久久久久成人av| 久久精品国产亚洲av香蕉五月 | 无限看片的www在线观看| 80岁老熟妇乱子伦牲交| 久久久国产成人免费| 亚洲中文日韩欧美视频| 亚洲欧美色中文字幕在线| 中国美女看黄片| 淫妇啪啪啪对白视频 | 成年动漫av网址| 久久久久国内视频| 50天的宝宝边吃奶边哭怎么回事| 色婷婷久久久亚洲欧美| 久久久久网色| 国产在线观看jvid| 国产欧美日韩精品亚洲av| 久久99一区二区三区| 久久香蕉激情| svipshipincom国产片| av免费在线观看网站| 亚洲第一av免费看| 欧美黄色片欧美黄色片| 性少妇av在线| 老汉色∧v一级毛片| 免费高清在线观看日韩| 91麻豆av在线| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 99国产精品一区二区蜜桃av | 国产一区二区激情短视频 | 美女视频免费永久观看网站| 久久人妻福利社区极品人妻图片| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 人人妻人人添人人爽欧美一区卜| 999精品在线视频| 成在线人永久免费视频| 欧美中文综合在线视频| 丝袜在线中文字幕| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 高清欧美精品videossex| 日韩欧美一区视频在线观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品一区二区www | 人妻久久中文字幕网| 久热爱精品视频在线9| 国产在线免费精品| 在线av久久热| 久久久久国产精品人妻一区二区| www.999成人在线观看| 亚洲av男天堂| av免费在线观看网站| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 日韩 亚洲 欧美在线| 日韩三级视频一区二区三区| 国产成人欧美在线观看 | 亚洲激情五月婷婷啪啪| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 女人久久www免费人成看片| 日本猛色少妇xxxxx猛交久久| 老汉色∧v一级毛片| 天堂中文最新版在线下载| 国产高清国产精品国产三级| www.自偷自拍.com| 久久天躁狠狠躁夜夜2o2o| 一区二区三区乱码不卡18| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 日本欧美视频一区| av网站免费在线观看视频| 成人国语在线视频| 99久久99久久久精品蜜桃| 婷婷色av中文字幕| 他把我摸到了高潮在线观看 | 国产成人欧美| 一二三四社区在线视频社区8| 亚洲精品久久久久久婷婷小说| 青春草亚洲视频在线观看| 亚洲精品成人av观看孕妇| avwww免费| 国产成人精品久久二区二区91| 久久久久视频综合| 老司机影院成人| 精品一区二区三卡| 99精国产麻豆久久婷婷| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 国产深夜福利视频在线观看| 亚洲精品美女久久av网站| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品一区三区| 亚洲欧美激情在线| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 美女中出高潮动态图| 99精品久久久久人妻精品| 午夜激情av网站| 国产有黄有色有爽视频| 欧美大码av| 青春草视频在线免费观看| 久9热在线精品视频| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区| 97人妻天天添夜夜摸| 国产成人精品无人区| 亚洲av成人一区二区三| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 老熟女久久久| 久久香蕉激情| 午夜两性在线视频| 香蕉丝袜av| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 一级黄色大片毛片| 亚洲精品中文字幕一二三四区 | 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 久久九九热精品免费| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 久久中文看片网| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 视频区图区小说| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久小说| 亚洲精品国产av蜜桃| 国产97色在线日韩免费| 免费少妇av软件| 桃花免费在线播放| 久久国产精品男人的天堂亚洲| 人人妻人人澡人人看| 女人被躁到高潮嗷嗷叫费观| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 国产福利在线免费观看视频| 久久精品国产综合久久久| www.av在线官网国产| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 亚洲欧洲日产国产| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 黑丝袜美女国产一区| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 国产在线观看jvid| 99久久精品国产亚洲精品| 十八禁高潮呻吟视频| av又黄又爽大尺度在线免费看| h视频一区二区三区| 欧美大码av| 在线天堂中文资源库| 国产成人a∨麻豆精品| 性色av乱码一区二区三区2| 欧美日韩精品网址| 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 狠狠狠狠99中文字幕| 五月天丁香电影| 午夜福利在线观看吧| 国产成人欧美| 成人黄色视频免费在线看| 飞空精品影院首页|