• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Population structure and regeneration patterns of tree species in climate-sensitive subalpine forests of Indian western Himalaya

    2014-04-20 06:56:32SanjayGairolaRawalTodariaArvindBhatt
    Journal of Forestry Research 2014年2期

    Sanjay Gairola ? R. S. Rawal ? N. P. Todaria ? Arvind Bhatt

    Introduction

    Population structure studies are important for understanding the mechanism of species coexistence and long-term ecological processes of natural forests (Miura et al. 2001). They reveal the dominance status of species and development within the community. Population structure and recruitment patterns are influenced by many factors, such as disturbance and competitive interactions between trees (North et al. 2004). The structural characteristics are also used to define niche requirement of species, examine spatial heterogeneity, temporal dynamics of understory vegetation and investigate pattern of regeneration dynamics (Runkl 1991; Long and Smith 1992; Chen et al. 1993; Boungiorno et al. 1994; Chen and Franklin 1995). Similarly, the mechanism determining spatial pattern and maintenance of species richness can be inferred from differences in the spatial distribution of juvenile and adult trees (Hamill and Wright 1986; Hubbel and Foster 1987). As such, the regeneration patterns of species, based on the population structure, can determine the seral stage of the community and infer the potential climax vegetation of a particular area.

    Vegetation zones, arrayed on the basis of altitude, are one of the most remarkable gradational patterns of vegetation (Ohsawa 1984). In mountains, the subalpine forests represent a transition between alpine grassland and temperate forest ecosystems. These forests are considered vulnerable to natural variations in climate and also under high anthropogenic pressure (Kullman 1988; Stevens 2003; Sharma et al. 2009). Because of their distinct biodiversity and sensitivity to climate change and anthropogenic disturbances, these forests have been recognized as worthy of further investigation in Indian western Himalaya (Rawal and Dhar 1997). The current interest in studying the subalpine forests has also been prompted by widespread predictions of future climate change and its impact on altitudinal location of the timberline (Kullman 2001; Holtmeier 2003; Kultti 2004).

    Comprehensive studies on compositional attributes of vegetation, including diversity patterns of subalpine forests of western Himalaya have been conducted (Bankoti 1990; Garkoti 1992; Singh et al. 1994; Rawal and Pangtey 1994; Dhar et al. 1997; Hussain et al. 2008; Gairola et al. 2008; 2009). The structure and composition of subalpine forests in Indian western Himalaya are strongly influenced by the types and sizes of disturbances to the forest canopy (Kumar and Ram 2005; Gairola et al. 2008; 2009).

    However, efforts to specifically describe the structural properties of subalpine forests to elucidate the regeneration pattern of tree species are largely lacking. Considering this gap, we describe the population structure (demographic profile) of tree species along the altitudinal gradients in subalpine forests of Indian western Himalaya. These forests have great ecological importance for they are home to a large number of threatened and charismatic species of flora and fauna, and at the same time sensitive to climate change. An attempt has been made to interpret certain trends and major aspects of regeneration on the basis of the existing state of seedling, sapling, and young tree populations. The specific objective of this study was to investigate the population structure of forest tree species along altitudinal gradient, and to provide some implications for the regeneration of dominant species in this ecological sensitive zone in Indian western Himalaya.

    Materials and methods

    Study locality

    The present study was conducted in three sites: Tungnath (30°14′N; 79°13′ E) and Lata (30°29′ N; 79°44′ N) in the Garhwal region; and Pindari (30°10’ N; 79°52′ E) in the Kumaun region of western Himalaya, covering an altitude of 2800 m to 3600 m asl. The altitudinal range covered in the present study represents a transition from closed-canopy temperate forests to open-canopy subalpine forests. The climate of the study area is characterized by short cool summers and long severe winters. Anthropogenic disturbance in these sites mainly occurs in the form of grazing (including migratory grazing). However, lopping of trees for fuel wood and fodder, removal of litter, and tourist activities during summer season are other factors.

    Vegetation survey and data analysis

    After general reconnaissance, two vertical belt transects were laid in each site along the altitudinal gradient. Each transect was stratified into three altitude zones or strata (viz. <3000 m; 3000 –3200 m; >3200 m). In each stratum, three 50 x 50 m plots were laid systematically, hence a total of 18 plots were established. In each 50 m × 50 m plot, five (10 m × 10 m) quadrats were laid randomly for enumeration of tree species. Each individual 10 x 10 m quadrat was further subdivided into 2 m × 2 m subquadrats for enumeration of seedlings and saplings. In the case of trees, CBH (circumference at breast height, 1.37 m from the ground) was measured and individuals were classified as trees: > 30 cm; sapling: 11 – 30 cm; seedlings: <11 cm CBH. All of the species and the number of individuals in each quadrat were recorded. The basic CBH information of individual tree generated from each quadrat was used for development of population structures. The density distribution (d-d) in size (CBH) classes was employed to develop the population structure of tree species. The individuals in each tree species were grouped into seven arbitrary CBH classes (A: <10; B: 11–30; C: 31–60; D: 61–90; E: 91–120; F: >121–150; G: >150 cm).The total number of individuals belonging to an individual class was calculated for each species in representative strata/plots. Class A and B represent seedlings and saplings, respectively, and other classes (C-G) represent individual trees. Relative density in a particular size class was calculated as a percentage of the total number of individuals in all size classes. The regeneration status of dominant trees was assessed based on proportional distribution of density of individuals in each seedling, sapling and adult tree class.

