• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Iterative Algorithms Based on Regularization Total Least Squares for Solving the Numerical Solution of Discrete Fredholm Integral Equation

    2014-04-17 03:21:59ZichunYangLeiZhangandYueyunCao

    Zichun YangLei Zhangand Yueyun Cao

    1 Introduction

    Inverse problems often arise in engineering praxis.They originate from various fields like acoustics,optics,model updating,computerized tomography,statistics,load identification and signal processing,etc.When we deal with the term inverse problem,we will ask “inverse to what”immediately.Roughly speaking,inverse problem is a general framework that is used to convert observed measurements into information about a physical object or system in which we are interested.Thus,one might say the inverse problems are concerned with determining causes for a desired or an observed effect[Heinz,Martin and Andreas(1996)].

    As we will see,most inverse problems are often ill-posed problems Therefore,the necessary conditions for stability of solutions in a well-posed problem are often violated.That is to say,the total measured data does not allow the existence of a solution;the solution is also not unique,even further,not stable due to disturbances in the data[Heinz,Martin and Andreas(1996)].One central example of a linear inverse problem is Fredholm integral equations of the first kind which have been introduced by[Aster and Borchers(2004);Liu and Atluri(2009a)],such as for one-dimension:

    The RTLS problem has been investigated in its algebraic setting for decades.There are two kinds of RTLS methods which are analogous to the truncated SVD and the Tikhonov regularization based on LS.The former one is called truncated total least squares(TTLS),which has already been studied by Fierro,Golub,Hansen and singular vectors corresponding to smaller and smaller singular values have raising complexity(meaning that they include more and more sign change,oscillations)[Sima and Huffel(2007)].Another typical RTLS method for solving ill-posed problem is the Tikhonov regularization approach.The main emphasis of this work was on quadratically constrained TLS problems[Sima,Huffel and Goubl(2004)].The regularization approach with a quadratic constraint is highly suitable when some knowledge about the characteristics of the exact solution is known at priority.However,it is difficult to obtain prior knowledge about the true solution and the magnitude of the noise.Recently,Schaffrin and Wieser(2008)have derived the RTLS solution using a non-linear Lagrange function approach which could be implemented by a suitable and efficient iteration algorithm.Unfortunately their convergence rate is always slower,and the convergence properties of these methods for Tikhonov RTLS problems aren’t also guaranteed.

    In this paper,our purpose is to tackle the linear discrete ill-posed problems by two novel regularization methods in the TLS setting described in Section 2.One is to extend the Lanczos TTLS algorithm to the iterative TTLS method which can solve a convergent sequence of projected linear systems in Section 2.1.The other one in section 2.2 is the iterative RTLS method based on conjugate gradient algorithm,which includes three creative schemes:establishing an modified unconstrained optimization problem with the properties of a convex function;giving the adap-tive strategy for selecting regularization parameters;using a state-of-the-art CG method to solve the modified unconstrained optimization problem.In Section 3,several numerical examples related to Fredholm integral equations of the first kind are presented,and the efficiency and robustness of the two novel algorithms,compared with other typical regularization methods,are also demonstrated.Concluding remarks can be found in Section 4.

    2 Regularized TLS

    The TLS method is a generalized version of the original least squares method.Let the Errors-in-Variables model be defined by the functional relationship

    2.1 Iterative TTLS approach based on a Lanczos Bidiagonalization Algorithm

    Algorithm.1

    1)execute the SVD of the augmented matrix(A,b)

    3)block-partitionVVV∈R(n+1)×(n+1)as

    4)compute the TTLS solutionxTTLS,kas

    The TTLS method which simultaneously considers error and noise on both sides can be applied to handle ill-posed problems,especially when there are obvious gap in the singular values spectrum.And its performance is usually better than conventional Tikhonov method.However,when the dimensions ofA A Abecome large,the efficiency and robustness of this approach become increasingly poor because the SVD algorithm is of high complexity.We shall therefore describe that a Lanczos technique which can project large-scale TLS problems onto the smaller subspaces may improve the efficiency of the TTLS algorithm.

    The typical algorithm is the Lanczos bidiagonalization method which can generate a sequence of bidiagonal matrices.Here,the extremal singular values of bidiagonal matrices are progressively better estimates of the extremal singular values of the given matrices[Goulb,Hanse and O’Leary(1999)].The main advantages of the Lanczos method are that the original matrix is not overwritten and little storage is required since only matrix-vector products are computed.Therefore,the computation cost of SVD of a matrix may be more attractive,which makes the Lanczos method interesting for large matrices especially if they are sparse and there exists fast routines for computing matrix-vector products.

    Thus afterkLanczos iterations,the projected TLS problem mentioned in Eq.(4)is given by

    To overcome these deficiencies,we note that it is easy to extend the above algorithm to an iterative TTLS method without any prior knowledge.This method can solve a convergent sequence of projected linear systems generated by the Lanczos bidiagonalization method,which is a potentially inexpensive task.The structure of this algorithm is as follows

    Algorithm.2(iteration Lanczos TTLS called I-LTTLS)

    2)fork=1,2,···until convergence do

    3)obtain the projected TLS problem of(4)based on Lanczos bidiagonalization.

    4)compute the TTLS solutiony y yk,lviaalgorithm.1,ldenotes truncate parameter.

    6)end for

    We now discuss details how to efficiently execute algorithm.2.

