• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Analysis for Shakedown of Functionally Graded(FG)Bree Plate with Genetic Algorithm

    2014-04-17 06:17:53ZhengPeng4andHu
    Computers Materials&Continua 2014年7期

    H.Zheng,X.Peng,3,4and N.Hu

    1 Introduction

    The rapid development of aircraft and space technologies requires materials to work in more and more severe environments,such as high and varying temperature with large temperature gradients.With the distributions of the thermal and mechanical properties properly designed according to the requirements in practical applications,functionally graded materials(FGMs)play an irreplaceable role in improving the performance of the composite materials.The gradient distribution of the thermal and mechanical properties in composites,induced by the change in the distribution of the reinforcement phase,endues FGMs with excellent adaptability to severe loading and environment conditions[Lee(1994)].

    The development achieved in recent years implies the great potential of FGMs in a wide range of thermal,biomedical and structural applications[Sureshet al.(1998);Watariet al.(2004);Reddy(2011);Qiuet al.(1999);Taniet al.(2001)],and the plate structures made of FGMs have also been widely used in practical engineering.Great progress has been made in the research in the mechanical properties of Functionally graded plates(FGPs),such as buckling,bending and vibration[Feldomanet al.(1997);Na and Kim(2006);Aghabaei and Reddy(2009);Altenbach and Eremeyev(2009);Wu and Huang(2009)],crack and thermal fracture[Wanget al(2000);Guoet al.(2005)],transient thermal stress[Chenget al.(2000);Velet al.(2002,2003);Andrewet al.(2010)],static and dynamic responses[Zhonget al.(2003);Elishakoffet al.(2005);Gilhooleyet al.(2007)],shakedown analysis[Penget al.(2009a,b)],etc.

    On the other hand,the concept of FGMs also provides possibilities for optimizing the microstructure parameters of composites to achieve high performance and better utilization of materials[Noda(1990)].The design of the distributions of the thermal and mechanical properties in FGMs has always been an important topic of research since the concept of FGMs was proposed.It is largely due to the excellent and unique advantages of FGMs,for instance,the combination of the advantages of different materials,the compatibilities between different materials and the good adaptability to various environments[Parashkevova(2004)].In the past decade,considerable attention has been devoted to FGM representations(Computer-Aided Design),design validation(Computer-Aided Engineering),fabrication(Computer-Aided Manufacturing)and material heterogeneity optimization[Kou(2012)].

    In the development of modern structures,optimization is one of the most essential topics in the development of FGMs.Markworth and Saunders(1995)optimized the ceramic/metal composition with certain constraints to maximize or minimize the heat fl ux through the materials,where the normal thermal stress pro files were calculated and some unusual behavior was found.Ootaoet al.(1999)optimized the composition in an inhomogeneous hollow sphere with arbitrarily distributed and continuously varying material properties with a neural network approach.Cho and Ha(2002)optimized the volume fraction of Al2O3particles in a Ni/Al2O3composite to minimize the steady state thermal stress,in which the interiorpenalty-function method and the golden section method were employed,together with finite differential method for the sensitivity analysis and an appropriate material property estimation for calculating the thermo-mechanical properties in the graded layer.Chen and Tong(2005)presented a systematic numerical technique to perform sensitivity analysis of coupled thermo-mechanical problems.General formulations were presented based on finite element model by making use of the direct and the adjoint methods.

    The initial progress in the analysis of the shakedown of the FG Bree plate,which is subjected to the coupled constant mechanical loading and cyclically varying temperature loading,has been reported in the authors’previous papers[Penget al.(2009a,b);Zhenget al.(2012)].Different from our previous work,in this paper we focus on the optimal distribution of the reinforcement particles in the FG Bree plate,for the purpose to enhance the capability of the FG plate to bear cyclic thermal loading.In order to achieve a more accurate result,we characterize the distribution of the material properties in the thickness of a FG Bree plate with a piecewise exponential distribution[Guoet al.(2007)],and the effective mechanical property of a material element of the FG plate is evaluated with a double-inclusion mean field approach[Juet al.(1994)].Recent developments of"Computational Grains"also enable a direct simulation of a large number of inclusions for composite or FGM,without FEM meshing of inclusions/matrix[Dong,et al.(2012a,b;2013)].In order to achieve the best shakedown capability of the FG plate,the distribution of reinforcement particles is optimized with the Genetic Algorithm(GA)[Cavalcantiet al.(1997);Chenet al.(2000);Choet al,(2004);Huanget al.(2002);Khalilet al.(2004);Kouet al.(2006,2009);Praveenet al.(1998);Wadleyet al.(2003);Williamset al.(2005)].The optimization model for the shakedown of the FG plate is programmed in MATLAB.Two numerical examples are presented to demonstrate the validity of the proposed approach.

    2 Constitutive model,static and kinematic shakedown theorems

    Assuming small deformation,for initially isotropic and plastically incompressible materials,the constitutive model adopted can be expressed as

    where εijis strain,are its elastic,plastic and thermal components,respectively,which are determined with

    whereE,ν and α are the Young’s modulus,the Poisson’s ratio and the coefficient of linear expansion,respectively,σijandsijare stress and its deviatoric component,θ andθ0are temperature and reference temperature,respectively,δijis the Kronecker delta,and[Penget al.,(1996)]

    s0yis a material constant related to initial yield andf(λ)>0 is a function describing the hardening of material.It can be seen thatdλ is non-negative in any plastic deformation process.The following hardening function is adopted in analysis,

    It can be seen in Eqs.(3)and(4)thatf(λ)increases with the development of plastic deformation and tends to an asymptotic valuedcorresponding to the ultimate strength σy=d·σ0yas plastic deformation fully develops when λ →∞,indicating a saturated state of hardening.Substituting Eq.(3)into Eq.(2)3yields the following Mises-type yield condition

    Introducing the following loading function

    It can be seen that any state of stress should satisfyF(sij,k)≤0,andF(sij,k)=0 de fi nes a loading surface.

    Given a set of actual stress and hardening states,sijandk,and a set of allowable stress and hardening states,s?ij,k?,which satisfy

    And making use of the following inequality

    One can prove that[Penget al.(1993)]

    2.1 Static Shakedown Theorem[Peng et al.(2009a)]

    If there exist a time-independent residual stress fieldρˉijand a time-independent fieldk?such that for all the load variations within a given load domain ?,the following condition holds

    then the total energy dissipated in any allowable load path is bounded.

    In Ineq.(10),sEijis the purely elastic solution of the deviatoric stress determined by external loads and 1≤k?≤d.

