郭 暉李云鴻高 鵬趙 巍沈 冰
(1寧夏醫(yī)科大學總醫(yī)院神經(jīng)外科 銀川 750004;2寧夏醫(yī)科大學研究生院,3醫(yī)學科學技術研究中心 銀川 750004)
大鼠蛛網(wǎng)膜下腔出血(SAH)后腦毛細血管的改變與遲發(fā)缺血性神經(jīng)功能障礙(DIND)的關系
郭 暉1,2李云鴻2,3高 鵬2趙 巍2,3沈 冰1△
(1寧夏醫(yī)科大學總醫(yī)院神經(jīng)外科 銀川 750004;2寧夏醫(yī)科大學研究生院,3醫(yī)學科學技術研究中心 銀川 750004)
目的利用激光掃描共聚焦顯微鏡(laser scanning confocal microscope,LSCM)研究大鼠蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage,SAH)后大腦毛細血管內(nèi)徑周長及周細胞形態(tài)變化,及其與遲發(fā)缺血性神經(jīng)功能障礙(delayed ischemic neurological deficit,DIND)的關系。方法SD大鼠180只,隨機分為SAH組(A組,n= 84)、生理鹽水組(B組,n=84)和正常對照組(C組,n=12)。A組采用枕大池二次注血法建立SAH模型,B組同法注射等量生理鹽水。A、B組分別在二次注血(或生理鹽水)后1、3、5、7、9、11、13天取大腦,每組每時相取12個大腦。6個大腦用異硫氰酸熒光素(fluorescein isothiocyanate,FITC)標記的番茄凝集素進行大腦血管灌注染色后獲取,其余6個進行周細胞結蛋白(Desmin)免疫熒光染色和HE染色。用LSCM測量毛細血管內(nèi)徑周長,并觀察周細胞形態(tài)變化。HE染色用來觀察腦組織病理形態(tài)。C組用以上同樣方法觀察。結果A組二次注血后3~11天腦組織出現(xiàn)局部缺血梗死的病理形態(tài):組織結構紊亂、間質(zhì)水腫、神經(jīng)元變性壞死。B、C組大鼠大腦毛細血管內(nèi)徑正常,A組二次注血后第1天毛細血管內(nèi)徑無明顯變化,第3天開始出現(xiàn)毛細血管管腔狹窄,第5天毛細血管內(nèi)徑周長變小達到高峰,高峰期持續(xù)至第7天,后逐漸緩解,第13天基本恢復正常。A組與B、C組相比,周細胞出現(xiàn)胞體聚縮的形態(tài)改變(P<0.05)。結論SAH后大腦毛細血管管腔狹窄、周細胞形態(tài)異??赡芘cDIND的發(fā)生密切相關。
蛛網(wǎng)膜下腔出血(SAH); 遲發(fā)缺血性神經(jīng)功能障礙(DIND); 毛細血管; 周細胞; 激光掃描共聚焦顯微鏡(LSCM); 大鼠
遲發(fā)缺血性神經(jīng)功能障礙(delayed ischemic neurological deficit,DIND)是腦動脈瘤破裂后蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage,SAH)最嚴重的并發(fā)癥[1-2],易導致SAH預后不良[3]。以往國內(nèi)外研究認為遲發(fā)性腦血管痙攣(delayed cerebral vasospasm,DCV)或大血管結構的改變是DIND的主要原因,但隨機、雙盲對照的臨床研究顯示,DCV的逆轉并沒有改變患者的總體預后[2,4-5],提示其發(fā)病機制需要進一步研究。毛細血管是構成腦微循環(huán)的主要血管,其中固細胞是主要收縮細胞,對微循環(huán)起重要的調(diào)控作用[6]。腦微循環(huán)改變可能是DIND的主要發(fā)病原因,而有關研究報道很少。對于周細胞和大腦毛細血管在SAN后的變化及其與DIND的關系,未見相關研究報告。
本實驗擬建立大鼠枕大池二次注血SAH模型,利用激光掃描共聚焦顯微鏡(laser scanning confocal microscope,LSCM)長程觀察SAH后大腦毛細血管內(nèi)徑周長和周細胞形態(tài)變化,研究其變化和DIND發(fā)生之間的關系。這對明確DIND發(fā)病機制和今后進行針對性治療和實驗研究具有重要意義。
主要試劑及來源異硫氰酸熒光素(fluorescein isothiocyanate,FITC)標記的番茄凝集素(美國Vector公司);兔抗大鼠結蛋白(Desmin)抗體、免疫熒光抗淬滅封片劑(北京博奧森公司);羅丹明標記的山羊抗兔IgG(北京中杉金橋公司);4ˊ, 6-二脒基-2-苯基吲哚(4ˊ,6-diamidino-2-phenylindole, DAPI)顯色液(江蘇碧云天生物公司)。LSCM (FV1000 IX81,日本OLYMPUS公司)由寧夏醫(yī)科大學提供。
