• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solution of Post-Buckling&Limit Load Problems,Without Inverting the Tangent Stiffness Matrix&Without Using Arc-Length Methods

    2014-04-17 07:59:05ElgoharyDongJunkinsandAtluri

    T.A.Elgohary,L.Dong,J.L.Junkinsand S.N.Atluri

    1 Solving NAEs without Inverting the Jacobian Matrix

    A large number of problems in engineering and applied sciences,such as large deformation solid mechanics, fluid dynamics,post-buckling of structural frames,plates,and shells,etc,as characterized by nonlinear differential equations,will lead to a system of nonlinear algebraic equations(NAEs)after discretization:

    Fi(x1,...,xn)=0,i=1,...,n,or in their vector-form:

    where,a represents the initial guess of the solution,B is the Jacobian(tangent stiffness)matrix given byandkdenotes the number of iteration.

    In computational solid mechanics,the trend over the past 30–40 years has been to directly derive the tangent stiffness matrix,B,(rather than forming the nonlinear equations,F(x)=0)through incremental finite element methods[Cris field(1983);Kondoh and Atluri(1986);Riks(1972);Wempner(1971)].Recently,however,[Dai,Yue,and Atluri(2014)]directly derived the system of equations,F(x)=0,for a von Kármán plate theory using the Galerkin method.

    As motivated by Eq.2,[Hirsch and Smale(1979)]also introduced the continuous Newton’s method:

    Figure 1:Newton’s Method Fails at Limit Points

    However,in order to find the solution,both the iterative as well as the continuous Newton’s methods require the the inversion of the Jacobian matrix.On the one hand,inverting the Jacobian matrix in each iteration is computationally very expensive.On the other hand,for complex problems where the Jacobian matrix may be singular,such as near the limit-load points for geometrically nonlinear frames or in elastic-plastic solids,the iterative as well as the continuous Newtons’s methods become problematic,as shown in Fig.1.Various variants of the arc-length methods have been widely used for marching through the limit-points,in post-buckling analyses,such as those presented by[Wempner(1971);Riks(1972);Cris field(1983);Lam and Morley(1992)].These methods generally involve complex procedures by appending various constraints,and monitoring the eigenvalues of the Jacobian matrices.It will be advantageous to have a method to find the solutions for post-buckling problems of structures without inverting the Jacobian matrix,without using the arc-length method,and without worrying about initial guesses for the Newton’s methods.

    In order to eliminate the need for inverting the Jacobian matrix in the Newton’s iteration procedure,[Liu and Atluri(2008a)]proposed an alternate first-order system of nonlinear ODEs,for the solution of the NAEs,F(x)=0,by postulating an evolutionary equation for x,thus:

    whereνis a nonzero constant andq(t)may in general be a monotonically increasing function oft.In their approach,the termν/q(t)plays the major role of being a stabilizing controller to help obtain the solution even for a bad initial guess,and speeds up the convergence.This Fictitious Time Integration Method was successfully applied to the solution of various engineering problems in[Liu and Atluri(2008a,b,c)].In spite of its success,the Fictitious Time Integration Method was postulated only based on an engineering intuition,does not involve the Jacobian matrix at all,and was shown to only have local convergence.

    The homotopy method,as firstly introduced by[Davidenko(1953)],represents one of the best methods to enhance the convergence from a local convergence to a global convergence.Previously,all the homotopy methods were based on the construction of a vector homotopy function H(x,t),which serves the objective of continuously transforming a function G(x)into F(x)by introducing a homotopy parametert(0≤t≤1).The homotopy parametertcan be treated as a time-like fictitious variable,and the homotopy function can be any continuous function such that

    Two of the most popular vector homotopy functions are the Fixed-point Homotopy Function:

    and the Newton Homotopy Function:

    By using the vector homotopy method,the solution of the NAEs can be obtained by numerically integrating:

    As can be seen in Eq.7,the implementation of the Vector Homotopy Method necessitates the inversion of the matrixat each iteration.In order to remedy the shortcoming of the Vector Homotopy Method,[Liu,Yeih,Kuo,and Atluri(2009)]proposed to solve the system of NAEs by constructing a Scalar Homotopy Function h(x,t),such that h(x,0)=0?‖G(x)‖=0 and h(x,1)=0?‖F(xiàn)(x)‖=0.As an example,the following Scalar Fixed-point Homotopy Function was introduced in[Liu,Yeih,Kuo,and Atluri(2009)]:

    However,it may be more convenient to to define homotopy functions witht∈[0,∞]instead oft∈[0,1],and use a positive and monotonically increasing functionQ(t)to enhance the convergence speed.In this paper,we consider the following two scalar homotopy functions,as denoted by the Scalar Fixed-point Homotopy Function:

    and the Scalar Newton Homotopy function:

    respectively.