    Results

    The population structure of tree species—in terms of proportion of seedlings, saplings, and adults—varied in the three study sites along the altitudinal gradient. At the Pindari site, the population structure exhibited more or less similar trends across different altitudinal strata. High accumulation of seedlings and saplings and rapid decline of individuals in tree-size class were also characteristic of this site (Fig. 1a). At the Lata site, two trends emerged: a characteristic bulge at the sapling stage and a sharp decline toward the seedling- and tree-size classes (Fig. 1b). The structure of subalpine forests at the Tungnath site showed variations among the altitudinal strata (Fig. 1c). The higher proportion of individuals in the sapling stage at <3000 m and 3000–3200 m and seedling stage at >3200 m a.s.l. was revealing.

    The distribution of seedlings, saplings, and adults along the altitudinal gradient also showed variations among dominant species. At the Pindari site, at lower altitude strata (<3000 m), the dominant species showed higher number of individuals in the seedling and sapling stages and decreasing numbers in the higher tree-size classes (Fig. 2a). The population structure at the midaltitude strata (3000–3200 m), showed a greater proportion of individuals in the seedling and sapling classes and a sharp decline toward the tree-size classes. At this stratum, all dominant species, barring Acer caesium, showed a higher accumulation of individuals in the seedling stage (Fig. 2b). At higher altitude strata, size-class distribution of the species showed a considerably higher percentage of individuals in the seedling and sapling stages and a sharp decline in the adult stage. The entire stand structure exhibited a high percentage of individuals in the seed-

    Fig. 1: Population structure of forests across altitudinal strata in different site (a—Pindari, b—lata, c—Tungnath)

    At the Lata site, a characteristic bulge at the sapling stage and a sharp decline toward the seedling and tree-size classes was apparent. At lower altitude strata (<3000 m), dominant species Pinus wallichiana and Populus ciliata exhibited similarity with the overall forest structure, while A. pindrow did not follow the same trend (Fig. 3a). At mid-altitude strata (3000–3200 m) A. pindrow showed the most promising structure with a relatively high proportion of seedlings followed by saplings and adults (Fig. 3b). This pattern did not match with other dominants and overall forest structure. At higher altitude strata (>3200 m), B. utilis and A. pindrow exhibited greater numbers of individuals in the sapling stage and a gradual decline for seedlings and a sharp decline toward adults. R. campanulatum was present in tree-size class only and recruits (seedling and saplings) were altogether absent (Fig. 3c).

    At the lower altitude strata (<3000m) of Tungnath, other dominants were having large number of saplings, except for A. pindrow, and very few seedlings and adult tree individuals were found (Fig. 4a). In the mid-altitude strata (3000–3200 m), A. pindrow had individuals in sapling and higher size classes. A. caesium with accumulation of sapling individuals showed marked similarity with the population structure of the entire forest (Fig. 4b). At higher altitude strata, Q. semecarpifolia, and R. barbatum showed distribution of individuals in the seedling, sapling, and tree-size classes but in case of A. pindrow, only individual saplings were present (Fig. 4c).

    Fig. 2: Population structure of dominant tree species and entire forest stand in Pindari. a <3000 m, b. 3000-3200 m, c. >3200 m

    Proportionate distribution of individuals in the seedling, sapling and sapling stages and a sharp decline the tree-size classes (Fig. 2c). ling, and tree, layers along altitudinal gradients showed different trends across the study sites. In Pindari, the distribution of seedlings, saplings and trees, followed a more or less similar pattern. Seedling density was highest followed by saplings and trees. Relatively higher sapling density was revealed at Lata followed by seedlings and trees. Similar trends were observed for <3000m and 3000–3200 m altitude strata at Tungnath. However, at >3200 m altitude strata considerably higher density of seedlings was recorded (Fig. 5).

    Considering the compositional attributes, while all sites showed continuous decline in tree density with increasing altitude, the variation in tree density was significant at Tungnath (F = 3.61, p <0.05) and Lata (F=8.71, p <0.001) only. Total basal area decreased significantly in all the sites as altitude increased (Tungnath: F = 19.02, p <0.01; Lata: F = 16.81, p <0.001; Pindari: F = 7.29, p <0.01). Seedling density did not exhibit uniform patterns for sites and altitude strata. In general, overall seedling density was greater at Pindari compared to Lata and Tungnath. The highest seedling density (10135 indi·ha1) was recorded at <3000 m altitude in Pindari and the lowest (1867 indi.ha1) at >3200 m in Lata. S significant variation in seedling density along altitude was only recorded for Tungnath (F = 12.19, p <0.001) and Pindari (F = 4.25, p <0.01). Likewise, sapling density patterns varied across sites and altitude strata. Sapling density was highest (8333 indi.ha1) at 3000–3200 m altitude in Lata and lowest (2200 indi.ha1) at >3200 m altitude in Tungnath. Significant variation in sapling density along altitude was recorded only for Lata; in case of Pindari, however, sapling density increases with altitude (Table 1).