實驗動物及分組Sprague-Dawley大鼠180只,雌雄不拘,體質(zhì)量270~320 g,隨機分為3組:SAH組(A組,n=84),生理鹽水對照組(B組,n= 84)和正常對照組(C組,n=12)。按二次注血(或注水)后第1、3、5、7、9、11及13天,A、B組又各分為7個亞組,每個亞組12只,6只用FITC標記的番茄凝集素進行大腦毛細血管灌注染色,其余6只進行腦組織Desmin免疫熒光染色和HE染色。C組各6只也采用以上方法觀察。
SAH模型的制作用10%水合氯醛(350 mg/kg)腹腔注射麻醉大鼠,取枕下正中切口暴露環(huán)枕膜,A組抽取自體股動脈血0.3 m L,以0.1 m L/min的速度緩慢注入枕大池,注血后環(huán)枕膜穿刺處填塞明膠海綿一塊,以小棉球壓迫數(shù)分鐘后縫合肌肉及皮膚,俯臥位頭低30°約30 min,48 h后二次注血。B組同法注射等量生理鹽水。術后側臥位,保持體溫在37℃左右,待翻正反射恢復后送回籠中,單獨飼養(yǎng)。C組為正常大鼠。
標本獲取A、B組分別在二次注血(或注水)后1、3、5、7、9、11、13天各處死12只大鼠。Desmin免疫熒光染色和HE染色標本采用灌注法處死獲得,依次用37℃生理鹽水300 m L及4%PBS 400 m L,從左心室快速灌注后取出帶血管完整大腦,然后浸于4%中性多聚甲醛中繼續(xù)固定24 h,脫水、透明、石蠟包埋。大腦毛細血管形態(tài)檢測標本采用FITC標記的番茄凝集素0.5 mg從尾靜脈快速注入,10 min后處死動物,取大腦快速冰凍[7]。
LSCM測量大腦毛細血管內(nèi)徑周長避光環(huán)境中,大腦橫斷面冰凍切片(8~10μm,每個標本切片4張),固定在防脫載玻片上,4%多聚甲醛固定組織15 min,PBS液(0.01 mmol/L)沖洗3遍,1.5μg/ m L DAPI溶液室溫下滴染20 min,以PBS液(0.01 mmol/L)沖洗3遍,最后抗淬滅,封片劑封片。LSCM 400倍下單層掃描大腦毛細血管并進行DAPI(激發(fā)波長405 nm)及FITC(激發(fā)波長488 nm)雙通道拍照并存儲,用IPP 6.0專業(yè)圖片分析測量系統(tǒng)進行圖像分析,選取直徑6~20μm毛細血管,測量其內(nèi)徑周長。
周細胞結蛋白(Desmin)免疫熒光染色及LSCM觀察石蠟切片(每標本切片4張)烤片、脫蠟,抗原修復(高壓煮沸法),0.01 mol/L的PBS沖洗3次,山羊血清封閉,滴加兔抗大鼠Desmin IgG,孵育后PBS沖洗,避光滴加羅丹明標記的山羊抗兔IgG, PBS沖洗,DAPI染核,封片。LSCM 400倍下單層掃描大腦毛細血管周細胞并進行DAPI(激發(fā)波長405 nm)及羅丹明(激發(fā)波長543 nm)雙通道拍照并存儲。觀察周細胞形態(tài)變化。
HE染色及腦組織切片病理形態(tài)觀察石蠟切片脫蠟至水,氧化蘇木精染液染細胞核,1%伊紅浸染,脫水至透明,中性樹膠封固。Olympus BH2-RFCA顯微鏡下(×400)對切片進行腦組織病理形態(tài)觀察并拍照。
統(tǒng)計學處理采用SPSS 17.0軟件包作統(tǒng)計學處理,數(shù)據(jù)資料以x—±s表示。同組不同時間點數(shù)據(jù)間比較采用單因素方差分析,不同組同時間點兩兩比較采用兩組獨立樣本資料的t檢驗;P<0.05為差異有統(tǒng)計學意義。
動物術后情況B、C組大鼠無死亡。A組大鼠二次注血后1天無死亡,3天死亡1只,5天死亡3只,7天死亡2只,9天死亡1只,11天死亡1只,13天無死亡。A組存活大鼠術后反應遲鈍、自潔性差、毛發(fā)雜亂、主動攻擊行為消失、飲水攝食活動減少。
LSCM下大腦毛細血管內(nèi)徑周長的時相變化
大腦毛細血管管壁細胞膜染為綠色熒光(FITC),胞核染為藍色熒光(DAPI)。B組與C組不同時相毛細血管管徑正常。A組大鼠二次注血后第1天時毛細血管內(nèi)徑周長無明顯變化,3天時毛細血管內(nèi)徑周長明顯變小,至第5天達到高峰,高峰期持續(xù)至第
7天,后逐漸緩解,第13天基本恢復正常(P<0.01,表1,圖1)。
表1 不同時相的大腦毛細血管內(nèi)徑周長Tab 1 Capillary luminal perimeter at different time points (±s)
vs.B group(the same time point)and C group,(1)P<0.01;vs. A group(other time points),(2)P<0.01.A:SAH group;B:Saline control group;C:Normal control group.