    By selecting a driving vector u so that the evolution of˙x is parallel to u,the system of NAEs can be solved by numerically integrating:

    With different scalar homotopy functionsh(x,t),differentQ(t),and different driving vectors,u,Eq.11 leads to different variants of scalar homotopy methods,see[Liu,Yeih,Kuo,and Atluri(2009);Ku,Yieh,and Liu(2010);Dai,Yue,and Atluri(2014)].In this paper,we select u such thatThus,ifhfis to be used,Eq.11 leads to:

    In this manuscript,Q(t)=etis used for simplicity,while various possible choices can be found in[Dai,Yue,and Atluri(2014)].

    For both of these two methods,the inversion of the Jacobian matrix is not involved.However,if a scalar equation is to be considered,Eq.13 will fail at whereB=0.Therefore,Eq.13 should only be used for non-scalar equations,while Eq.12 can be used for general scalar and vector NAEs.

    2 Solving the Williams’Toggle with a Scalar Homotopy Method

    2.1 The Classical Williams’Solution

    The classical toggle problem,as introduced by[Williams(1964)],comprising of two rigidly jointed equal members of lengthland angleβwith respect to the horizontal axis,and subjected to an externally applied vertical loadWat the apex,is shown in Fig.2.

    The structure deforms in a symmetrical mode as shown in Fig.3 with the deflected position of the neutral axis of memberrsdenoted byr′s′,

    Figure 2:The classical Williams’toggle

    Figure 3:Symmetrical deformation of toggle

    Following the same assumptions and nomenclature in[Williams(1964)],the externally applied loadWcan be expressed in terms of the deformation at the apex,δ,through the following series of equations,

    where,Fis the component of the reaction force perpendicular to the undeflected position of the neutral axis denoted here byrsandPis the component of the force at the end of the member parallel tors.Pis expressed in terms ofδas:

    where,AEis the extensional rigidity of the member.Fis then expressed in terms ofδusing nonlinear elastic stability theory as:

    Combining Eq.14 through Eq.17,for a given loadW,the vertical displacement,δ,of the Williams’toggle can be found by solving the following scalar nonlinear algebraic equation:

    In this study,the set of parametersl,EI,AEare considered to be the same as those presented in[Williams(1964)],and are given in Tab.1.By changing the height of the apex of the toggle,three cases of interest are generated,as shown in Fig.4.The first case takeslsinβ=0.32,which represents the original plot in[Williams(1964)].The second and third cases,lsinβ=0.38 andlsinβ=0.44,respectively,show the effect of raising the apex on the load-deflection curve of the toggle,and introduce limit points in the scalar NAE at which the Jacobian is singular.

    2.2 Solving Williams’Equation with a Scalar Homotopy Method

    In order to characterize the deflectionδresulting from a specific external load,the scalar NAE(Eq.18)must be solved.To better understand the limitations on solving the NAE utilizing the classical Newton’s method,the behavior of the Jacobian derived analytically from Eq.18 is shown in Fig.5 for the three values oflsinβintroduced earlier.

    Table 1:Parameters set in[Williams(1964)]

    Figure 4:Three Cases of Load-Deflection Curves for Williams’Toggle

    Limit-points are those where the Jacobian becomes close to zero and thus classical Newton’s method will fail.For this end,the previously introduced Scalar Homotopy Methods are used to avoid inverting the Jacobian for the solution of the NAE.As discussed in Section 1,the Scalar Newton Homotopy Method(Eq.13)only works for a system of NAEs.Thus,the Scalar Fixed-point Homotopy Method(Eq.12)is adopted here for the solution of the scalar NAE of the Williams’toggle.Setting the tolerance to 10?6for the original Williams’toggle withlsinβ=0.32,the Williams’equation can be solved for an arbitrary load,here chosen asW=27.11 lb.A comparison between Newton’s Method and the Scalar Fixed-point Homotopy Method is shown in Tab.2

    Figure 5:Scalar Jacobian Evaluation of Williams’Scalar NAE

    Table 2:Solution of Original Williams’Equation with No Limit Points

    The comparison shows the fast convergence speed of Newton’s method achieving the required accuracy in just 9 iterations whereas it took the Scalar Fixed-point Homotopy Method 30 iterations to achieve similar accuracy results.This case oflsinβ=0.32 as shown in Fig.5 has no singularities in the Jacobian,thus the superior performance of Newton’s method is expected.Fig.6 show the evolution of the solution and the fast convergence of Newton’s Method as compared to the Scalar Fixed-point Homotopy Method.