    Fig. 3: Population structure of dominant tree species and entire forest stand in Lata. a <3000 m, b. 3000-3200 m, c. >3200 m

    Fig.4: Population structure of dominant tree species and entire forest stand in Tungnth. a <3000 m, b. 3000-3200 m, c. >3200 m

    Fig. 5: Proportionate distribution of tree, sapling and seedling along altitudinal strata in different sites.

    Discussion

    The distribution pattern of a plant species indicates its adaptability to various environments (Wang et al. 2004). The character of forest communities mainly depends on the ecological characteristics of sites, species diversity, and regeneration status of species. A greater accumulation of individuals in the sapling stage and a sharp decline toward both higher tree classes and lower seedling classes result hill-shaped curves in the Lata and Tungnath sites. This type of structure indicates that the replacement in tree size classes from sapling stage is not proportional. It also suggests that if the current state of seedling recruitment does not improve, the population may decline in the long term. On the contrary, forest structure in the Pindari site is expanding in nature with more individuals in the seedling and sapling stages, followed by a decline in the tree size classes. Population structure of the dominant associate gives an impression of maintenance mechanism of populations of such species.

    The presence of a sufficient number of seedling, sapling, and young trees in a given population indicate successful regeneration (Saxena and Singh 1984). The importance of individuallevel population structure assumes higher importance when the environmental conditions (e.g., eco-physiology) at subalpine forests (SAF) do not permit most species to follow the normal life cycles. At the Lata and Tungnath sites, the hill-shape structure of the dominant species suggests their improper conversion into trees and relatively poor density of seedlings. This trend would indicate possible difficulties in the long-term persistence of such species.

    Among dominant species at the Lata site, several enjoy longterm persistence, including: Q. semecarpifolia and A. pindrow at lower elevations, R. barbatum and A. caesium at mid elevation, and R. barbatum and Q semecrpifolia at higher elevations, all , with more or less expanding population structures.At the Tungnath site, population structures indicate that A. pindrow at low and mid altitudes, and Q. semecarpifolia at higher altitude strata would continue to grow.

    The immediate co-dominant species in most sites also exhibited progressive population structures. These features suggest the broad composition of the SAF in these sites will persist in the near future. The profiles of relatively less prominent tree species also warrant attention. For example, Rhododendron barbatum, Salix daphnoides, Lyonia ovalifolia, Ilex dipyrena, Euonymus fimbriatus and A. pindrow in the <3000 m strata of the Pindari site were represented only in the tree layer, suggesting that these species have not reproduced in the past nor in the present, making their long-term persistence doubtful. Kr?uchi et al. (2000) also suggested that the lack of sufficient regeneration is a major problem of mountain forests. Previous studies on subalpine forests have also reported poor seedling recruitment in the understories of old-growth forests (Coates 2002; Mori and Takeda 2004).

    In contrast, Sorbus foliolosa and Acer villosum, with individuals only in the seedling and sapling stages indicate these species are relatively new to these sites and it would be interesting to see if such species succeed in attaining tree size classes in future. If it does happen, it might change the forest structure. Interestingly, in the high-altitude strata of the Tungnath site, A. pindrow with individuals in the young tree size suggests possibilities of this species succeeding in future as the species not only dominates the low-mid altitude strata but also enjoys expanding population structure.

    In the mountains, gradual changes in vegetation structure and composition are expected as a consequence of changing environmental conditions along the increasing elevation. Also, anthropogenic activities cause changes in structural attributes (Gairola et al. 2009). The unusually low density of sapling at >3200 m altitude strata at Tungnath is indicative of problems in conversion of seedlings to saplings. Although the exact reasons for this unusual structure are not known, this may be a reflection of higher seedling mortality, caused by trampling by grazing cattle and other unfavourable (stressful) microclimatic conditions.

    At the upper limit of the forests, often low temperatures and the short growing season inhibit growth and development of trees (Block and Treter 2001; Wang et al. 2004; Zhang 2004). Also, the low seedling density at the mid-altitude strata (3000m-3200m) may be attributed to low light intensity on the forest floor due to dense overhead canopy (Barik et al. 1992; Tripathi 2002). In the case of dominant species, inadequate regeneration of the constituent species is a general phenomenon in Indian forests because of grazing, fire, extraction of timber and fuelwood, and cultivation (Shankar et al. 1998, 2001).

    In some of the study sites, higher accumulation of seedlings at high altitude (>3200 m) would indicate that fluctuations in climate might play an important role in synchronizing these patterns. The response of tree seedlings to changing climate has yet to be investigated, but reports from the alpine areas of western Himalaya are indicative of changes in snow patterns and temperatures, which are affecting the distribution and phenology of some plant species (Nautiyal et al. 2004; Chaturvedi et al. 2007). Elsewhere, researchers have highlighted that increasing global temperatures linked to greenhouse gas emissions may alter tree growth rates, recruitment and mortality, thereby creating new assemblages of trees (Clark et al. 2003; Laurance et al. 2004; Clark et al. 2005). Hence, the structure of subalpine forests and its relationship with tree regeneration needs further research so as to modulate the timberline response to climatic variability. Change in species composition (e.g., Walther et al. 2005) and increased young tree establishment near the treeline have been reported elsewhere (Korner 2003).