    ·We apply an modified generalized cross validation(GCV)combined with the TTLS method to obtain truncate parameterlin step 4,which has been proposed in[Sima and Huffel(2007)],see Eq.(4)

    2.2 Iterative Tikhonov RTLS approach based on conjugate gradient method

    The Lagrangian of the problem(8)is given by

    Substituting(11)into(10)we have

    Combining(12)with(13)we can conclude

    It can be observed that the Eq.(14)is an unconstrained optimization problem,which is not known to be convex or concave in general.Beck and Ebn-Tal(2006)computed a value and a derivative of the problem(14)consists of solving a sequence of trust region subproblems.The suggested TRTLSG algorithm converges to the global minimum when the functionf(x)is unimodal.If,for some reason,the functionf(x)is not unimodal,the TRTLSG algorithm doesn’t necessarily converge to global minimum and more sophisticated one dimensional global solver should be employed.

    The classical Newton iterative method has been used to tackle the unconstrained optimization problem(14)in[Maziar and Hossein(2009)],which is an extremely powerful technique—in general the convergence is quadratic.The Newton iterative method requires that the gradient and hessian of the objective function can be calculated directly.However,an analytical expression for the derivative may not be easily obtainable and may be expensive to evaluate.For situations where the method fails to converge,it is because the assumption such as the second derivative of the positive definite made in the proof is not met.Lampe and Voss(2013)proposed an iterative projection method which was an efficient method for solving large-scale TLS problem.This algorithm requires a suitable starting basis called orthogonal basis of the Krylov space,which has a great influence on the computational efficiency and is hard to be determined.The main computational cost is again building up the search space,in general,which is not a Krylov subspace.In particular,the new space basis vector cannot be computed with a short recurrence relation.

    The aim of this section is to propose a CG method to solve the Tikhonov RTLS problem(14).The main difficulty associated with problem(14)is its nonconvex-ity.This deficiency may result in a non-convergent sequence i.e.,cannot get the global optimal solutions,and make the CG algorithm ineffective or difficult implementation.Nevertheless,we will propose in this section several creative schemes to solve the unconstrained optimization problem(14)efficiently and stably.The par-

    It is obviously that the iteration Eq.(15)has adaptive characteristics which are able to fully reflect the continuity of recovery process.More importantly,the original Eq.(14)with a nonconvex function is transformed into a convex function,which can facilitate the optimization problem greatly and improve the computational efficiency significantly.

    Oraintara,Karl,Castanon,and Nguyen(2000)have proposed an algebraic condition for choosing the optimal regularization parameter of regularized LS.The main idea is to identify the corner of the L-curve as the point of tangency between a straight line of arbitrary slope and the L-curve.The main restrictions are that the object function should be differentiable,non-negative and convex scalar function of their vector arguments.Owing to these restrictions,the algebraic method cannot be used to acquire regularization parameter for RTLS optimization problem(14).Fortunately,for the modified optimization problem(15)with the properties of a convex function,the algebraic method can be extended to obtain the regularization parameter of Tikhonov RTLS.That is also an important way to make the conjugate gradient method converge to a global minimum point.

    For convenience in what follows,the function of the parameterλis

    As a consequence,we demonstrate that extreme points ofξ(λ)are fixed points of a related function,and a fixed point iterative algorithm for computing the optimal parameterλis as follows

    In particular,ifλkconverges,it is guaranteed to converge to the L-corner.The formula is able to choose the regularization parameter adaptively and get higher efficiency attributed to the convex properties of the problem(15).

    Therefore,we propose three creative schemes in this section in order to solve Tikhonov RTLS problem.Firstly,the modified minimum optimization problem(15)characterized by the properties of a convex function is established.Secondly,the adaptive strategy for selecting regularization parameter is given,which gets better quality of the result in view of the former one.Finally,a state-of-the-art CG method is used to solve the unconstrained optimization problem(15).More precisely,this iterative RTLS method based on conjugate gradient(called CGRTLS method)can be described as follows

    Algorithm 3(The CGRTLS algorithm)

    1)set the outer iteration terminate toleranceε,0<ε?1,and the largest admissible number of outer iterationkmax

    2)set the inner iteration terminate toleranceξ,0<ξ?1,and the largest admissible number of inner iterationlmax

    4)begin outer iteration

    (c)else go step(d)

    (e)determine a step?αl=ρj(j=0,1,2,···)satisfying Armijo-type condition

    with the scalarρ,μ∈(0,1)

    4.5)k:=k+1

    4.6)until the convergence conditionη<εork>kmax,execute step 5

    5)end outer iteration

    3 Numerical examples

    To evaluate the effectiveness of the Algorithm 2 and 3,we consider the one and two-dimensional Fredholm integral equations of the first kind,which are known to be severely ill-posed problems.We compare the solutions computed by two novel algorithms with the solutions obtained from several typical methods,i.e.,Tikhonov regularization LS(RLS)[Hansen(2007)],Lanczos TTLS(L-TTLS)established in[Sima and Huffel(2007)]and RTLSQEP introduced in[Lampe and Voss(2012)].All algorithms are carried out by MATLAB software.Firstly,we discuss how to efficiently execute these algorithms for solving the ill-posed inverse problems.

    ·Tikhonov regularization LS(RLS):we determinate regularization parameter using L-curve method withλin the range(10?10,102),and then,chose regularization matrixLwhich equals to the approximate first derivative operator i.e.,

    ·Lanczos TTLS(L-TTLS):the maximal truncate indexkmax=15,the truncate index is acquired by L-curve method.