LSCM下毛細血管周細胞的形態(tài)變化LSCM掃描見周細胞分布于毛細血管周圍,緊貼毛細血管外壁,胞質(zhì)染為紅色熒光(羅丹明),胞核染為藍色熒光(DAPI)。二次注血后第3、5、7、9、11天,B、C組周細胞胞體熒光均勻,形態(tài)正常,緊貼毛細血管外壁,呈現(xiàn)扁長、舒展的形態(tài),A組與B、C組相比,異常形態(tài)的周細胞數(shù)量增多(n=24,P<0.05),周細胞胞體熒光不均勻,熒光信號減少或向中心聚集,失去正常舒展、扁長的形態(tài),出現(xiàn)胞體聚縮改變(圖2)。
腦組織切片病理形態(tài)觀察B、C組腦組織形態(tài)正常,表現(xiàn)為染色均勻,組織結構清晰致密,神經(jīng)細胞呈顆粒狀、錐體狀及不規(guī)則形,細胞質(zhì)淡紅色,胞核藍染且輪廓清楚。二次注血后3、5、7、9、11天, A組見腦組織出現(xiàn)局部缺血病理形態(tài),與B、C組相比神經(jīng)元數(shù)量減少,呈變性壞死改變的細胞數(shù)量增多(n=24,P<0.05),組織疏松,結構紊亂,與蘇木精親和力降低,胞核著色淡,神經(jīng)膠質(zhì)細胞相對增多,可見嗜神經(jīng)現(xiàn)象及泡沫細胞(圖3)。
DIND是腦動脈瘤破裂SAH最嚴重的并發(fā)癥[1],多發(fā)于SAH后4~15天,7~10天為高峰期, 2~4周逐漸緩解,發(fā)病機制不明,是目前研究熱點之一。大鼠枕大池二次注血SAH模型應用已有十余年,其制作方法簡單、效果可靠,主要用來研究SAH后DCV及DIND的發(fā)病機制。枕大池二次注血后3~11天均有大鼠死亡,且存活大鼠有反應遲鈍、主動攻擊行為消失、飲水攝食活動減少等表現(xiàn),腦組織切片HE染色可見局部缺血病理形態(tài)。結合臨床上患者DIND的發(fā)病時間,我們推測大鼠枕大池二次注血后3~11天可能發(fā)生了DIND。
SAH后DIND的發(fā)病機制復雜,以往認為DIND的主要原因是DCV導致腦血流下降、腦缺血的結果。一項雙盲、隨機對照的臨床研究顯示, DCV的逆轉并未改變患者的總體預后;也有學者認為大血管結構的改變?nèi)鐑?nèi)膜增生、彈力層斷裂、平滑肌細胞的增生等病理變化可能是DIND的主要原因,但仍不能解釋臨床上一些患者發(fā)病后的逆轉過程[2,8-9],因此其發(fā)病機制需要進一步研究。
有研究發(fā)現(xiàn),內(nèi)皮素受體拮抗劑Clazosentan雖然可以顯著減少腦血管痙攣狹窄的發(fā)生,但其對SAH后DIND并沒有任何改善或預防作用[9],從而推論腦血管痙攣并不是導致DIND的唯一原因。Eberhard等[10]應用正交偏振光譜微循環(huán)成像方法(orthogonal polarization spectral imaging,OPS)在臨床顱內(nèi)動脈瘤手術中觀察皮質(zhì)微循環(huán),顯示發(fā)生SAH的患者較未發(fā)生SAH患者出現(xiàn)了明顯的皮質(zhì)淺層微血管痙攣。Pennings等[11]應用OPS觀察到SAH患者皮質(zhì)淺層微血管有高收縮反應性,提示腦微循環(huán)障礙可能在DIND中具有重要意義。
周細胞是毛細血管的主要收縮細胞,多位于組織毛細血管附近,緊鄰內(nèi)皮細胞基底面,與動、靜脈血管平滑肌細胞連接,和內(nèi)皮細胞構成微血管和組織間隙屏障,對微循環(huán)起重要的調(diào)控作用[6]。周細胞形態(tài)功能異常、微循環(huán)障礙后可導致腦血流降低、血腦屏障破壞等病理改變,進一步引起腦組織缺氧、神經(jīng)細胞變性壞死而最終導致DIND。而微血管和周細胞在SAH后DIND發(fā)生時的動態(tài)變化鮮有報道。