    The present study on population structure and demographic profiles of dominant canopy tree species would help understanding the status of regeneration of species, and possible future compositional trends in climate-sensitive subalpine forests of western Himalaya.

    Conclusion

    This study revealed significant variations in the population structure of the subalpine forests across the three sites and altitude strata. Likewise, the dominant species often showed heterogene-ity in patterns. Following the traditional patterns of forest population structure, the target forests at the Pindari site are expanding. Broadly, this site does not have immediate threat of change in forest structure. At the other two sites, Lata and Tungnath, if the current trends of sapling to tree conversion persist, the subalpine forests might exhibit considerable change in the future. Among dominants at these sites—Q. semecarpifolia and A. pindrow at lower altitude, R. barbatum and A. caesium atmid altitude, and R. barbatum and Q. semecrpifolia at the highaltitude stratum of Lata and A. pindrow at low and mid altitude and Q. semecarpifolia at high altitude stratum of Tungnath—are showing better potential for long-term persistence. Across altitude strata, irrespective of sites, the high-altitude stratum with more or less expanding populations (i.e., entire forest or dominant species) suggests the possibility of future expansion. This trend deserves further investigation to explore its relevance with the patterns of vegetation under changing climate.

    Acknowledgements

    The authors thank Dr Uppeandra Dhar, Director, G.B. Pant Institute of Himalayan Environment & Development, Kosi-Katarmal, Almora, India, for access to facilities and encouragement. We gratefully acknowledge partial funding support from the Ministry of Environment & Forests, Government of India (research grant 10/28/98-CS/BR). Our sincere thanks go to an anonymous reviewer for his (or her) comments on an earlier draft of this manuscript.

    Bankoti NS. 1990. Woody vegetation analysis along elevational gradient (2000-3600 m) of Pindari catchement (Kumaun Himalaya). Ph. D. thesis. Kumaun University, Nainital, India.

    Barik SK, Pandey HN, Tripathi RS, Rao P. 1992. Micro-environmental variability and species diversity in treefall gaps in sub-tropical broad-leaved forest. Vegetatio, 103: 31-40.

    Block J, Treter U. 2001. The limiting factors at the upper and lower forest limits in the mountain-woodland steppe of Northwest Mongolia Joachim Block and Uwe Treter. In: M. Kaennel Dobbertin and O.U. Br?ker (eds), Tree Rings and People, Proceedings of the International Conference. Davos, pp. 22-26.

    Buongiorno J, Dahir S, Lu HC, Lin CR. 1994. Tree size diversity and economic returns in uneven-aged forest stands. Forest Sci, 40(1): 83–103.

    Chaturvedi AK, Vashistha RK, Prasad P, Nautiyal MC 2007. Need of innovative approach for climate change studies in alpine region of India. Curr Sci India, 93(12): 1648-1649.

    Chen J, Franklin JF. 1995. Growing-season microclimate gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl, 5: 74-86.

    Chen J, Franklin JF, Spies TA. 1993. Contrasting microclimatic patterns among clearcut, edge, and interior area of old-growth Douglas-fir forest. Agr Forest Meteorol, 63(3/4): 219-237.

    Clark DA, Piper SC, Keeling CD, Clark DB. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proc Nat Acad Sci USA, 100(10): 5852-5857.

    Clark ML, Roberts DA, Clark DB. 2005. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ, 96(3-4): 375-398.

    Coates KD. 2002. Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. Forest Ecol Manag, 155: 387-398.

    Dhar U, Rawal RS, Samant SS. 1997. Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: Implication for conservation. Biodiversity Conserv, 6: 1045-1062.

    Gairola S, Rawal RS, Dhar U. 2009. Patterns of litterfall and nutrients return across anthropogenic disturbance gradient in three subalpine forests of west Himalaya, India. J For Res, 14 (2): 73-80.

    Gairola S, Rawal RS, Todaria NP. 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine forest of west Himalaya, India. Afr J Plant Sci, 2(6): 42-48.

    Garkoti SC. (1992) High altitude forests of Central Himalaya: productivity and nutrient cycling. Ph. D. thesis. Kumaun University, Nainital, India.

    Hamill DN, Wright SJ. 1986. Testing the dispersion of juveniles relative to adults: A new analytic method. Ecology, 67: 952-957.

    Holtmeier F.K. 2003. Mountain timberlines-ecology, patchiness, and dynamics. Adv Global Change Res, 14: 369.

    Hubbell SP, Foste, RB. 1987. The spatial context of regeneration in a Neotropical forest. In: M. Crawley, A. Gray and P.J. Edwards (eds), Colonization, Succession and Stability. Blackwell, Oxford, U.K. Chapter 19, pp. 395-412.