    ·I-LTTLS’s truncate parameter is determined by an modified generalized cross validation(GCV)in Eq.(7),terminate toleranceε=10?6.

    We want to compare the optimal solutions that can be attained by any of the above methods.To do this,for each algorithm we define relative errorγbetween the optimal regularized solutionx x xTLSand the exact solution.For example,for CGRTLS

    as the noise level.In the tests we select the noise levelsρ1=1×10?3andρ2=1×10?2.

    3.1 One-dimensional Fredholm integral equation of the first kind

    Firstly,we consider one-dimensional Fredholm integral equation of the first kind,which is a classical ill-posed problem.The Fredholm integral equation with a square integrate kernel is of the form

    in which the kernelKrepresents a known model for the physical phenomenon,the right-hand sideTis a given date function,andfis a function to be determined.

    To solve(19)numerically,it is necessary to make the variables discrete and replace the integral equation by a set of finite linear equations.Firstly,let us discretize the intervals of[a,b]and[c,d]intom1andm2equally.The integral equation can then be replaced by a set of numerical equations

    wherei=1,2,···,m2,andwjare the weighting coefficients for the quadrature formula.Through a trapezoidal rule,Eq.(20)can be rewritten as

    The above equations may be abbreviated as

    We examine our TLS approaches by considering the numerical solution of the following one-dimensional Fredholm integral equations of the first kind.

    Example.1:the one problem is the discretization of the inverse Laplace transformation by means of Gauss-Laguerre quadrature.The kernelKis given by

    and both integration interval[a,b]and[c,d]are[0,∞).

    Example.2:other one is the famous one-dimensional Fredholm integral equation of the first kind devised by Phillips[Hansen,P.C.(2007)],which is described as follows:

    Both the integration intervals are[?6,6].Where the functionφis

    Table 1:The condition numbers of different matrix dimensions in two examples.

    Figure 1:The declining ratio of neighboring eigenvalues

    Fig.2 and Fig.3 show histograms of the relative errorsγfor all five regularization methods in different matrix dimensions,respectively.And our results are obtained in the solution over 1000 independent simulations of the same example.It can be readily observed that the RLS method produces a worse solution than other RTLS algorithms.It is probably because the RLS cannot consider the errors of the system matrix efficiently.It is obvious that the I-LTTLS,CGRTLS and RTLSQEP methods are able to generate more accurate solutions than the classical regularization methods L-TTLS.Here,the effects of random noise on L-TTLS may reduce the accuracy of the solutions and increase dispersion of the solutions greatly,which is apt to obtain the unstable solutions.Furthermore,the I-LTTLS,CGRTLS and RTLSQEP methods possess lower noise sensitivity.Especially,the robustness of the I-LTTLS algorithm perfects best of these methods.The accuracy of the stateof-the-art RTLSQEP algorithm and CGRTLS algorithm is somewhere in between,where the latter one yields more accurate approximations.The RTLSQEP and LTTLS algorithms are suitable when some knowledge about the characteristic of the exact solution or noise condition is known a priori,however,it is difficult to be obtained in some cases.

    Figure 2:Histograms present the optimal relative errors of 1000 test problems solved by five different regularization methods for Example.1,with matrix dimensions m1=m2=20,noise levels ρ1=1×10?3

    Figure 3:Histograms present the optimal relative errors of 1000 test problems solved by five different regularization methods for Example.1,with matrix dimensions m1=m2=100,noise levels ρ1=1×10?3

    The I-LTLLS algorithm outperforms CGRTLS,L-TTLS,RTLSQEP,RLS in Fig.2.This is no surprise that there is a larger gap in the eigenvalue spectrum when the matrix dimensions satisfym1=m2=20.This feature denotes that it is easy to cut off a certain number of terms in the SVD of the coefficient matrix.And these certain terms can be considered as noises far away from the singular subspaces of true system energy.In this case,Tikhonov regularization method may be difficult to regularize both reliable and noise parts efficiently.In Fig.3,the CGRTLS algorithm is clearly superior to the other three methods since the singular values of matrix decay gradually to zero when the matrix dimensions satisfym1=m2=100.At this time,it is difficult to determine an appropriate truncation level for truncated TLS.And the smaller singular values which are truncated may be useful information.Therefore,distribution of singular values has a great impact on solving ill-posed problems when we employ regularization algorithms.

    Figure 4:Histograms present the optimal relative errors of 1000 test problems solved by four different regularization methods for Example.2,with matrix dimensions m1=60,m2=50,noise levels ρ1=1×10?3

    Figure 5:Histograms present the optimal relative errors of 1000 test problems solved by four different regularization methods for Example.2,with matrix dimensions m1=60,m2=50,noise levels ρ2=1×10?2

    Test 2.Our second test problem is generated by considering the Example.2.We consider the rectangle matrix with dimensionsm1=60,m2=50,whose singular values decay gradually to zero and the condition number is 6.529×1016.Therefore it is a typically ill-condition matrix.Our test is presented as histograms of the relative error,in the solution over 1000 independent simulations of the same example.Seeing numerical relative errorsγof all four TLS-based algorithms in the histograms Fig.4 and Fig.5,where the noise levels areρ1=1×10?3andρ2=1×10?2,respectively.It is obvious that for smaller noise levelσ1=1×10?3,the solutions of all four algorithms are not expected much difference.However,in Fig.5,the relative errors of all algorithms grow as noise level increases,and the I-LTTLS,CGRTLS and RTLSQEP algorithms increase lower than L-TTLS algorithms when the noise level increases toσ1=1×10?2.The CGRTLS algorithm with adaptive selection of regularization parameter is turned out to be slightly superior to other TLS algorithms.We can also conclude that the results of relative error indicate that the I-LTTLS is not very sensitive to the random noises.