    2.2 Kinematic Shakedown Theorem[Peng et al.(2009a)]

    If there exist over a certain time interval(t1,t2),a history of load resulting in a history of purely elastic stresssEij(x,t),and a history of plastic straineˉij(x,t)resulting in a kinematic ally admissible increment such that

    with?ˉui=0 onSu(the boundary where displacement is prescribed),and if shakedown occurs in the given structure,the condition as Ineq.(12)should be satisfied for all kinematically admissible plastic strain cycles.

    is a dissipation function.

    The following relationship can be obtained for practical application by substituting Eq.(2)3and Eq.(3)into Ineq.(12)by following the definition by K?nig(1987),

    and a set of inequalities βk-≤βk≤βk+(k=1,2,...,m)de fi nes the domain ? of loads.

    3 Optimal model

    3.1 The Bree plate

    A plate(Figure 1)of thicknesshis subjected to loads(Px,Py)per unit length in two mutually orthogonal directions.The surfaces of the plate are subjected to temperatures θ2and θ1which vary cyclically,as shown in Figure 1.The cycle time ?tis assumed large compared with characteristic heat conduction time,and the change,between θ0(a reference temperature)and θ0+?ˉθ,is assumed to take place sufficiently slowly for steady state conditions of prevail.The strain εxand εyare assumed to be uniform throughout the thickness of the plate.This problem is a simulation of the behavior of a thin walled tube,in the context of a nuclear fuel can design problem by Bree(1967)for homogeneous material and perfect plasticity.

    Figure 1:The Bree plate.

    Figure 2:Piecewise-exponential distribution model for FG plate with arbitrarily distributed properties.

    3.2 PWED model and material properties

    The piece-wise exponential distribution model(PWED model)[Guoet al.(2007)]is adopted for the distribution of the material properties in an FG plate,as shown in Figure 2.The plate is assumed to be divided intoLparallel layers in the direction of thickness,in each of which the thermal-mechanical properties vary exponentially in the direction of thickness.By this way,the actual thermal-material properties of the plate can be approximated with a set of exponential functions.At both surfaces of a layer the properties are identical with the actual properties of the material.Therefore,the properties of an FG plate can be approximated with sufficient accuracy if the thickness of each layer is sufficiently small.

    The plate of thicknesshis assumed to be divided intoLparallel layers,each of which is marked with subscripti(i=1,2,...,L)counting from the bottom surface of the plate,thei-th layer is located betweenz=hi-1andz=hiand at the bottom surfaceh0=-h/2,while at the top surfacehL=h/2.SupposefM(z)is the real distribution of a thermal/mechanical property in a layer,we can approximatefM(z)withM(z),i.e.,

    Given a set of actual values of a thermal/mechanical property,fM(hi),i=1,2,...,L,for each segmentAMiandBMican be solved from Eqs.(17a,b)as

    whereMcan be replaced respectively with the Young’s modulusE,the coefficient of thermal expansion α ,thermal conductivity λ ,and yield stress σ0y,etc.,therefore,

    Considering that the variation of the Poisson’s ratio in each layer is insignificant and in order to simplify the analysis,we assume the Poisson’s ratio in each layer is a constant taking the mean of the Poisson’s ratio over the thickness,i.e.,

    If the volume fraction of particles athiis ξ (hi),thenfE(hi),fα(hi)andfλ(hi)can be obtained as[Juet al.(1994);Shen(1998)]

    Here the subscript“m”and “c”denote matrix and inclusion,respectively;Km,KcandKare the bulk moduli of the matrix,the inclusion,and the composite,respectively;μm,μcand μ are shear moduli of the matrix,the inclusion,and the composite,respectively.

    Combining the mean field scheme[Juet al.(1994)]and the constitutive model mentioned in section 2,one can obtainfy(hi).

    3.3 Distribution of temperature

    Assuming steady-state heat transfer,the distribution of the temperature in a structure can be described with the following equation of heat conduction,without considering source heat,

    For uniaxial heat transfer,as shown in Figure 3,Eq.(32)can be simplified as

    Figure 3:Heat tran ree plate

    Making the boundary condition shown in Figure 3,we obtain

    Letting??θ=θ1-θ2,?θ(z)=θ(z)-θ2,Eq.(34)can rewritten as

    For the distribution of the temperature in the Bree plate shown in Figure 1,

    Substituting Eq.(21)into Eq.(35a),there have been

    And then?θi(z)can be obtained as

    Here

    3.4 Purely elastic solution

    For the FG Bree plate,we will be concerned with the solution when the displacement iny-direction is fixed,i.e.,εy=0,for simplicity.In this case,we need not be concerned with the yield condition iny-direction[Bree(1967)].The components of the strain in the plate subjected to stress σx,σycan be expressed as

    where ?θi(z)is the temperature change atz.Keeping in mind that εy=0,it can be solved from Eq.(38)that

    (1)Purely elastic solution of the stress distribution σPcaused byPx

    WhenPxis applied individually,i.e.,?θ(z)=0,the equilibrium inx-direction gives

    Substituting Eq.(39)and?θ(z)=0 into Eq.(40a),one obtains

    Keeping in mind that ν is treated as a constant(Eq.(23))and using Eq.(39),we obtain the purely elastic solution of the stress distribution σpcaused byPxas

    Making use of the PWED model,the denominator on the RHS of Eq.(41a)can further be expressed as

    Thus,Eq.(41a)can be expressed in the following discrete form

    (2)Purely elastic solution of the stress distribution σθcaused by?ˉθ

    When?ˉθ is applied individually,one has the following condition of equilibrium

    Keeping in mind that

    And substituting Eq.(39)into Eq.(43)yields

    Combining Eq.(45)with Eq.(39),the distribution of the thermal stress can be determined as

    Making use of the PWED model,we obtain the following discrete form

    Substituting Eqs.(19)-(21)and Eq.(37a)into Eq.(46b),we can obtain

    Compared with Eq.(43),there isHere,the fi rst term in the square bracket on the right side of Eq.(47b)can be expressed as

    3.5 Static shakedown analysis

    The analysis for the shakedown of the Bree plate includes the determination of the boundary of initial yield,the boundary between the areas of shakedown and incremental collapse,and the boundary between the areas of shakedown and reversed plasticity.

    The plate contains two parts,in one partfi(z)≤0 and in the other partfi(z)≥0.For the thermal and mechanical loading shown in Figure 1,we can obtain the following shakedown boundaries.