    Hussain MS, Sultana A, Khan JA, Khan A. 2008. Species composition and community structure of forest stands in Kumaon Himalaya, Uttarakhand, India. Trop Ecol, 49: 167-181.

    Korner C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. 2nded. Springer, Berlin.

    Krauchi N, Brang AP, Schonenberger W. 2000. Forests of mountainous regions: gaps in knowledge and research needs. Forest Ecol Manag, 132: 73-82.

    Kullman L. 1988. Subalpine Picea abies decline in the Swedish Scandes. Mt Res Dev, 8: 33-42.

    Kullman L. 2000. Tree-limit rise and recent warming: A geoecological case study from the Swedish Scandes. Nor Geogr, 54: 49-59.

    Kullman L. 2001. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio, 30:72-80.

    Kultti S. 2004. Holocene changes in treelines and climate from Ural Mountains to Finnish Lapland. Helsinki: Yliopistopaino.

    Kumar A, Ram J. 2005. Anthropogenic disturbances and plant biodiversity in forests of Uttaranchal, central Himalaya. Biodiversity Conserv, 14: 309-331.

    Laurance WF, Oliveira AA, Laurance SG, Condit R, Nascimento HEM, Sanchez- Thorin AC. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature, 438: 171-175.

    Long JN, Smith FW. 1992. Volume increment in Pinus contorta var. latifolia: the influence of stand development and crown dynamics. Forest Ecol Manag, 53: 53-64.

    Miura M, Manabe T, Nishimura N, Yamamoto S. 2001. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, South-Western Japan: a 7-year study of a 4-ha plot. J Ecol, 89: 841-849.

    Mori A, Takeda H. 2004. Effects of undisturbed canopy structure on population structure and species co-existence in an old-growth sub alpine forest in central Japan. Forest Ecol Manag, 200: 89-100.

    Nautiyal MC, Nautiyal BP, Prakash V. 2004. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environ, 24(2): 125-134.

    North M, Chen J, Oakley B, Song B, Rudnicki M, Gray A, Innes J. 2004. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed conifer forests. Forest Sci, 50: 299-311.

    Ohsawa M. 1984. Differentiation of vegetation zones and species strategies in the subalpine region Mt. Fuji. Vegetatio, 57: 15-52.

    Rawal RS, Dhar U. 1997. Sensitivity of timberline flora in Kumaun Himalaya, India: conservation implications. Arctic Alpine Res, 29: 112-121.

    Rawal RS, Pangety YPS. 1994. High altitude forest vegetation with special reference to timberline in Kumaun central Himalaya. In: Y.P.S. Pangtey and R.S. Rawal (eds), High Altitudes of the Himalaya. Nainital, India: Gyanodaya Prakashan, pp. 353-399.

    Runkle JR. 1991. Gap dynamics of old-growth eastern forests: management implications. Nat Areas J, 11(1): 19-25.

    Saxena AK, Singh JS. 1984. Tree population structure of certain Himalayan forest associations and implications concerning their future composition. Vegetatio, 58: 61-69.

    Shankar U. 2001. A case of higher tree diversity in a sal (Shorea robusta)-dominated lowland forest of eastern Himalaya: floristic composition, regeneration and conservation. Curr Sci India, 81(7): 776-786.

    Shankar U, Lama SD, Bawa KS. 1998. Ecosystem reconstruction through‘taungya’ plantations following commercial logging of a dry, mixed deciduous forest in Darjeeling Himalaya. Forest Ecol Manage, 102: 131-142.

    Sharma CM, Suyal S, Gairola S, Ghildiyal SK. 2009. Species richness and diversity along an altitudinal gradient in moist temperature forest of Garhwal Himalaya. J Am Sci, 5: 119-128.

    Singh SP, Adhikari BS, Zobel DB. 1994. Biomass productivity, leaf longevity and forest structure in the central Himalaya. Ecol Monogr, 64: 401-421.

    Stevens S. 2003. Tourism and deforestation in the Mount Everest region of Nepal. Geogr J, 169: 255-277.

    Tripathi OP. 2002. Study of distribution pattern and ecological analysis of major forest types of Meghalaya. Ph.D. Thesis, North-Eastern Hill University, Shillong, India.

    Walther GR, Beissner S, Burga CA. 2005. Trends in the upward shift of alpine plants. J Veg Sci, 16: 541-548.

    Wang T, Liang YH, Ren B, Yu D, Ni J, Ma KP. 2004. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Forest Ecol Manage, 196: 267-274.

    Zhang L. 2004. Eco-physiological characteristics of seed germination of Larix chinensis, a timberline tree. Acta Phytoecol Sinica, 28: 579-583.