    Next,several starting regularization parameters are used to initialize the CGRTLS algorithm,and the results average over 100 random simulations.The average regularization parameterˉλand average relative errorˉγfor various starting regularization parametersλ0are computed in Table.2.As we can see,the CGRTLS algorithm has low sensitivity to initial regularization parameter since theˉγandˉλare almost same at different initial parameter values.As a result,rather than using the parameter selection principles described in some of previous works,an adaptive principle of selecting regularization parameter can be applied to determine the optimum regularization parameters,which has a stronger robustness,higher accuracy and convergent rate.

    Table 2:The average relative errorˉγ and average regularization parameterˉλ for various λ0

    Example.3:Now we apply the two novel methods of TLS regularization to tackle inverse heat conduction problem.The one-dimensional heat conduction problem is described as

    whereu(x,t)denotes temperature,xis spatial variable andtis time variable.f(x)is initial condition,Ddenotes heat transfer coefficient.

    The temperature distributionu(x,t)of the heat conduction problem for a given initial condition is explicitly obtained using separation of variables

    Then we can change Eq.(23)into the Fredholm integral equation of the first kind

    The initial temperature distribution computed by LS method,compared with exact initial temperature distribution,is given in figure 6.It is obvious that there is a great error when the LS method is used to estimate the initial temperature.The constructed solutions of the I-LTTLS and CGRTLS algorithms apprehended from Fig.7 and Fig.8 are in good agreement with the exact solution.Therefore,the two novel methods of TLS regularization are efficient and accurate to solve backward heat conduction problem,even when both the measurement itemsu(x,t1)and the integral operatorKare contaminated by some random noises.As we can see,the solution of CGRTLS algorithm is slightly superior to I-LTTLS algorithm. It is probably because the singular values of system matrix decay gradually to zero. Next, the initial temperature constructed by CGRTLS algorithm for several different starting regularization parameters are shown in Fig.9,and we can still concluded that the CGRTLS algorithm has low sensitivity to starting regularization parameters.

    3.2 two-dimensional Fredholm integral equation of the first kind

    Consider the following two-dimensional Fredholm integral equations of the first kind

    Figure 6:Comparison between the exact and the LS algorithm results

    Figure 7:Comparison between the exact and the TLS algorithm results at ρ1=1×10?3

    Figure 8:Comparison between the exact and TLS algorithm results at ρ1=1 ×10?2

    Figure 9:The constructed initial temperature for various λ0

    whose exact solution isf(s,t)=s+twith the kernel

    wheres,t∈?1?R2,u,v∈?2?R2,we set ?1=?2=?=[?5,5]×[?5,5],let us discretize the intervals ?1and ?2intom1×n1andm2×n2respectively.The twodimensional Fredholm integral Eq.(25)can then be replaced by a set of numerical equations

    wherep=1,2,···,m2,q=1,2,···,n2,the above equations may be scattered concretely as

    Figure 10:The four histograms illustrate the statistical distribution of relative error for two-dimensional Fredholm integral equation with m1=n1=m2=n2=20 and a noise level ρ1=1×10?3

    Finally,a sample solution of two-dimensional Fredholm integral equations computed by the CGRTLS,I-LTTLS and RLS schemes is compared with the exact solutions apprehended from Fig.11.The constructed solutions of the I-LTTLS and CGRTLS schemes perform better than RLS scheme.This is due to the fact that the errors in both the system matrix and the right-hand side may produce large errors in the computed results.Consequently,the constructed solutions by the regularized TLS schemes which can consider both errors are much accurate than LS-based methods.It can be seen that the constructed solution using the CGRTLS algorithm is slightly superior to the solutions computed by the I-LTTLS algorithm i.e.,the former solution match the exact solution well.Therefore,we prove that the CGRTLS algorithm generate more accurate solutions than the I-LTTLS algorithm when the singular values decay gradually to zero yet again.

    Figure 11:Approximated solution for different regularization solvers i.e.,RLS,I-LTTLS and CGRTLS

    4 Conclusions

    We have proposed two novel iterative algorithms to incorporation of regularization and stabilization into the TLS setting.The two algorithms named I-LTTLS and CGRTLS are analogous to the truncated SVD and Tikhonov regularization approaches based on LS,respectively.The I-LTTLS algorithm overcomes the deficiencies of the Lanczos-TTLS algorithm which are dif ficult to obtain the truncate indexkand get maximal truncate indexkmaxregarded as a critical precondition.The CGRTLS algorithm is able to choose the regularization parameter adaptively which gets higher efficiency than other famous methods,and moreover,converge to a global minimum point.Both algorithms aren’t necessary to obtain any priori knowledge about noise level and exact solution.

    Acknowledgement:The work described in this paper was supported in part by the New Century National Excellent Talents Program through the Ministry of Human Response and Social Security of China,and in part by the New Century Excellent Talents Program in University,funded by the Ministry of Education of China.And the first author would like to acknowledge the support of the Center for Aerospace Research&Education,University of California,Irvine.