    (1)Initial yield

    No plastic deformation takes place on the condition that

    (2)Static shakedown boundaries

    Suppose there are a time-independent residual stress field ρˉxi(z)and a time-independentfieldk?(1 ≤k?≤d),the shakedown will occur to the plate if the following condition is satisfied in one temperature change cycle

    where σyi(z)=k*σ0yi(z)andk*=d.

    The shakedown boundaries of the plate contain two parts:the boundary between the area of shakedown and that of incremental collapse,and the boundary between the area of shakedown and that of reversed plasticity.

    (a)Shakedown boundary corresponding to reversed plasticity

    It can be obtained fromIneq.(49)that

    The equality of both sides of anyone in Ineq.(50)at any point in the cross section implies the equality of both sides of Ineqs.(49a)and(49c),or the equality of Ineqs.(49b)and(49d),indicating that reversed plasticity occurs at this point in the cross section.

    (b)Shakedown boundary corresponding to incremental collapse

    Making use of the given time-independent residual stress fieldˉρxi(z)and noticing that??θ=?ˉθ asn?t≤t≤(n+0.5)?t,Ineqs.(49a,b)can be rewritten in this duration as

    Since??θ=0 as(n+0.5)?t≤t≤(n+1)?t,in this duration Ineqs.(49c,d)will be reduced to

    Ineq.(51)indicates that at each point in the region wherefi(z)≥0 of the cross section,the stress σ+=σPi(z)+σθi(z,?ˉθ)+ˉρxi(z)reaches σyi(z);while at each point in the region wherefi(z)≤ 0 of the cross section,the stress σ-= σPi(z)+ˉρxi(z)reaches σyi(z).That is,duringn?t≤t≤(n+0.5)?t,σ+in a part of the Bree plate reaches σyi(z),and during(n+0.5)?t≤t≤ (n+1)?t,σ-at the in the rest part of the Bree plate reaches σyi(z).The two parts of the cross section may flow forward alternatively.

    3.6 Objective of optimization

    To theorize objective function is the key in GA approach.In this paper the objective of the optimization is the maximization of?ˉθ in the FG Bree plate under the condition of shakedown.The temperature?ˉθ can be solved from Ineqs.(50a,b)and Eq.(47a)as

    The objective of the optimization is to find?ˉθmax.

    3.7 Variables and constraint of optimization

    The objective to be optimized is the distribution of volume fraction of the reinforcement particles in a FG Bree plate.The distribution function is assumed as

    whereh=60mm is the thickness of the plate,and the variables to be optimized are

    a1,a2,P1andP2.The boundaries of these variables are assumed as

    Opt_0.3:a1,a2∈[0.0,0.3];P1,P2∈[0.0,2]

    Opt_0.4:a1,a2∈[0.0,0.4];P1,P2∈[0.0,3]

    Opt_0.5:a1,a2∈[0.0,0.5];P1,P2∈[0.0,3]

    The constraint to the optimization is that the gross volume fraction of the reinforcement particles in the plate is 15%,i.e.,

    The shakedown of the plate is determined with Ineqs.(48)-(51),and the best distribution of the volume fraction of the reinforcement particles is obtained by optimization calculation.

    3.8 Computing process of GA approach

    In this paper,the fi rst important thing is to program subroutines in matlab language about the constraint function and the fitting function which is related to the objective function.The computer process of the optimization is depicted in Figure 4.

    The parameters in GA approach are given as follows.The population type is double vector and the population size is 100.The numerical value of generations is 100.The crossover fraction is 0.8 and mutation fraction is 0.01.The constraint function is solved by penalty function method and the penalty factor is 100.

    Figure 4:Computer process of the optimization.

    4 Numerical examples

    4.1 Optimal design of Al/SiC FG Bree plate

    The first example is the optimization of an Al/SiC FG Bree plate.The reinforcement phase is SiC,and the total volume fraction of the SiC particles keeps 15%in the optimization process.The material properties of Al and SiC[Shen(1998)]are listed in Table 1.

    Table 1:Material properties of Al and SiC.

    The optimal design results of the Al/SiC FG plate are

    The shakedown boundaries of Al/SiC FG Bree plates,with the volume fraction distribution functions of the SiC particles given above,are shown in Figure 4 with the curves marked with curve Opt_0.3,curve Opt_0.4 and curve Opt_0.5,respectively.For comparison,the shakedown boundaries of the Al/SiC FG plates with the volume fraction distribution functions given in Eqs.(59)-(61)are also shown in Figure 4,respectively,denoted as Linear 1,Linear 2 and Homo_0.15.

    The distributions of the stress in the plates corresponding to points E1through E6are shown in Figures 6-11,respectively,whereˉρxdenotes the residual stress,σθthe thermal stress,σPthe mechanical stress, σythe yield strength,σ+the stress σθ+σP+ˉρxand σ-the stress σP+ˉρxin the plates.

    Figure 5:Shakedown area of different Al/SiC FG Bree plate after optimization.

    Figure 6:Stress distributions in Al/SiC FG plate corresponding to point E1.

    Figures 6 and 7 show respectively the stress distributions in the Al/SiC FG plates corresponding to the points E1(withVcdetermined by Eq.(59))and E2(withVcdetermined by Eq.(60))in Figure 5.It can be seen in Figure 5 that the?ˉθ at E2is larger than that at E1.The comparison between the stress distributions shown in Figures 6 and 7 indicates that the difference in?ˉθ can be attributed to the difference between the distributions of stress,and the difference between the material properties,for example,the yield strength.One can find in Figure 6 that,the weakest point where both σ+and σ-reach the yield strength,is located at the lower surface of the plate,where the yield strength of the material is the lowest.While in Figure 7 the weakest point, where bothσ+andσ-reach the yield strength,is located at the upper surface of the plate,where the yield strength of the material is the lowest.

    Figure 7:Stress distributions in Al/SiC FG plate corresponding to point E2.

    Figure 8:Stress distributions in Al/SiC effective homogeneous plate corresponding to point E3.

    The stress distributions in the plate,corresponding to the point E3on the curve marked with Homo_0.15(Figure 5)are shown in Figure 8,in which the SiC particles distribute uniformly withVc=0.15(Eq.(61)).It can be seen that for the residual stress fi eld shown in Figure 8(a),the obtained σ+and σ-reach the yield strength at both the upper and the lower surfaces.The corresponding?ˉθ(Figure 5)is a little larger than that corresponding to E2.The comparison between the results corresponding to points E1,E2and E3implies the possibility to achieve a better shakedown boundary by optimizing the distribution of the material properties with a proper distribution of particle volume fraction.