    在线 av 中文字幕| 久久精品91无色码中文字幕| 91麻豆av在线| 女性被躁到高潮视频| 老司机在亚洲福利影院| 99国产极品粉嫩在线观看| 精品人妻熟女毛片av久久网站| 18禁美女被吸乳视频| bbb黄色大片| 国产日韩一区二区三区精品不卡| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| www.999成人在线观看| 国产黄色免费在线视频| 国产aⅴ精品一区二区三区波| 久久久久网色| 精品一区二区三卡| 亚洲av日韩在线播放| 精品一区二区三区四区五区乱码| 9191精品国产免费久久| 涩涩av久久男人的天堂| 久久精品国产亚洲av高清一级| 菩萨蛮人人尽说江南好唐韦庄| 国产精品电影一区二区三区 | 十八禁高潮呻吟视频| 啦啦啦 在线观看视频| 一区二区三区精品91| 夫妻午夜视频| 日韩免费高清中文字幕av| www.自偷自拍.com| 成年人免费黄色播放视频| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| av免费在线观看网站| avwww免费| 最近最新中文字幕大全免费视频| 久久久久视频综合| 国产在视频线精品| 97在线人人人人妻| 亚洲av电影在线进入| av福利片在线| 日日爽夜夜爽网站| 国产精品久久久久久精品古装| 男女无遮挡免费网站观看| 久久久国产欧美日韩av| 午夜免费成人在线视频| 美女视频免费永久观看网站| 热re99久久精品国产66热6| 国产欧美日韩一区二区三区在线| 一个人免费看片子| 国产精品久久久人人做人人爽| 99在线人妻在线中文字幕 | 性色av乱码一区二区三区2| 电影成人av| 热99re8久久精品国产| 一级毛片电影观看| 一区二区三区国产精品乱码| 免费在线观看影片大全网站| 欧美黄色片欧美黄色片| 99riav亚洲国产免费| 成人18禁在线播放| 俄罗斯特黄特色一大片| 亚洲伊人久久精品综合| 日日夜夜操网爽| 老汉色∧v一级毛片| 一二三四社区在线视频社区8| 中国美女看黄片| 免费av中文字幕在线| 97人妻天天添夜夜摸| 国产不卡一卡二| 久久99一区二区三区| av又黄又爽大尺度在线免费看| 无限看片的www在线观看| 亚洲精品在线观看二区| 91国产中文字幕| 亚洲国产欧美一区二区综合| 欧美精品人与动牲交sv欧美| 制服诱惑二区| 一本色道久久久久久精品综合| 午夜免费鲁丝| 欧美国产精品va在线观看不卡| av免费在线观看网站| 国产欧美日韩一区二区三区在线| 1024香蕉在线观看| 黄片小视频在线播放| 免费高清在线观看日韩| 免费看十八禁软件| 无人区码免费观看不卡 | 超碰97精品在线观看| 91成人精品电影| 国产在线观看jvid| 老熟女久久久| 免费黄频网站在线观看国产| 97在线人人人人妻| 国产在线视频一区二区| 一级片免费观看大全| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影| 久久毛片免费看一区二区三区| 18在线观看网站| 我的亚洲天堂| 午夜视频精品福利| 国产精品.久久久| 亚洲国产av影院在线观看| 精品国产国语对白av| 色在线成人网| 黄色视频,在线免费观看| 丝袜人妻中文字幕| 午夜福利乱码中文字幕| 黄网站色视频无遮挡免费观看| 99国产极品粉嫩在线观看| 80岁老熟妇乱子伦牲交| 俄罗斯特黄特色一大片| 亚洲精华国产精华精| 成人手机av| 午夜老司机福利片| 久久精品亚洲精品国产色婷小说| 波多野结衣av一区二区av| 亚洲精品中文字幕一二三四区 | 国产男靠女视频免费网站| 免费观看av网站的网址| 大片电影免费在线观看免费| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 中文字幕人妻熟女乱码| 亚洲av片天天在线观看| 一个人免费看片子| 夜夜爽天天搞| 久久人妻av系列| 欧美 日韩 精品 国产| 国产一区二区三区在线臀色熟女 | 国产国语露脸激情在线看| 精品国产国语对白av| 欧美精品高潮呻吟av久久| 亚洲一码二码三码区别大吗| 国产片内射在线| 免费在线观看影片大全网站| 天天添夜夜摸| 午夜久久久在线观看| 日韩一区二区三区影片| 国产在线免费精品| 最新在线观看一区二区三区| 757午夜福利合集在线观看| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 久久 成人 亚洲| tube8黄色片| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 国产精品免费大片| 一区二区三区激情视频| 国产一区二区激情短视频| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 一二三四社区在线视频社区8| 免费不卡黄色视频| 曰老女人黄片| 人妻一区二区av| 久久久精品国产亚洲av高清涩受| 国产精品久久久久成人av| 国产淫语在线视频| 日本a在线网址| av有码第一页| 国产精品久久久久久精品古装| 亚洲国产成人一精品久久久| 久久精品aⅴ一区二区三区四区| 性色av乱码一区二区三区2| 久久这里只有精品19| 我的亚洲天堂| 日本黄色视频三级网站网址 | 涩涩av久久男人的天堂| 大香蕉久久网| 日本av免费视频播放| 黄片播放在线免费| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 青草久久国产| 欧美日韩国产mv在线观看视频| av在线播放免费不卡| 两性夫妻黄色片| 国产在视频线精品| a级片在线免费高清观看视频| 美女主播在线视频| 在线十欧美十亚洲十日本专区| 久久av网站| 女人精品久久久久毛片| 一级a爱视频在线免费观看| 美女高潮到喷水免费观看| 中文字幕色久视频| 热re99久久精品国产66热6| 国内毛片毛片毛片毛片毛片| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 亚洲国产毛片av蜜桃av| 日本av免费视频播放| 欧美变态另类bdsm刘玥| 麻豆国产av国片精品| 亚洲专区字幕在线| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 国产精品免费大片| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| a在线观看视频网站| netflix在线观看网站| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 