    Aster,R.;Borchers,B.(2004):Parameter estimation and inverse problem.Elsevier Academic Press.

    Bech,A.;Ben-Tal,A.(2006):On the solution of the tikhonov regularization of the total least squares problem.SIAM Journal Optimal,vol.17,pp.98-118.

    Fierro,R.D.;Golub,G.H.;Hansen,P.C.;O’Leary,D.P.(1997).Regularization by truncated total least squares.SIAM Journal on Scientific and Statistical Computing,vol.18,no.4,pp.1223-1241.

    Golub,G.C.;Hanse,P.C.;O’Leary,D.P.(1999):Tikhonov regularization and total least squares.SIAM.J.Matrix Anal.Appl.,vol.21,pp.185-194.

    Hanse,P.C.;O’Leary,D.P.(1996):Regularization algorithms based on total least squares.Technical Report CS-TR-3684,pp.127-137.

    Hansen,P.C.(2007):Regularization tools:A MATLAB package for analysis and solution of discrete ill-posed problems.Numer,Algo,vol.46,pp.189-194.

    Heinz,W.E.;Martin,H;Andreas,N.(1996):Regularization of inverse problem-s.Kuluwer Academic Pulblishers,Amsterdam.

    Ioannou,Y.;Fyrillas,M.M.;Doumanidis,C.(2012):Approximate solution to Fredholm integral equations using linear regression and applications to heat and mass transfer.Engineering Analysis with Boundary Elements,vol.36,pp.1278-1283.

    Lampe,J.(2010):Solving regularized total least squares problems based on eigenproblems.Hamburg:Hamburg University of Technology,Institute of Numerical Simulation.

    Lampe,J.;Voss,H.(2012):Efficient determination of the hyperparameter in regularized total least squares problems.Applied Numerical Mathematics,vol.62,pp.1229-1241.

    Lampe,J.;Voss,H.(2013):Large-scale tikhonov regularization of total least squares.Journal of Computational and Applied Mathematics,vol.238,pp.95-108.

    Liu,C.S.;Atluri,S.N.(2009a):A fictitious time integration method for the numerical solution of the Fredholm integral equation and for numerical differentiation of noisy date,and its relation to the filter theory.CMES:Computer Modeling in Engineering&Science,vol.41,pp.243-261.

    Liu,C.S.(2009):A new method for Fredholm integral equations of 1D backward heat conduction problems.CMES:Computer Modeling in Engineering&Science,vol.47,pp.1-21.

    Liu,C.S.(2008):Improving the ill-conditioning of the method of fundamental solutions for 2D Laplace equation.CMES:Computer Modeling in Engineering&Science,vol.28,pp.77-93.

    Liu,C.S.;Atluri,S.N.(2009b):A highly accurate technique for interpolations using very high-order polynomials,and its applications to some ill-posed linear problems.CMES:Computer Modeling in Engineering&Science,vol.43,pp.253-276.

    Liu,C.S.;Yeih,W.;Atluri,S.N.(2009):On solving the ill-conditioned system Ax=b:general-purpose conditions obtained from the boundary-collocation solution of the Laplace equation,using Trefftz expansions with multiple length scales.CMES:Computer Modeling in Engineering&Science,vol.44,pp.281-311.

    Liu,C.-S,Hong,H.K.;Atluri,S.N.(2010):Novel algorithms based on the conjugate gradient method for inverting ill-conditioned matrices,and a new regularization method to solve ill-posed linear systems.CMES:Computer Modeling in Engineering&Science,vol.60,pp.279-308.

    Liu,C.S.;Kuo,C.L.(2011):A dynamic Tikhonov method for solving nonlinear ill-posed problems.CMES:Computer Modeling in Engineering&Science,vol.76,pp.109-132.

    Markovsky,I.;Huffel,S.Van.(2007):Overview of total least squares methods.Signal Process,vol.87,pp.2283-2302.

    Maziar,S.;Hossein,Z.(2009):Computational experiments on the Tikhonov regularization of the total least squares problem.Computer of Science Journal of Moldova,vol.49,pp.14-25.

    Micheli,E.De.;Viano,G.A.(2011):Fredholm integral equations of the first kind and topological information theory.Integral Equations and Operator Theory,vol.4,pp.553-571.

    Oraintara,S.;Karl,W.C.;Castanon,D.A.;Nguyen,T.Q.(2000):A method for choosing the regularization parameter in generalized Tikhonov regularization linear inverse problems.Image Processing,Proceedings,vol.1,pp.93-96.

    Renaut,R.;Gou,H.(2005):Efficient algorithms for solution of regularized total least squares.SIAM.J.Matrix Anal.Appl.,vol.26,pp.457-476.

    Sima,D.M.;Huffel,S.Van.(2007):Level choice in truncated total least squares.Computational Statistics&Data Analysis,vol.52,pp.1103-1118.

    Sima,D.M.;Huffel,S.Van.;Golub,G.H.(2004):Regularized total least squares based on quadratic eigenvalue problem solvers.BIT.Numerical Mathematics,vol.44,pp.793-812.

    Schaffrin,B.;Wieser A.(2008):On weighted total least squares adjustment for linear regression.Journal of Geodesy,vol.82,pp.373-383.