    A second case is considered forlsinβ=0.44 where the Williams’equation is solved for an externally applied load selected near the limit point,W=43.79 lb.Both Newton’s Method and the Scalar Fixed-point Homotopy Method are utilized,and the results are shown in Tab.3

    After 1000 iterations Newton’s method did not converge to the solution whereas the Scalar Fixed-point Homotopy Method achieved the required accuracy in 345 iterations.Fig.7 shows a comparison between the evolution of the solution for the two methods.It is shown that Newton’s method will keep fluctuating about the solution and not converge to achieve the required accuracy,whereas the Scalar Fixed-point Homotopy Method converges to the solution with the required high accuracy.

    Figure 6:Vertical Deflection vs.No.Iterations,lsinβ=0.32

    Table 3:Solution of Williams’Equation for Loading near Limit Point

    Figure 7:Vertical Deflection vs.No.Iterations,lsinβ=0.44

    3 Application to Finite Element Analyses

    3.1 A Generalized Finite Element Model for Frame Structures

    The currently adapted Scalar Homotopy Methods can be easily combined with general purpose nonlinear finite element programs,by taking the directly derived tangent stiffness matrix at each iteration as the Jacobian matrix,and taking the difference between generalized internal force vector and the external force vector(the residual)as F(x).In this manuscript,explicitly derived tangent stiffness matrices and nodal forces of large-deformation beam-column members are adopted following the work of[Kondoh and Atluri(1986)].The basic derivations of[Kondoh and Atluri(1986)]are briefly reviewed here.

    First,the nomenclature and the sign convention used in the derivation for a general beam column member are shown in Fig.8.The functionsw(z)andu(z)describe the displacement at the centroidal axis of the element along thezand thexaxes,respectively.The anglesare the angles between the tangent to the deformed centroidal axis and the line joining the two nodes of the deformed element at nodes 1 and 2,respectively.M1andM2are the bending moments at the two nodes andNis the axial force in the beam member.The total rotation of the beam member is then given by,

    The total stretch/deformation of the beam member is then expressed in terms of the displacements at the two nodes as,

    Figure 8:Kinematics&Nomenclature for a Beam Member

    The axial force and bending moment are non-dimensionalized through,

    The non-rigid rotation and the non-dimensional bending moment are decomposed into symmetric and anti-symmetric parts given by,

    The relation between the generalized displacements and forces at the nodes of the beam member is given by,

    where,haandhsare given by,

    The kinematics variables can then be expressed in a vector form for a beam membermas,

    The increment of the internal energy of a beam member is then expressed in terms of the increment of kinematics variables vector,the tangent stiffness matrixand the internal force vectoras,

    The tangent stiffness matrix,and the internal force vector,for the membermare given by,

    where the elements constructing Eq.29 and Eq.30 are given by,

    The load-deflection curve generated using the finite element model in Eq.28 is compared against the original Williams’problem withlsinβ=0.32 in Fig.9.Other cases withlsinβ=0.38 andlsinβ=0.44 are shown in Fig.10 and Fig.11,respectively.The Scalar Fixed Point Homotopy Method,Eq.9,is used to generate the load-deflection curves for the finite element model for all three cases.As shown,the finite element model accurately describe the load-deflection characteristics of the Williams’toggle as it agrees well with the solutions of the scalar NAE presented in[Williams(1964)]and summarized in Eqs.14–18.The Scalar Fixed point Homotopy Method method successfully solved the FEM equations capturing the load-deflection relation around the limit points,at which the Newton’s method fails to find the solution,as will be shown in this next subsection.