LSCM是先進的生物學分析儀器,與免疫熒光生物學技術相配合,可以清晰地觀察周細胞形態(tài)變化,并準確地進行毛細血管觀察及管徑測量。本實驗將LSCM技術應用于大鼠SAH后DIND時大腦毛細血管內(nèi)徑周長變化及周細胞形態(tài)變化的動態(tài)研究,發(fā)現(xiàn)SAH后隨著DIND嚴重程度的增加,大腦毛細血管管腔內(nèi)徑明顯變小,之后隨著DIND好轉,毛細血管管腔內(nèi)徑逐漸恢復至正常;而且DIND發(fā)生后,周細胞外形失去正常的舒展平滑形態(tài),出現(xiàn)胞體聚縮改變。這可能因為發(fā)生SAH后,隨著血塊中的紅細胞破裂分解,釋放出大量亞鐵血紅蛋白,導致神經(jīng)元凋亡[12],一氧化氮(NO)清除或產(chǎn)生減少,內(nèi)皮素-1(ET-1)水平升高,平滑肌細胞應激反應增強[13],產(chǎn)生過多的自由基和細胞膜脂質(zhì)過氧化反應[14],并發(fā)生鉀離子和鈣離子通道修飾以及特定基因和蛋白增量表達等[15],繼而引起周細胞形態(tài)功能異常、微循環(huán)障礙。這也可以解釋我們實驗中的發(fā)現(xiàn),枕大池二次注血后第1天,周細胞形態(tài)功能異常、微循環(huán)障礙并不明顯,可能與血塊中的紅細胞尚未破裂分解釋放亞鐵血紅蛋白有關。
總之,我們的實驗觀察提示SAH后大腦毛細血管管腔狹窄、周細胞形態(tài)異常和DIND的發(fā)生密切相關,大腦毛細血管管腔狹窄、周細胞形態(tài)功能異??赡苁荄IND發(fā)生的關鍵因素??梢酝茰y改善SAH后毛細血管管腔狹窄、維持周細胞正常形態(tài)功能,可能會減輕毛細血管血流減少和周細胞對毛細血管調(diào)節(jié)失常,從而減輕DIND。但DIND的發(fā)病機制復雜,還需進一步研究。
[1] Dreier JP,Woitzik J,Fabricius M,et al.Delayed ischaemic neurological deficits after subarachnoid hemorrhage are associated with clusters of spreading depolarizations[J]. Brain,2006,129(12):3224-3237.
[2] Suarez JI,Tarr RW,Selman WR.Aneurysmal Subarachnoid hemorrhage[J].N Engl J Med,2006,354:387-396.
[3] Bosche B,Graf R,Ernestus RI,et al.Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex[J].Ann Neurol,2010,67(5):607-617.
[4] Castanares ZD,Hantson P.Pharmacological treatment of delayed cerebral ischemia and vasospasm in subarachnoid hemorrhage[J].Ann Intensive Care,2011,1(1):12.
[5] Takashi S,Vikram J,Robert A,et al.Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats[J].Stroke,2009,40(4):1530-1532.
[6] Lai CH,Kuo KH.The critical component to establish in vitro BBB model:Pericyte[J].Brain Res Rev,2005,50 (2):258-265.
[7] Benakanakere I,Besch WC,Ellersieck MR,et al. Regression of progestin-accelerated 7,12-dimethylbenz[a]anthracene-induced mammary tumors in Sprague-Dawley rats by p53 reactivation and induction of massive apoptosis:a pilot study[J].Endocr Ralat Cancer,2009,16 (1):85-98.