    Wazwaz,A.M.(2011):The regularization method for Fredholm integral equations of the first kind.Computers and Mathematics with Applications,vol.61,pp.2981-2986.

    Zhang,L.;Zhou,W.J.;Li,D.H.(2006):a descent modified Polk-Ribiere-polyak conjugate method and its global convergence.Journal of Numerical Analysis,vol.4,pp.629-640.

    成人三级黄色视频| 久久欧美精品欧美久久欧美| 国产私拍福利视频在线观看| 丝袜美腿在线中文| 国产淫片久久久久久久久| 久久久国产成人精品二区| 国产av麻豆久久久久久久| 在线天堂最新版资源| 久久亚洲精品不卡| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 国产在线男女| 日韩一本色道免费dvd| 亚洲精品色激情综合| 日韩av在线大香蕉| 婷婷丁香在线五月| 少妇高潮的动态图| 他把我摸到了高潮在线观看| 嫁个100分男人电影在线观看| 成熟少妇高潮喷水视频| 欧美不卡视频在线免费观看| 精品久久久久久久久亚洲 | 99久久精品一区二区三区| 久久香蕉精品热| 亚洲美女视频黄频| 日韩欧美精品免费久久| 色尼玛亚洲综合影院| 伦理电影大哥的女人| 成人三级黄色视频| 搡老妇女老女人老熟妇| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆 | 国产av一区在线观看免费| 91麻豆av在线| 如何舔出高潮| 又黄又爽又刺激的免费视频.| 亚洲成av人片在线播放无| 日日摸夜夜添夜夜添av毛片 | 亚洲国产高清在线一区二区三| 91狼人影院| 亚洲av二区三区四区| 日本成人三级电影网站| 日韩人妻高清精品专区| 国产一区二区在线观看日韩| 日本精品一区二区三区蜜桃| 免费大片18禁| 99riav亚洲国产免费| 99riav亚洲国产免费| 男人和女人高潮做爰伦理| 久9热在线精品视频| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 国内精品一区二区在线观看| 精品人妻偷拍中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 变态另类成人亚洲欧美熟女| 人人妻,人人澡人人爽秒播| 99久久精品热视频| 中文字幕熟女人妻在线| 国模一区二区三区四区视频| 国产精品久久久久久久久免| 老女人水多毛片| 亚洲,欧美,日韩| 国产一级毛片七仙女欲春2| 热99在线观看视频| 久久久久久大精品| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 91狼人影院| 日韩欧美 国产精品| 国产精品一及| 日本a在线网址| 国产成人影院久久av| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 老熟妇乱子伦视频在线观看| 日韩人妻高清精品专区| 少妇丰满av| 色综合站精品国产| 日本 欧美在线| 在现免费观看毛片| 热99re8久久精品国产| 91精品国产九色| 国产精品一区二区免费欧美| 熟妇人妻久久中文字幕3abv| 在线天堂最新版资源| 色噜噜av男人的天堂激情| 精品久久国产蜜桃| 欧美成人性av电影在线观看| 亚洲国产色片| 欧美高清性xxxxhd video| 日韩在线高清观看一区二区三区 | 亚洲最大成人中文| 小说图片视频综合网站| 成人国产一区最新在线观看| 精品乱码久久久久久99久播| 麻豆一二三区av精品| 极品教师在线视频| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产精华一区二区三区| 午夜福利欧美成人| 99久久精品热视频| 久久久久国内视频| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩| 日本一二三区视频观看| 午夜免费男女啪啪视频观看 | 99热只有精品国产| bbb黄色大片| 亚洲精华国产精华液的使用体验 | 国产高清视频在线播放一区| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| h日本视频在线播放| 他把我摸到了高潮在线观看| 熟女人妻精品中文字幕| 成人国产综合亚洲| 九色成人免费人妻av| 午夜激情欧美在线| 久久久久国产精品人妻aⅴ院| 国产伦精品一区二区三区视频9| 99riav亚洲国产免费| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| 麻豆成人午夜福利视频| 日本熟妇午夜| 五月玫瑰六月丁香| 久久精品国产亚洲网站| 日本成人三级电影网站| 亚洲最大成人av| 亚洲精品456在线播放app | 能在线免费观看的黄片| 尾随美女入室| 久久久久久久久大av| 国产欧美日韩一区二区精品| 日韩,欧美,国产一区二区三区 | 国产av麻豆久久久久久久| 国产精品福利在线免费观看| 日韩高清综合在线| 国产精品不卡视频一区二区| 一区福利在线观看| 能在线免费观看的黄片| 少妇高潮的动态图| 久久天躁狠狠躁夜夜2o2o| 免费看日本二区| 99久久九九国产精品国产免费| 99热只有精品国产| 国产v大片淫在线免费观看| 亚洲人成网站在线播放欧美日韩| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 999久久久精品免费观看国产| 亚州av有码| bbb黄色大片| 国内精品一区二区在线观看| 成年女人永久免费观看视频| 高清在线国产一区| 国产精品综合久久久久久久免费| 免费观看人在逋| 在线播放国产精品三级| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 中文字幕熟女人妻在线| 别揉我奶头 嗯啊视频| av在线蜜桃| 欧美一区二区亚洲| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 免费搜索国产男女视频| 赤兔流量卡办理| 日韩中字成人| 日本欧美国产在线视频| 老熟妇乱子伦视频在线观看| 最近视频中文字幕2019在线8| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满 | 国产精华一区二区三区| 又黄又爽又免费观看的视频| 久久久久久久午夜电影| 