国产免费现黄频在线看| 午夜激情久久久久久久| 久久婷婷成人综合色麻豆| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 午夜福利欧美成人| 欧美人与性动交α欧美精品济南到| 超碰成人久久| www.999成人在线观看| 老司机福利观看| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 一级毛片精品| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 女同久久另类99精品国产91| 大陆偷拍与自拍| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 久久久久网色| 成人亚洲精品一区在线观看| 久久ye,这里只有精品| 丝瓜视频免费看黄片| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 一进一出好大好爽视频| 亚洲免费av在线视频| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| kizo精华| 久久精品国产99精品国产亚洲性色 | 国产主播在线观看一区二区| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 国产福利在线免费观看视频| 美女福利国产在线| 久久久精品免费免费高清| 夜夜夜夜夜久久久久| 国产成人欧美| 欧美精品一区二区大全| 中文字幕高清在线视频| 日韩欧美三级三区| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| 久久性视频一级片| 激情在线观看视频在线高清 | 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| a级毛片在线看网站| 久久精品国产综合久久久| 亚洲av美国av| 欧美国产精品一级二级三级| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区免费开放| 国产精品98久久久久久宅男小说| 叶爱在线成人免费视频播放| 国产av国产精品国产| av视频免费观看在线观看| 国产区一区二久久| 亚洲专区中文字幕在线| 又大又爽又粗| 热99国产精品久久久久久7| 国产亚洲欧美在线一区二区| 国产人伦9x9x在线观看| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 亚洲成人免费电影在线观看| 午夜福利免费观看在线| 18禁美女被吸乳视频| 99精品欧美一区二区三区四区| 成人黄色视频免费在线看| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 国产成人av教育| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区mp4| 国产在线免费精品| 欧美成人免费av一区二区三区 | 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 久久久久久免费高清国产稀缺| kizo精华| 国产精品美女特级片免费视频播放器 | 久久精品成人免费网站| 淫妇啪啪啪对白视频| 美女视频免费永久观看网站| 黄色视频,在线免费观看| 日本wwww免费看| 高清欧美精品videossex| 国产又色又爽无遮挡免费看| 日韩欧美免费精品| 亚洲精品乱久久久久久| 在线观看66精品国产| 欧美激情极品国产一区二区三区| 女人精品久久久久毛片| 久热爱精品视频在线9| 黄色视频不卡| 欧美一级毛片孕妇| 亚洲欧美激情在线| 国产精品.久久久| 人妻久久中文字幕网| 美女视频免费永久观看网站| 久久中文字幕人妻熟女| 夫妻午夜视频| 三上悠亚av全集在线观看| 精品免费久久久久久久清纯 | 飞空精品影院首页| 国产精品成人在线| 欧美成人午夜精品| 视频在线观看一区二区三区| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 国产精品自产拍在线观看55亚洲 | 嫩草影视91久久| tocl精华| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 女同久久另类99精品国产91| 1024视频免费在线观看| 黄色成人免费大全| 电影成人av| 成年版毛片免费区| 啪啪无遮挡十八禁网站| 午夜福利在线观看吧| 精品少妇内射三级| 成人亚洲精品一区在线观看| 一区二区三区国产精品乱码| av有码第一页| 免费一级毛片在线播放高清视频 | 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 在线观看免费高清a一片| 十八禁网站免费在线| 我的亚洲天堂| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费一区二区三区在线 | 热re99久久国产66热| 国产一区二区激情短视频| 啦啦啦在线免费观看视频4| 日本精品一区二区三区蜜桃| 色视频在线一区二区三区| 深夜精品福利| 黄色怎么调成土黄色| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 蜜桃在线观看..| 久久午夜综合久久蜜桃| 日韩欧美三级三区| 久久久久久久久免费视频了| 久久久欧美国产精品| 搡老乐熟女国产| 亚洲,欧美精品.| 欧美大码av| 久久中文看片网| 搡老乐熟女国产| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 深夜精品福利| 亚洲色图综合在线观看| 国产在线免费精品| 中文字幕高清在线视频| 大陆偷拍与自拍| 成人永久免费在线观看视频 | 丰满饥渴人妻一区二区三| 最新的欧美精品一区二区| 黄色成人免费大全| 欧美日韩成人在线一区二区| 欧美日韩黄片免| 99香蕉大伊视频| 少妇粗大呻吟视频| 操出白浆在线播放| av线在线观看网站| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 一级片'在线观看视频| 午夜福利欧美成人| www.