    3.2 Solution of the Finite Element Model Using Scalar Homotopy Methods

    Figure 9:Load-Deflection,Williams’Equation&Finite Element,lsinβ =0.32

    Figure 10:Load-Deflection,Williams’Equation&Finite Element,lsinβ =0.38

    Figure 11:Load-Deflection,Williams’Equation&Finite Element,lsinβ =0.44

    Table 4:Solution of Finite Element Model for Loading near Limit Point

    The Scalar Fixed-point Homotopy Method,Eq.12,and the Scalar Newton Homotopy Method,Eq.13,are both applied to the finite element model to solve for the deflection given a specific load.As done in the previous section the case oflsinβ=0.44 is examined with the same value of the load applied near the limit point.Setting the tolerance for the relative residual error to be 10?6,the two methods are compared with Newton’s method and the results are shown in Tab.4.Both Scalar Homotopy Methods proved superior to the Newton’s method,as both converged to the solution with the required accuracy whereas the Newton’s method failed to find the solution after 1000 iterations.A zoomed in plot is shown in Fig.12 to illustrate the oscillating behavior of Newton’s method and its failure to find the solution.The Scalar Fixed-point Homotopy Method converged in 160 iterations(Fig.13),which is about one third the number of iterations required by the Scalar Newton Homotopy Method,(Fig.14).This makes the Scalar Fixed-point Homotopy Method more suitable for solving the problem of Williams’toggle,whereas the Scalar Newton Homotopy Method provides a valid alternative to obtain the solution.The Scalar Homotopy Methods developed in this work and in previous works are suitable to solve general nonlinear finite element models with very high accuracy,without inverting the tangent stiffness matrix,and without having to use the computationally expensive arc-length methods.

    Figure 12:Residual Error in Newton’s Method

    Figure 13:Residual Error in Scalar Fixed-point Homotopy Method

    Figure 14:Residual Error in Scalar Newton Homotopy Method

    Table 5:Solution of Finite Element Model for Loading near Limit Point

    In order to illustrate the efficiency of the scalar homotopy methods the tolerance for the relative residual error is relaxed to match existing finite element solvers(0.1%).For this case an external load of 44 lb.is applied and the results are shown in Tab.5.The two methods achieved the required accuracy within 14 iterations,which demonstrates the power of the scalar homotopy methods in solving engineering problems and the fast convergence that can be achieved when addressing such problems.The Newton’s method failed after 1000 iterations,with the same oscillatory non-convergent behavior shown in Fig.12.Figs.15-16 show the path to convergence of the Scalar Fixed-point Homotopy Method and the Scalar Newton Homotopy Method,respectively.

    Figure 15:Residual Error in Scalar Fixed-point Homotopy Method

    Figure 16:Residual Error in Scalar Newton Homotopy Method

    4 Conclusion

    The Scalar Homotopy Method is applied to the solution of post-buckling and limit load problems of plane frames considering geometrical nonlinearities.Explicitly derived tangent stiffness matrices and nodal forces of large-deformation beam-column members are adopted following the work of[Kondoh and Atluri(1986)].By using the Scalar Homotopy Method,nodal displacements of the equilibrium state are iteratively solved for,without inverting the Jacobian(tangent stiffness)ma-trix and without using complex arc-Length methods.This simple method thus saves computational time and avoids the problematic behavior of the Newton’s method when the Jacobian matrix is singular.While the simple Williams’toggle is considered in this paper,extension to general finite element analyses of space frames,plates,shells and elastic-plastic solids will be considered in forthcoming studies.

    Acknowledgement:This work is supported by the Texas A&M Institute for Advanced Study(TIAS).It was initiated while S.N.Atluri visited TIAS briefly in January,2014.The support of various U.S.government agencies during 1970-2014 is also thankfully acknowledged.Messrs Le and Riddick of ARL are thanked for their encouragement.

    Cris field,M.A.(1983):An arc-length method including line searches and accelerations.International journal for numerical methods in engineering,vol.19,no.9,pp.1269–1289.

    Dai,H.;Yue,X.;Atluri,S.N.(2014):Solutions of the von kármán plate equations by a galerkin method,without inverting the tangent stiffness matrix.Journal of Mechanics of Materials and Structures,vol.9,pp.195–226.

    Davidenko,D.F.(1953):On a new method of numerical solution of systems of nonliear equations.Dokl.Akad.Nauk SSSR,vol.88,pp.601–602.

    Hirsch,M.W.;Smale,S.(1979):On algorithms for solving f(x)=0.Communications on Pure and Applied Mathematics,vol.32,no.3,pp.281–312.

    Kondoh,K.;Atluri,S.N.(1986): A simplified finite element method for large deformation,post-buckling analyses of large frame structures,using explicitly derived tangent stiffness matrices.International journal for numerical methods in engineering,vol.23,no.1,pp.69–90.

    Ku,C.-Y.;Yieh,W.;Liu,C.-S.(2010): Solving non-linear algebraic equations by a scalar newton-homotopy continuation method.International Journal of Nonlinear Sciences and Numerical Simulation,vol.11,no.6,pp.435–450.