    The optimized shakedown boundary corresponding to the distribution of Eq.(56)is given in Figure 5 with the curve marked with Opt_0.3.Given the residual stress field shown in Figure 9(a),the stress distributions at point E4are shown in Figure 9(b),where it can be seen that reversed plastic deformation takes place at both the upper and the lower surfaces.Compared with the result at either E1,E2or E3,the?θˉ at E4of Opt_0.3 increases to some extent.

    Figure 9:Stress distributions in Al/SiC FG plate corresponding to point E4.

    The optimized shakedown boundary corresponding to the distribution of Eq.(57)is given in Figure 5 with the curve marked with Opt_0.4.Given the residual stress field shown in Figure 10(a),the stress distributions at point E5are shown in Figure 10(b),where it can be seen that reversed plastic deformation takes place at both the upper and the lower surfaces.Compared with the result at E4,the?θˉ at E5in the curve marked with Opt_0.4 increases,which could be attributed to that the maximum particle volume fraction at the upper surface is increased from 0.3 to 0.4,which enhances the capability of the plate to bear the thermal loading.

    The optimized shakedown boundary corresponding to the distribution of the particle volume fraction of Eq.(58)is given in Figure 5 with the curve marked with Opt_0.5.Given the residual stress field shown in Figure 11(a),the stress distributions at point E6are shown in Figure 11(b),where it can be seen that reversed plastic deformation takes place at both two surface(one is the upper surface,the other one is not the lower surface but a little higher than it).Compared with the result at E5,the?ˉθ at E6in the curve marked with Opt_0.5 further increases,which could be attributed to that the maximum particle volume fraction at the upper surface is increased from 0.4 to 0.5,which further enhances the capability of the plate to bear the thermal loading.

    The comparison between the?ˉθ at the points E1through E6in Figure 5 shows that the?ˉθ at E6,corresponding to the distribution of the particle volume fraction,Eq.(58),is the largest.If the maximum particle volume fraction is limited to 0.5,this?ˉθ can be regarded as?ˉθmax.

    Figure 10:Stress distributions in Al/SiC FG plate corresponding to point E5.

    Figure 11:Stress distributions in Al/SiC FG plate corresponding to point E6.

    4.2 Optimal design of Ti/Si3N4FG Bree plate

    In order to further verify the optimal design model,the optimization for shakedown capability of a Ti/Si3N4FG Bree plate is performed,in which the Si3N4particles are the reinforcement phase.Material constants of Ti and Si3N4[Cho et al.(2004)]are listed in Table 2.

    We also assume three classes of the Ti/Si3N4FG Bree plates,of which the distribution of the Si3N4particle volume function is described with Eq.(54),wherea1,P1anda2,P2are the parameters to be optimized.If the average particle volume is limited to 0.15,and the maximum local particle volume fractions of the three classes are 0.3(Class 1),0.4(Class 2)and 0.5(Class 3),respectively,the corresponding shakedown boundaries are shown in Figure 12 with the curves marked with Opt_0.3,o Opt_0.4 and Opt_0.5,respectively.With the optimizeda1,P1anda2,P2,the three classes distribution functions can be expressed as

    Table 2:Material constants of Ti and Si3N4.

    For comparison,the shakedown boundaries of Ti/Si3N4FG plates with the particle volume fraction distribution functions of Eqs.(59)-(61)are also given in Figure 12 with the curves marked with Linear 1,Linear 2 and Homo_0.15 respectively.

    Figure 13 show the stress distributions in the FG plate corresponding to point E1on the curve marked as Linear 1 in Figure 13.Figure 14 shows the stress distributions in the FG plate corresponding to point E2on the curve marked as Linear 2 in Figure 11.The results shown in Figure 13 and Figure 14 are respectively similar to that in Figure 6 and Figure 7.

    Then,the shakedown of the equivalent homogenous plate is analyzed in the same way as numerical example 1,and the boundary which is marked as Homo_0.15 is shown in Figure 12.Stress distributions corresponding to point E3are shown in Figure 15.

    Be similar to the numerical example of Al/SiCFG plate,the optimization of Ti/Si3N4FG plate is given.The results of optimal volume fraction distribution functions of Si3N4have been given as Eqs.(62)-(64),and the shakedown boundaries of corresponding FG plates have been shown as Opt_0.3,Opt_0.4 and Opt_0.5 in Figure 12.As shown in Figure 12,the plate of which the reinforcement phase volume fraction function is optimized can be endured larger?ˉθmax,i.e.,?ˉθmaxof whichever Opt_0.3,Opt_0.4 and Opt_0.5 is larger than that of Homo_0.15.

    Figure 12:Shakedown area of different Ti/Si3N4FG Bree plate after optimization.

    Figure 13:Stress distributions in Ti/Si3N4FG plate corresponding to point E1.

    Figure 14:Stress distributions in Ti/Si3N4FG plate corresponding to point E2.

    Figure 15:Stress distributions in Ti/Si3N4effective homogenous plate corresponding to point E3.

    Figure 17:Stress distributions in Ti/Si3N4FG plate corresponding to point E5.

    Figure 18:Stress distributions in Ti/Si3N4FG plate corresponding to point E6.

    The stress distributions corresponding to point E4on Opt_0.3,point E5on Opt_0.4 and point E6on Opt_0.5 have been respectively shown in Figures 16-18.In these figures the phenomena are similar with those in Figures 9-11,although the constituents of the FG plates are different.

    5 Conclusion and discussion

    The optimization of the volume fraction distribution function of reinforcement particles in FG Bree plates was performed with the GA approach.The objective of optimization was to gain the maximum of the?ˉθ applied to the plates under the constraint that the average volume fraction of the reinforcement particles keeps constant.An optimal model was proposed and two numerical examples were presented,from which the following conclusion may be drawn:

    1.An approach was developed for the optimization of the distribution of the reinforcement particles in the plate for the purpose to enhance the shakedown capability of the plate.The distribution of the material properties in the thickness of the plate was characterized with a piecewise exponential distribution,and the effective mechanical property of the material of the plate was evaluated with a double-inclusion mean fi eld scheme,and the distribution of the volume fraction of the reinforcement particles was optimized with the Genetic Algorithm.The validity of the approach was demonstrated by the two numerical examples.

    2.The shakedown capability of a FG plate is determined by both the applied thermal-mechanical loading and the thermal-mechanical properties of the plate.For a FG plate,the latter can be designed by properly distributing the volume fraction of the reinforcement particles,which provides the possibility to achieve desired or optimal thermal-mechanical properties of the plate to substantially enhance the shakedown capability of the plate.It was found in this paper that the distribution of the particle volume fraction affects markedly the shakedown capability of the FG plate,and a proper distribution of the particle volume fraction can substantially enhance the shakedown capability of the plate.