熟女人妻精品国产| kizo精华| 50天的宝宝边吃奶边哭怎么回事| 国产欧美亚洲国产| 午夜日韩欧美国产| 极品教师在线免费播放| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品久久二区二区91| 久久久久网色| 亚洲精品自拍成人| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 久久久精品区二区三区| 99精品久久久久人妻精品| 日韩免费av在线播放| 性少妇av在线| 国产真人三级小视频在线观看| 国产亚洲午夜精品一区二区久久| 18禁国产床啪视频网站| 精品一区二区三区av网在线观看 | 国产高清videossex| 欧美午夜高清在线| 人人澡人人妻人| 美女高潮到喷水免费观看| netflix在线观看网站| 黄频高清免费视频| 曰老女人黄片| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美| 亚洲伊人久久精品综合| 国产又爽黄色视频| 伦理电影免费视频| 99在线人妻在线中文字幕 | 国产男靠女视频免费网站| 老司机午夜福利在线观看视频 | 日韩中文字幕视频在线看片| 日韩欧美一区视频在线观看| 国产在线精品亚洲第一网站| 性高湖久久久久久久久免费观看| 久久精品亚洲精品国产色婷小说| 久久亚洲真实| 超碰97精品在线观看| 99久久国产精品久久久| 国产在线观看jvid| 伦理电影免费视频| 国产在线视频一区二区| 咕卡用的链子| 天天操日日干夜夜撸| 麻豆成人av在线观看| 一区在线观看完整版| av天堂在线播放| 人妻久久中文字幕网| 宅男免费午夜| 精品国内亚洲2022精品成人 | 一边摸一边抽搐一进一小说 | 岛国毛片在线播放| netflix在线观看网站| 大型av网站在线播放| 亚洲成人免费电影在线观看| bbb黄色大片| 国产精品久久久av美女十八| 在线观看一区二区三区激情| 国产精品久久电影中文字幕 | 国产精品一区二区在线观看99| 午夜福利影视在线免费观看| 国产黄色免费在线视频| 男人舔女人的私密视频| 亚洲综合色网址| 国产精品免费一区二区三区在线 | 女性被躁到高潮视频| 汤姆久久久久久久影院中文字幕| 91字幕亚洲| 国产精品亚洲av一区麻豆| 欧美变态另类bdsm刘玥| 黄色毛片三级朝国网站| 最近最新中文字幕大全免费视频| 妹子高潮喷水视频| 麻豆国产av国片精品| 激情视频va一区二区三区| 男女边摸边吃奶| 国产黄频视频在线观看| 国产成人av激情在线播放| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 狠狠狠狠99中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩视频一区二区在线观看| 丁香六月欧美| 大香蕉久久网| 99国产精品99久久久久| 女人久久www免费人成看片| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看 | 精品熟女少妇八av免费久了| 不卡一级毛片| 青草久久国产| 999精品在线视频| 久久国产精品大桥未久av| 女警被强在线播放| 久久人人97超碰香蕉20202| 99热国产这里只有精品6| 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 免费观看av网站的网址| 久久久久网色| 一级,二级,三级黄色视频| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 欧美日韩av久久| 香蕉丝袜av| 国产亚洲精品一区二区www | videosex国产| 一区二区三区国产精品乱码| 亚洲精品乱久久久久久| 日韩成人在线观看一区二区三区| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 777米奇影视久久| 男女无遮挡免费网站观看| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 可以免费在线观看a视频的电影网站| 国产在线观看jvid| 久久久久久亚洲精品国产蜜桃av| av天堂在线播放| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 91成人精品电影| 老司机午夜福利在线观看视频 | 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 久久精品91无色码中文字幕| 国产精品亚洲一级av第二区| 亚洲av国产av综合av卡| 一区二区三区激情视频| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 18禁美女被吸乳视频| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 丁香六月欧美| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 久久人妻熟女aⅴ| 国产亚洲av高清不卡| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 露出奶头的视频| 亚洲午夜理论影院| 男女之事视频高清在线观看| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 一区二区三区乱码不卡18| 肉色欧美久久久久久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 宅男免费午夜| 搡老乐熟女国产| 宅男免费午夜| 久久国产精品人妻蜜桃| 亚洲久久久国产精品| 亚洲色图综合在线观看| 亚洲精品国产精品久久久不卡| 啦啦啦在线免费观看视频4| 成人亚洲精品一区在线观看| netflix在线观看网站| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡| a在线观看视频网站| 另类精品久久| 18禁黄网站禁片午夜丰满| 国产亚洲精品第一综合不卡| av网站在线播放免费| 日韩成人在线观看一区二区三区| 国产亚洲欧美精品永久| av视频免费观看在线观看| 国产精品一区二区免费欧美| 啦啦啦 在线观看视频| 午夜福利视频精品| 国产一区二区激情短视频| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 亚洲熟女毛片儿| 国产av又大| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 97在线人人人人妻| 精品午夜福利视频在线观看一区 | 国产福利在线免费观看视频| 亚洲三区欧美一区| 69精品国产乱码久久久| 午夜福利视频在线观看免费| 国产男女内射视频| 人人妻人人爽人人添夜夜欢视频|