免费黄网站久久成人精品| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 久久久久久久亚洲中文字幕| 亚洲成人精品中文字幕电影| 麻豆国产av国片精品| 国产免费男女视频| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 欧美日韩黄片免| 亚洲无线在线观看| 天堂网av新在线| 国产精品无大码| 午夜免费激情av| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 观看美女的网站| 午夜福利成人在线免费观看| 日本-黄色视频高清免费观看| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 伦理电影大哥的女人| 床上黄色一级片| 亚洲av不卡在线观看| 日韩欧美 国产精品| 欧美激情在线99| 亚洲三级黄色毛片| 久久这里只有精品中国| 性欧美人与动物交配| 永久网站在线| 夜夜爽天天搞| av专区在线播放| 日韩中字成人| bbb黄色大片| av福利片在线观看| 校园人妻丝袜中文字幕| 18+在线观看网站| 99热网站在线观看| 亚洲av不卡在线观看| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 国产人妻一区二区三区在| 九色成人免费人妻av| 亚洲精品国产成人久久av| 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| 国产欧美日韩精品亚洲av| 99久国产av精品| 不卡一级毛片| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看 | 欧美日韩精品成人综合77777| 禁无遮挡网站| 又爽又黄a免费视频| 亚洲午夜理论影院| 日韩欧美精品免费久久| 在线看三级毛片| 联通29元200g的流量卡| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 男女啪啪激烈高潮av片| 国产精品嫩草影院av在线观看 | 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 午夜福利18| 99在线视频只有这里精品首页| 国产精品国产高清国产av| 欧美一区二区国产精品久久精品| 人妻丰满熟妇av一区二区三区| 成人国产麻豆网| 在线免费观看不下载黄p国产 | 很黄的视频免费| 久久香蕉精品热| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 国产精品伦人一区二区| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 22中文网久久字幕| 最近在线观看免费完整版| av福利片在线观看| 性插视频无遮挡在线免费观看| 伦精品一区二区三区| 天堂√8在线中文| 国产久久久一区二区三区| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| videossex国产| 熟妇人妻久久中文字幕3abv| 俄罗斯特黄特色一大片| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 黄色配什么色好看| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 国产一区二区在线av高清观看| 国产综合懂色| 我的女老师完整版在线观看| 在线播放国产精品三级| 久久久成人免费电影| 亚洲av不卡在线观看| 成人av在线播放网站| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 欧美日韩精品成人综合77777| 嫩草影院精品99| 午夜福利在线观看免费完整高清在 | 深夜a级毛片| 亚洲狠狠婷婷综合久久图片| 最后的刺客免费高清国语| 99久久成人亚洲精品观看| 日韩人妻高清精品专区| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久 | 日韩一区二区视频免费看| 久久精品国产清高在天天线| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 亚洲欧美激情综合另类| av在线观看视频网站免费| 乱系列少妇在线播放| 不卡一级毛片| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 午夜精品在线福利| 国产午夜福利久久久久久| 久久久久国内视频| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 999久久久精品免费观看国产| a在线观看视频网站| 免费av不卡在线播放| 69人妻影院| 亚洲无线观看免费| 日本免费a在线| 亚洲三级黄色毛片| 精品久久久久久久久亚洲 | 在线天堂最新版资源| 波多野结衣高清作品| 国产麻豆成人av免费视频| .国产精品久久| 精品一区二区免费观看| 狠狠狠狠99中文字幕| 亚洲精品456在线播放app | 精品免费久久久久久久清纯| 观看免费一级毛片| 日本黄大片高清| 99九九线精品视频在线观看视频| 国产精品一区二区免费欧美| 搡老岳熟女国产| 好男人在线观看高清免费视频| 亚洲性久久影院| 他把我摸到了高潮在线观看| bbb黄色大片| 伦理电影大哥的女人| 琪琪午夜伦伦电影理论片6080| 亚洲图色成人| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久com| 色综合色国产| 哪里可以看免费的av片| 性欧美人与动物交配| 欧美区成人在线视频| 我要看日韩黄色一级片| 国产日本99.免费观看| 三级国产精品欧美在线观看| 中文字幕熟女人妻在线| av黄色大香蕉| 日日啪夜夜撸| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 日韩亚洲欧美综合| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产 | 国国产精品蜜臀av免费| 国内久久婷婷六月综合欲色啪| 22中文网久久字幕| 欧美成人一区二区免费高清观看| 免费av观看视频| 国产伦精品一区二区三区视频9| 久99久视频精品免费| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 午夜福利成人在线免费观看| 在线观看av片永久免费下载| 亚洲狠狠婷婷综合久久图片| 日韩一区二区视频免费看| 午夜a级毛片| 久久午夜亚洲精品久久| 亚洲成av人片在线播放无| 免费电影在线观看免费观看| 欧美成人免费av一区二区三区| 亚洲精品在线观看二区| 男人和女人高潮做爰伦理| 