    3.The concept of the piecewise distribution of the material properties is in accordancewith that of the piecewise approach used in the shakedown analysis;therefore,it is of particular advantage for the optimization of the shakedown capability of the FG plate,because it may bring great convenience to the optimization without introducing additional difficulties.

    Acknowledgement:The authors gratefully acknowledge the financial support to this work from NSFC under Grant Numbers 11272364 and 11332013.

    Andrew,J.G.;Senthil,S.V.(2010):Transient multiscale thermoelastic analysis of functionally graded materials.Compos.Struct.,vol.92,pp.1372-1390.

    Aghababaei,R.;Reddy,J.N.(2009):Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates.J.Sound Vib.,vol.326,pp.277–289.

    Altenbach,H.;Eremeyev,V.A.(2009):Eigen-vibrations of Plates made of Functionally Graded Material.CMC:Computers,Materials,&Continua,vol.9,pp.153-178.

    Bree,J.(1967):Elastic plastic behavior of thin tubes subjected to internal pressure and intermittent high heat fluxes with application to fast nuclear reactor fuel elements.J.Strain Anal.,vol.2,pp.226-238.

    Cavalcanti,P.R;Carvalho,P.C.P;Martha,L.F.(1997):Non-manifold modeling:an approach based on spatial subdivision.Computer-Aided Design,vol.29,pp.209-220.

    Chen,B.;Tong,L.(2005):Thermo-mechanically coupled sensitivity analysis and design optimization of functionally graded materials.Comput.Methods Appl.Mech.Eng.,vol.194,pp.1891-1911.

    Chen,M.;Tucker,J.V.(2000):Constructive volume geometry.Comput.Graph.Forum,vol.19,pp.281-293.

    Cheng,Z.Q.;Batra,R.C.(2000):Three-dimensional thermoelastic deformations of a functionally graded elliptic plate.Composites Part B,vol.31,pp.97-106.

    Cho,J.R.;Choi,J.H.(2004):A yield-criteria tailoring of the volume fraction in metal-ceramic functionally graded material.Euro.J.Mech./A Solids,vol.23,pp.271-281.

    Cho,J.R.;Ha,D.Y.(2002):Volume fraction optimization for minimizing thermal stress in Ni–Al2O3functionally graded materials.Mater.Sci.Eng.A,vol.334,pp.147–155.

    Cho,J.R.;Shin,S.W.(2004):Material composition optimization for heat-resistingFGMs by artificial neural network.Composites Part A:Applied Science and Manufacturing,vol.35,pp.585–594.

    Dong,L.;Atluri,S.N.(2012a):T-Trefftz voronoi cell fi nite elements with elastic/rigid inclusions or voids for micro mechanical analysis of composite and porous materials.CMES:Computers,Materials,&Continua,vol.83,pp.183-219.

    Dong,L.;Atluri,S.N.(2012b):Development of 3D Trefftz voronoi cells with ellipsoidal voids&/or elastic/rigid inclusions for micro mechanical modeling of heterogeneous materials.CMC:Computers Materials and Continua,vol.30,pp.39-81.

    Dong,L.;Atluri,S.N.(2013):SGBEM voronoi cells(SVCs),with embedded arbitrary-shaped inclusions,voids,and/or cracks,for micro mechanical modeling of heterogeneous materials.CMC:Computers,Materials&Continua,vol.33,pp.111-154.

    Elishakoff,I.;Gentilini,C.(2005):Three-dimensional flexure of rectangular plates made of functionally graded materials.J.Appl.Mech.,vol.72,pp.788-791.

    Feldoman,E.;Aboudi,J.(1997):Buckling analysis of functionally graded plates subjected to uniaxial loading.Compos.Struct.,vol.38,pp.29-36.

    Guo,L.C.;Noda,N.(2007):Modeling method for a crack problem of functionally graded materials with arbitrary properties piecewise exponential model.Int.J.Solids Struct.,vol.44,pp.6768-6790.

    Guo,L.;Wu,L.;Sun,Y.;Ma,L.(2005):The transient fracture behavior for a functionally graded layered structure subjected to an in-plane impact load.Acta Mech.Sinica,vol.21,pp.257-266.

    Gilhooley,D.F.;Batra,R.C.;Xiao,J.R.;Mccarthy,M.A.;Gillespie,J.W.(2007):Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions.Compos.Struct.,vol.80,pp.39-552.

    Huang,J.;Fadel,G.M;Blouin,V.Y;Grujicic,M.(2002):Bi-objective optimization design of functionally gradient materials.Materials and Design,vol.23,pp.657-666.

    Ju,J.W.;Chen,T.M.(1994):Micro mechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities.Acta Mech.,vol.103,pp.103-121.

    Khalil,S.;Nam,J.;Darling,A.;Sun,W.(2004):Multi-nozzle biopolymer deposition for freeform fabrication of tissue construct.In:Proc.15th solid freeform fabrication symposium,pp.826-837.

    Kou,X.Y.;Parks,G.T.;Tan,S.T.(2012):Optimal design of functionally graded materials using a procedural model and particle swarm optimization.Computer-Aided Design,vol.44,pp.300-310.

    Kou,X.Y.(2006):Computer-aided design of heterogeneous objects.Ph.D.thesis.University of Hong Kong.

    Kou,X.Y.;Tan,S.T.;Sze,W.S.(2006):Modeling complex heterogeneous objects with nonmanifold heterogeneous cells.Computer-Aided Design,vol.38,pp.457-474.

    Kou,X.Y;Tan,S.T.(2009):Robust and efficient algorithms for rapid prototyping of heterogeneous objects.Rapid Prototyping J.,vol.15,pp.5-18.

    K?nig,J.A.(1987):Shakedown of elastic-plastic Structures.PWN-Polish Scienti fi c Publishers.

    Lee,Y.D.;Erdogan,F.(1994):Residual/thermal stress in FGM and laminated thermal barrier coating.Int.J.Fracture,vol.69,pp.145-165.

    Na,K.S.;Kim,J.H.(2006):Three-dimensional theCompos.Struct.,vol.73,pp.413-422.

    Noda,N.;Tsuji,T.(1990):Steady thermal stresses in a plate of functionally gradient material.Proc.1st Int.Symp.Functionally Gradient Materials,pp.339–344.Mark worth,A.J.;Saunders,J.H.(1995):A model of structure optimization for functionally graded materials.Mater.Lett.,vol.22,pp.103–107.