[8] Hansen SJ,Vajkoczy P,Macdonald RL,et al.Cerebral vasospasm:looking beyond vasoconstriction[J].Trends Pharmacol Sci,2007,28(6):252-256.
[9] Pluta RM,Schwartz JH,Dreier J,et al.Cerebral vasospasm following subarachnoid hemorrhage:Time for a new world of thought[J].Neurol Res,2009,31(2):151 -158.
[10] Eberhard U,Lehmberg J,Steiger HJ,et al.Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging[J].Neurosurgery,2003,52(6):1307 -1317.
[11] Pennings FA,Bouma GJ,Ince C.Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility[J].Stroke,2004, 35(6):1284-1288.
[12] Cahill WJ,Calvert JH,Zhang JH.Mechanisms of early brain injury after subarachnoid hemorrhage[J].J Cereb Blood Flow Metab,2006,26(11):1341-1353.
[13] Kikkawa Y,Matsuo S,Kameda K,et al.Mechanisms underlying potentiation of endothelin-1-induced myofilament Ca2+sensitization after subarachnoid hemorrhage[J].J Cereb Blood Flow Metab,2012,32(2):341-352.
[14] Echigo R,Shimohata N,Karatsu K,et al.Trehalose treatment suppresses inflammation,oxidative stress,and vasospasm induced by experimental subarachnoid hemorrhage[J].J Transl Med,2012,10:80.
[15] Jackson1 WF.Altered expression and function of ryanodine receptors and FKBP12.6 after subarachnoid hemorrhage:more than meets the eye[J].J Cereb Blood Flow Metab,2011,31(1):1-2.
Relationship between delayed ischemic neurological deficit(DIND)after subarachnoid hemorrhage(SAH)and changes of brain capillaries in rats
GUO Hui1,2,LI Yun-hong2,3,GAO Peng2,ZHAO Wei2,3,SHEN Bing1△
(1Department of Neurosurgery,General Hospital of Ningxia Medical University,Yinchuan 750004, Ningxia Hui Autonomous Region,China;2Gradate School,3Medical Sci-Tech Research Center, Ningxia Medical University,Yinchuan 750004,Ningxia Hui Autonomous Region,China)
Objective To observe the relationship between ischemic neurological deficit(DIND)and changes of capillaries and pericytes of brain by laser scanning confocal microscope(LSCM)in rats after subarachnoid hemorrhage(SAH).MethodsOne hundred and eighty SD rats were randomlydivided into SAH group(A group,n=84),saline-control group(B group,n=84)and normal control group(C group,n=12).The SAH model was developed in A group with twice injections of 0.3 m L arterial blood into cisterna magna,and 0.3 m L saline for B group.In A and B groups,12 brains were harvested 1,3,5,7,9,11 and 13 days after the second blood injected respectively,and every time 6 rats with fluorescein isothiocyanate(FITC)-conjugated tomato lectin perfused for capillary luminal perimeter and shapes of pericytes by LSCM,another 6 for desmin by immunofluorescence staining and pathomorphological changes of brain tissue by hematoxylin-eosin staining.Six brains of normal control group were used for the same methods.ResultsIn A group,ischemic pathomorphological changes including disordered tissue construction,edema of interstitial substance,degeneration and necrosis of neurons in brain tissue were identified from 3 to 11 days.In B and C groups,there was no ischemic pathomorphological changes in brains at different time points.Compared with B group,stenosis of capillary luminal appeared on the 3rdday,reached the peak on the 5thday and continued to the 7thday, then gradually diminished and returned to normal control perimeter on the 13thday in A group. Compared with B and C groups,condensation changes of pericytes in A group were observed at different time points(P<0.05).ConclusionsOur results suggested that stenosis of capillary luminal and morphological abnormalities of pericytes in brain may be significantly associated with the delayed ischemic neurological deficit after subarachnoid hemorrhage.
subarachnoid hemorrhage(SAH); delayed ischemic neurological deficit(DIND);capillary; pericyte; laser scanning confocal microscope(LSCM); rats
R 743.35
A
10.3969/j.issn.1672-8467.2014.01.008
2012-11-26;編輯:王蔚)
寧夏自然科學基金(NZ10136)
△Corresponding author E-mail:shenbing315@sina.com
*This work was supported by the Natural Science Foundation of Ningxia Hui Autonomous Region(NZ10136).