波野结衣二区三区在线| 国产免费av片在线观看野外av| 美女高潮的动态| 国语自产精品视频在线第100页| 亚洲av一区综合| 久久久久久久亚洲中文字幕| avwww免费| 免费在线观看成人毛片| 少妇高潮的动态图| 变态另类丝袜制服| 级片在线观看| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 最新中文字幕久久久久| 国产成人av教育| 亚洲精品一卡2卡三卡4卡5卡| 成人特级av手机在线观看| 色尼玛亚洲综合影院| 日日啪夜夜撸| 国产精品嫩草影院av在线观看 | 国产不卡一卡二| 特大巨黑吊av在线直播| 国产三级在线视频| 成人av在线播放网站| 九九在线视频观看精品| 丝袜美腿在线中文| 国产成人一区二区在线| 少妇的逼好多水| 99热精品在线国产| 十八禁网站免费在线| 精品久久久久久久久久久久久| 亚洲精品日韩av片在线观看| 最近在线观看免费完整版| 在线观看66精品国产| 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 欧美日韩精品成人综合77777| 亚洲一区高清亚洲精品| 久久热精品热| 国产亚洲精品久久久com| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 中文字幕av在线有码专区| 亚洲av免费在线观看| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成伊人成综合网2020| 日韩欧美 国产精品| 精品欧美国产一区二区三| 国产亚洲精品久久久久久毛片| 99国产精品一区二区蜜桃av| 成人三级黄色视频| 级片在线观看| 国产一区二区三区av在线 | 精品久久久久久久久亚洲 | 老熟妇仑乱视频hdxx| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 精品久久久久久成人av| 亚洲av成人av| 亚洲性久久影院| 国产高清有码在线观看视频| av.在线天堂| 乱系列少妇在线播放| 国产精品无大码| 国产精品永久免费网站| 亚洲熟妇中文字幕五十中出| 国产伦在线观看视频一区| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 亚洲人成伊人成综合网2020| 国产高清激情床上av| 日本一本二区三区精品| 国产精品自产拍在线观看55亚洲| 精品福利观看| 欧美色视频一区免费| 亚洲真实伦在线观看| 免费黄网站久久成人精品| 五月玫瑰六月丁香| 国产伦一二天堂av在线观看| www.www免费av| 久久精品人妻少妇| 成人亚洲精品av一区二区| 亚洲av免费在线观看| 亚洲精华国产精华液的使用体验 | 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 久久国内精品自在自线图片| 人人妻人人澡欧美一区二区| 又爽又黄a免费视频| 国产一区二区激情短视频| 日韩国内少妇激情av| 国模一区二区三区四区视频| 久久久久久九九精品二区国产| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品合色在线| 午夜精品在线福利| 少妇人妻一区二区三区视频| 国产在线精品亚洲第一网站| 五月玫瑰六月丁香| 联通29元200g的流量卡| 国产三级中文精品| 国产高清视频在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 91麻豆av在线| 黄色女人牲交| 中文字幕av在线有码专区| 国产精品久久久久久av不卡| 亚洲专区中文字幕在线| 亚洲男人的天堂狠狠| 国产亚洲91精品色在线| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| 国产三级在线视频| 国产精品永久免费网站| or卡值多少钱| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 色综合亚洲欧美另类图片| 赤兔流量卡办理| 国产精品久久久久久av不卡| 成人国产一区最新在线观看| 亚洲人成网站在线播| 长腿黑丝高跟| 国产精品国产高清国产av| 成人av在线播放网站| 色噜噜av男人的天堂激情| 日日夜夜操网爽| 日韩av在线大香蕉| 国产乱人视频| 日本在线视频免费播放| 狂野欧美激情性xxxx在线观看| 精品福利观看| 非洲黑人性xxxx精品又粗又长| 精品一区二区免费观看| 亚洲成av人片在线播放无| 最后的刺客免费高清国语| av在线观看视频网站免费| 亚洲天堂国产精品一区在线| 欧美一区二区亚洲| 亚洲中文字幕一区二区三区有码在线看| 成年免费大片在线观看| 亚洲av免费在线观看| 不卡视频在线观看欧美| 久久久色成人| 久久精品久久久久久噜噜老黄 | 国产私拍福利视频在线观看| 国产成人一区二区在线| 亚洲av免费高清在线观看| 91av网一区二区| 精品国内亚洲2022精品成人| av视频在线观看入口| 午夜福利高清视频| 在线播放国产精品三级| 18禁在线播放成人免费| 国产极品精品免费视频能看的| 久久久国产成人精品二区| 国产亚洲91精品色在线| 免费无遮挡裸体视频| 精品无人区乱码1区二区| 我的女老师完整版在线观看| 伦精品一区二区三区| 日韩亚洲欧美综合| avwww免费| 午夜免费男女啪啪视频观看 | 久久人妻av系列| 一夜夜www| 国内少妇人妻偷人精品xxx网站| 欧洲精品卡2卡3卡4卡5卡区| 我要看日韩黄色一级片| 永久网站在线| 精品99又大又爽又粗少妇毛片 | 亚洲色图av天堂| 51国产日韩欧美| 色综合亚洲欧美另类图片| 国产伦一二天堂av在线观看| 99在线视频只有这里精品首页| 亚洲美女视频黄频| av在线亚洲专区| 久久久国产成人免费| 热99在线观看视频| 尾随美女入室| 麻豆成人午夜福利视频| 村上凉子中文字幕在线| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区久久| 最后的刺客免费高清国语| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 美女大奶头视频| 夜夜爽天天搞| 九九在线视频观看精品| 精品欧美国产一区二区三| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 亚洲精品粉嫩美女一区| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久av不卡| 亚洲人成网站在线播放欧美日韩| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 俺也久久电影网| 男女啪啪激烈高潮av片|