    Ootao,Y.;Kawamura,R.;Tanigawa,Y.;Imamura,R.(1999):Optimization of material composition of nonhomogeneous hollow sphere for thermal stress relaxation making use of neural network.Comput.Methods Appl.Mech.Eng,vol.180,pp.185-201.

    Parashkevova,L.;Ivanova,J.;Bontcheva,N.(2004):Optimal design of func-tionally graded plates with thermo-elastic-plastic behavior.Comptes Rendus Mecaniquvol.332,pp.493-498.

    Peng,X.;Fan,J.;Zeng,X.(1996):Analysis for plastic buckling of thin-walled cylinders via non-classical constitutive theory of plasticity.In.J.Solids and Struct.,vol.33,pp.4495-4509.

    Peng,X.;Hu,N.;Zheng,H.;Fang,C.(2009a):Analysis of shakedown of FG Bree plate subjected to coupled thermal-mechanical loadings.Acta Mech.Solida Sinica,vol.22,pp.95-108.

    Peng,X.;Ponter,A.R.S.(1993):Extremal properties of Endochronic plasticity,Part II:Extremal path of the Endochronic constitutive equation with a yield surface and application.Int.J.Plasticity,vol.9,pp.567-581.

    Peng,X.;Zheng,H.;Hu,N.;Fang,C.(2009b):Static and kinematic shakedown analysis of FG plate subjected to constant mechanical load and cyclically varying temperature change.Composite Structures,vol.91,pp.212-221.

    Praveen,G.N.;Reddy,J.N.(1998):Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates.Int.J.Solids and Struct.,vol.35,pp.4457-4476.

    Qiu,J.;Tani,J.;Warkentin,D.J.(1999):Stress analysis of RAINBOW actuators and relief of stress by gradation of material composition.Japan.Soc.Appl.Electromagn.Mech.,vol.7,pp.185192

    Reddy,J.N.(2011):Microstructure-dependent couple stress theories of functionally graded beams.J.Mech.Phys.Solids,vol.59,pp.2382-2399.

    Shen,Y.(1998):Thermal expansion of metal–ceramic composites: a three-dimensionalanalysisMater.Sci.Eng.A,vol.252,pp.269-275.

    Suresh,S.;Mortensen,A.(1998):Fundamentals of functionally graded materials:processing and thermomechanical behaviour of graded metals and metal-ceramic composites.IOM Communications Ltd,London.

    Suresh,S.;Mortensen,A.(1998):Fundamentals of functionally graded materials.London,UK:Institute of Materials.

    Tani,J.;Qiu,J.;Morit,A.T.(2001):Functionally gradient piezoelectric actuatorsTrans.Mater.Res.Soc.Japan,vol.26,pp.283286

    Vel,S.S.;Batra,R.C.(2002):Exact solution for thermoelastic deformations of functionally graded thick rectangular plates.AIAA J.,vol.40,pp.1421-1433.

    Vel,S.S.;Batra,R.C.(2003):Three-dimensional analysis of transient thermal stresses in functionally graded plates.Int.J.Solids.Struct.,vol.40,pp.7181-7196.

    Wadley,H.N.G.;Fleck,N.A.;Evans,A.G.(2003):Fabrication and structural performance of periodic cellular metal sandwich structures.Compos.Sci.Technol.,vol.63,pp.2331-2343.

    Wang,B.L.;Han,J.C.;Du,S.Y.(2000):Crack problems for functionally graded materials under transient thermal loading.J.Thermal Stresses,vol.23,pp.143-168.

    Watari,F.;Yokoyama,A.;Omori,M.;Hirai,T.;Kondo,H.;Uo,M.;Kawasaki,T.(2004):Biocompatibility of materials and development to functionally graded implant for biomedical application.Compos.Sci.Technol.,vol.64,pp.893-908.

    Williams,C.B.;Mistree,F.;Rosen,D.W.(2005):Investigation of additive manufacturing processes for the manufacture of parts with designed mesostructure.In:Proc.ASME 2005 design engineering technical conferences,pp.353-364.

    Wu,C.P.;Huang,S.E.(2009):Three-Dimensional Solutions of Functionally Graded Piezo-Thermo-Elastic Shells and Plates Using a Modi fi ed Pagano Method.CMC:Computers,Materials,&Continua,vol.12,pp.251-282.

    Zheng,H.;Peng,X.;Hu,N.(2012):Analysis for Shakedown of Functionally Graded Plate Subjected to Thermal-Mechanical Loading with Piecewise-ExponentialDistribution of Material Properties.CMES:Comp.Model.Eng.Sci.,vol.86,pp.505-531.

    Zhong,Z.;Shang,E.T.(2003):Three-dimensional exact analysis of simply supported functionally gradient piezoelectric plates.Int.J.Solids Struct.,vol.40,pp.5335-5352.

    国产精品国产高清国产av| 欧美色欧美亚洲另类二区| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| 丁香欧美五月| 51午夜福利影视在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美大码av| 老熟妇乱子伦视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲av电影在线进入| 精品久久久久久久末码| av黄色大香蕉| 欧美日韩黄片免| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 成人鲁丝片一二三区免费| 99久久99久久久精品蜜桃| 1000部很黄的大片| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 在线播放国产精品三级| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 亚洲美女视频黄频| 中亚洲国语对白在线视频| 国产精品亚洲av一区麻豆| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 国产蜜桃级精品一区二区三区| 狠狠狠狠99中文字幕| 国产日本99.免费观看| 日日夜夜操网爽| 999久久久精品免费观看国产| 国产精品香港三级国产av潘金莲| 一个人观看的视频www高清免费观看| 亚洲成a人片在线一区二区| 久久久精品大字幕| 悠悠久久av| 亚洲18禁久久av| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 在线天堂最新版资源| 一进一出好大好爽视频| 欧美乱妇无乱码| 亚洲人成网站高清观看| 不卡一级毛片| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| 看黄色毛片网站| 精品人妻偷拍中文字幕| 偷拍熟女少妇极品色| 99久久精品国产亚洲精品| 免费av观看视频| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 又紧又爽又黄一区二区| 国产高清视频在线观看网站| 亚洲国产色片| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 午夜视频国产福利| 日韩成人在线观看一区二区三区| 欧美成人a在线观看| 色尼玛亚洲综合影院| 亚洲av二区三区四区| 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 国产色爽女视频免费观看| 精品国产超薄肉色丝袜足j| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产 | 老司机午夜十八禁免费视频| 无限看片的www在线观看| 91av网一区二区| 女人十人毛片免费观看3o分钟| 校园春色视频在线观看| 成年女人看的毛片在线观看| 19禁男女啪啪无遮挡网站| 国产美女午夜福利| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 国产午夜福利久久久久久| 一二三四社区在线视频社区8| 在线观看日韩欧美| 一个人看视频在线观看www免费 | 人妻丰满熟妇av一区二区三区| 国产高潮美女av| 哪里可以看免费的av片| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 日韩欧美一区二区三区在线观看| 午夜精品在线福利| 在线播放无遮挡| 亚洲成人精品中文字幕电影| 久久久久国内视频| 午夜视频国产福利| 黄色日韩在线| 午夜免费观看网址| 久久天躁狠狠躁夜夜2o2o| 国产美女午夜福利| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区视频在线 | 观看美女的网站| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 黄色女人牲交| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 久久久久亚洲av毛片大全| 免费观看人在逋| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 高清日韩中文字幕在线| 国产淫片久久久久久久久 | 手机成人av网站| 日韩欧美一区二区三区在线观看| 黄色片一级片一级黄色片| 亚洲国产日韩欧美精品在线观看 | 国产aⅴ精品一区二区三区波| 亚洲中文字幕一区二区三区有码在线看| 床上黄色一级片| 亚洲成a人片在线一区二区| 岛国在线观看网站| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 少妇高潮的动态图| 变态另类丝袜制服| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 午夜福利免费观看在线| 国产久久久一区二区三区| 国产午夜福利久久久久久| 亚洲无线在线观看| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 欧美极品一区二区三区四区| 老汉色∧v一级毛片| 精品久久久久久久毛片微露脸| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 露出奶头的视频| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 长腿黑丝高跟| 亚洲男人的天堂狠狠| 久久精品91蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 国产成人啪精品午夜网站| 国产毛片a区久久久久| 久久精品国产自在天天线| 香蕉av资源在线| 精华霜和精华液先用哪个| 一个人免费在线观看的高清视频| 1024手机看黄色片| 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 国产在视频线在精品| 国产精品国产高清国产av| 国产av在哪里看| 一二三四社区在线视频社区8| 一个人观看的视频www高清免费观看| 精品久久久久久久久久免费视频| av中文乱码字幕在线| 久久亚洲真实| 少妇的逼水好多| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 国产麻豆成人av免费视频| 成熟少妇高潮喷水视频| 中文资源天堂在线| 日本免费一区二区三区高清不卡| 黄色女人牲交| av视频在线观看入口| 免费看日本二区| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 天天一区二区日本电影三级| 午夜影院日韩av| 亚洲无线在线观看| 日韩有码中文字幕| 中文在线观看免费www的网站| 激情在线观看视频在线高清| 在线观看一区二区三区| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 看黄色毛片网站| av在线蜜桃| 久久久成人免费电影| 亚洲黑人精品在线| 国产精品野战在线观看| 在线免费观看的www视频| 桃色一区二区三区在线观看| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月 | 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产成人福利小说| a在线观看视频网站| 亚洲avbb在线观看| 成人国产一区最新在线观看| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 久久精品综合一区二区三区| 国产精品一区二区免费欧美| 日本与韩国留学比较| 俺也久久电影网| 一本综合久久免费| 长腿黑丝高跟| 国产 一区 欧美 日韩| 国产三级在线视频| 亚洲人与动物交配视频| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 国产精品野战在线观看| 国产成年人精品一区二区| 91麻豆av在线| 久久人人精品亚洲av| tocl精华| 国产精品99久久99久久久不卡| or卡值多少钱| 国产精品野战在线观看| 国产高清视频在线观看网站| 级片在线观看| 少妇人妻一区二区三区视频| x7x7x7水蜜桃| 在线观看av片永久免费下载| 国产精华一区二区三区| 欧美日韩综合久久久久久 | 亚洲精品一区av在线观看| 午夜免费激情av| 国产精品乱码一区二三区的特点| 嫩草影院精品99| 两个人看的免费小视频| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 精品一区二区三区av网在线观看| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| 亚洲精品亚洲一区二区| 欧美成狂野欧美在线观看| 婷婷亚洲欧美| 18禁在线播放成人免费| 99久久99久久久精品蜜桃| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| 99久久精品热视频| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 在线免费观看不下载黄p国产 | 亚洲av二区三区四区| 极品教师在线免费播放| 国产亚洲精品综合一区在线观看| 有码 亚洲区| 久久久久精品国产欧美久久久| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 一夜夜www| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av | 亚洲美女黄片视频| 午夜激情欧美在线| 成人国产一区最新在线观看| 男人和女人高潮做爰伦理| 婷婷精品国产亚洲av| 在线观看美女被高潮喷水网站 | 成年版毛片免费区| 51午夜福利影视在线观看| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 男女那种视频在线观看| 岛国视频午夜一区免费看| 国产精品 欧美亚洲| 亚洲成人中文字幕在线播放| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| 在线免费观看不下载黄p国产 | 亚洲国产精品sss在线观看| 亚洲五月婷婷丁香| 精品福利观看| 免费搜索国产男女视频| 白带黄色成豆腐渣| 母亲3免费完整高清在线观看| 一本综合久久免费| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 亚洲av美国av| 国产成人a区在线观看| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 精品欧美国产一区二区三| 久久香蕉精品热| 嫩草影院入口| 在线观看66精品国产| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 亚洲精品粉嫩美女一区| 可以在线观看毛片的网站| 一二三四社区在线视频社区8| 久久人妻av系列| www.色视频.com| 欧美极品一区二区三区四区| 午夜a级毛片| 精品日产1卡2卡| 色在线成人网| 国产成人欧美在线观看| 亚洲精品成人久久久久久| 亚洲一区高清亚洲精品| 丁香欧美五月| 99热这里只有精品一区| 国产精品av视频在线免费观看| 老司机福利观看| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 三级国产精品欧美在线观看| 丝袜美腿在线中文| 日日夜夜操网爽| 免费在线观看影片大全网站| 久久精品影院6| 亚洲精品456在线播放app | 亚洲成a人片在线一区二区| 欧美日韩综合久久久久久 | 免费一级毛片在线播放高清视频| av国产免费在线观看| 麻豆成人午夜福利视频| 又黄又爽又免费观看的视频| 久久精品影院6| 校园春色视频在线观看| 欧美一区二区精品小视频在线| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 久久精品国产清高在天天线| www国产在线视频色| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 午夜日韩欧美国产| 九九久久精品国产亚洲av麻豆| 黄片大片在线免费观看| 精品一区二区三区av网在线观看| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 男人和女人高潮做爰伦理| 身体一侧抽搐| 国产成人av教育| 91字幕亚洲| 99热6这里只有精品| av天堂在线播放| 美女高潮的动态| 成人三级黄色视频| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 无限看片的www在线观看| 天美传媒精品一区二区| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 国产一级毛片七仙女欲春2| 欧美色视频一区免费| 国产高潮美女av| 无人区码免费观看不卡| 国产三级在线视频| 精品99又大又爽又粗少妇毛片 | 亚洲精品在线美女| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 国产激情欧美一区二区| 村上凉子中文字幕在线| 叶爱在线成人免费视频播放| 一级毛片高清免费大全| 午夜亚洲福利在线播放| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美精品免费久久 | 99热只有精品国产| av专区在线播放| 亚洲av日韩精品久久久久久密| 久久精品国产综合久久久| 天美传媒精品一区二区| 变态另类成人亚洲欧美熟女| 久久九九热精品免费| 国产高清视频在线播放一区| 桃色一区二区三区在线观看| 最新中文字幕久久久久| 日本一本二区三区精品| 亚洲国产欧美人成| 搞女人的毛片| 成人无遮挡网站| 不卡一级毛片| 久久久久性生活片| 在线观看一区二区三区| 一本精品99久久精品77| 国产一区二区激情短视频| 91九色精品人成在线观看| 69人妻影院| 国语自产精品视频在线第100页| 99riav亚洲国产免费| 成人永久免费在线观看视频| 两个人视频免费观看高清| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 又粗又爽又猛毛片免费看| 成人鲁丝片一二三区免费| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 免费看十八禁软件| 麻豆久久精品国产亚洲av| 18禁黄网站禁片午夜丰满| 午夜福利18| 国产成人啪精品午夜网站| 久久中文看片网| 丁香六月欧美| а√天堂www在线а√下载| 在线观看66精品国产| 亚洲欧美日韩高清专用| 女人高潮潮喷娇喘18禁视频| 日本三级黄在线观看| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 九九在线视频观看精品| 热99re8久久精品国产| 一级a爱片免费观看的视频| 久久久久精品国产欧美久久久| 十八禁网站免费在线| netflix在线观看网站| 最近最新中文字幕大全免费视频| 亚洲电影在线观看av| 无人区码免费观看不卡| 少妇丰满av| 国产在线精品亚洲第一网站| 乱人视频在线观看| av福利片在线观看| 99精品久久久久人妻精品| 色在线成人网| 制服人妻中文乱码| 丰满乱子伦码专区| 国产毛片a区久久久久| 青草久久国产| 神马国产精品三级电影在线观看| 亚洲国产中文字幕在线视频| 99在线人妻在线中文字幕| 香蕉久久夜色| 性色avwww在线观看| 精品电影一区二区在线| 欧美极品一区二区三区四区| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 精品久久久久久久末码| 国产乱人视频| 欧美另类亚洲清纯唯美| 少妇的逼好多水| 亚洲一区二区三区不卡视频| 69人妻影院| 久久精品91蜜桃| aaaaa片日本免费| 午夜a级毛片| 脱女人内裤的视频| 两个人视频免费观看高清| 亚洲精品在线美女| 成人鲁丝片一二三区免费| 亚洲激情在线av| 天堂av国产一区二区熟女人妻| 最近最新中文字幕大全免费视频| 身体一侧抽搐| 蜜桃亚洲精品一区二区三区| 亚洲18禁久久av| 欧美乱色亚洲激情| 久久九九热精品免费| 免费看a级黄色片| 国产高清videossex| 欧美性猛交黑人性爽| 亚洲色图av天堂| 麻豆国产av国片精品| 美女大奶头视频| 亚洲精品乱码久久久v下载方式 | 岛国在线观看网站| 精品一区二区三区视频在线 | 亚洲在线观看片| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 97超级碰碰碰精品色视频在线观看| 黄色女人牲交| 午夜免费男女啪啪视频观看 | 久久精品91蜜桃| 夜夜夜夜夜久久久久| 久久久成人免费电影| 看黄色毛片网站| 国产精品久久视频播放| 久久久久亚洲av毛片大全| 精品久久久久久久久久久久久| 午夜福利免费观看在线| av天堂中文字幕网| 在线看三级毛片| 国产蜜桃级精品一区二区三区| 波多野结衣巨乳人妻| 老鸭窝网址在线观看| 伊人久久大香线蕉亚洲五| 欧美极品一区二区三区四区| 88av欧美| 757午夜福利合集在线观看| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 亚洲第一电影网av| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 国产97色在线日韩免费| 国产精品一及| 韩国av一区二区三区四区| 一边摸一边抽搐一进一小说| 国产精品久久久久久亚洲av鲁大| 国产精品永久免费网站| www.999成人在线观看| 成人高潮视频无遮挡免费网站| 亚洲国产色片| 草草在线视频免费看| 亚洲国产欧美网| 久久久久九九精品影院| 亚洲国产精品999在线| 国产探花在线观看一区二区| 夜夜爽天天搞| av天堂在线播放| 两个人看的免费小视频| 亚洲欧美一区二区三区黑人| 国产高清视频在线播放一区| 亚洲国产精品久久男人天堂| 舔av片在线| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 国产成人系列免费观看| 免费在线观看日本一区| 母亲3免费完整高清在线观看| 日韩欧美国产一区二区入口| 观看免费一级毛片| 免费观看人在逋| 免费在线观看影片大全网站| 国产成人啪精品午夜网站| 中文字幕熟女人妻在线| 国产午夜福利久久久久久| 精品日产1卡2卡| 成人特级av手机在线观看| 久久香蕉精品热| 99久国产av精品| 久久久久久国产a免费观看| 日本成人三级电影网站| 欧美中文日本在线观看视频| 亚洲内射少妇av| 婷婷精品国产亚洲av| e午夜精品久久久久久久| 国产精品一区二区三区四区久久| 99久久九九国产精品国产免费| x7x7x7水蜜桃| 中文字幕人妻丝袜一区二区| 白带黄色成豆腐渣| 97超级碰碰碰精品色视频在线观看| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| 国产日本99.免费观看| 波多野结衣高清作品| 激情在线观看视频在线高清| 老司机午夜十八禁免费视频| 中文字幕人妻丝袜一区二区| 一个人看的www免费观看视频| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区久久| 国语自产精品视频在线第100页| 99久久精品国产亚洲精品| 国产欧美日韩精品亚洲av| 波野结衣二区三区在线 | 嫩草影视91久久| 观看免费一级毛片| 69av精品久久久久久| 亚洲精品一区av在线观看| 啦啦啦韩国在线观看视频| www.www免费av| 午夜福利欧美成人|