    Lam,W.;Morley,C.(1992): Arc-length method for passing limit points in structural calculation.Journal of structural engineering,vol.118,no.1,pp.169–185.

    Liu,C.-S.;Atluri,S.N.(2008a): A novel time integration method for solving a large system of non-linear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.31,no.2,pp.71–83.

    Liu,C.-S.;Atluri,S.N.(2008b):A novel fictitious time integration method for solving the discretized inverse sturm-liouville problems,for specified eigenvalues.CMES:Computer Modeling in Engineering&Sciences,vol.36,no.3,pp.261–286.

    Liu,C.-S.;Atluri,S.N.(2008c):A fictitious time integration method(ftim)for solving mixed complementarity problems with applications to non-linear optimization.CMES:Computer Modeling in Engineering&Sciences,vol.34,no.2,pp.155–178.

    Liu,C.S.;Yeih,W.;Kuo,C.L.;Atluri,S.N.(2009): A scalar homotopy method for solving an over/under determined system of non-linear algebraic equations.CMES:Computer Modeling in Engineering and Sciences,vol.53,no.1,pp.47–71.

    Riks,E.(1972): The application of newton’s method to the problem of elastic stability.Journal of Applied Mechanics,vol.39,no.4,pp.1060–1065.

    Wempner,G.A.(1971): Discrete approximations related to nonlinear theories of solids.International Journal of Solids and Structures,vol.7,no.11,pp.1581–1599.

    Williams,F.W.(1964):An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections.The Quarterly Journal of Mechanics and Applied Mathematics,vol.17,no.4,pp.451–469.

    免费看十八禁软件| 久久 成人 亚洲| 国产成人精品无人区| 天天影视国产精品| 99久久99久久久精品蜜桃| 无人区码免费观看不卡| 美女午夜性视频免费| 亚洲三区欧美一区| 一级毛片精品| 首页视频小说图片口味搜索| 久久中文字幕一级| 精品久久久久久,| 国产精品一区二区精品视频观看| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 久久这里只有精品19| 亚洲狠狠婷婷综合久久图片| 村上凉子中文字幕在线| 国产成人欧美| 日韩国内少妇激情av| 国产日韩一区二区三区精品不卡| 两性夫妻黄色片| 久久中文字幕一级| 午夜福利一区二区在线看| 亚洲一区二区三区色噜噜 | 91麻豆av在线| 欧美在线一区亚洲| 国产免费av片在线观看野外av| 97碰自拍视频| 欧美激情久久久久久爽电影 | 国产成人av教育| 夜夜爽天天搞| 欧美在线一区亚洲| 国产伦人伦偷精品视频| 久久天躁狠狠躁夜夜2o2o| 国产精品美女特级片免费视频播放器 | 波多野结衣一区麻豆| 欧美日韩一级在线毛片| 老司机福利观看| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| 91在线观看av| 美女国产高潮福利片在线看| 亚洲人成网站在线播放欧美日韩| 变态另类成人亚洲欧美熟女 | 久久精品91蜜桃| 日韩免费av在线播放| 久久国产精品男人的天堂亚洲| 一二三四社区在线视频社区8| av在线天堂中文字幕 | www国产在线视频色| svipshipincom国产片| 精品国产乱子伦一区二区三区| 国产成人免费无遮挡视频| 国产精品99久久99久久久不卡| 欧美日韩黄片免| 久久人人精品亚洲av| 91成人精品电影| 国产精品久久久av美女十八| 他把我摸到了高潮在线观看| 午夜a级毛片| 免费在线观看完整版高清| 99国产精品免费福利视频| 欧美日本中文国产一区发布| 90打野战视频偷拍视频| 国产精品爽爽va在线观看网站 | 黄色片一级片一级黄色片| 香蕉丝袜av| 亚洲七黄色美女视频| 满18在线观看网站| 免费高清视频大片| 露出奶头的视频| 久久天堂一区二区三区四区| 午夜福利在线免费观看网站| 日本免费a在线| 国产黄色免费在线视频| 欧美日韩视频精品一区| 国产区一区二久久| 91麻豆av在线| 黑人欧美特级aaaaaa片| 黄色a级毛片大全视频| 国产精品电影一区二区三区| 亚洲中文日韩欧美视频| 99国产精品99久久久久| 午夜91福利影院| 日韩国内少妇激情av| 妹子高潮喷水视频| 亚洲成人精品中文字幕电影 | 在线看a的网站| 大型av网站在线播放| 亚洲五月婷婷丁香| aaaaa片日本免费| 成人亚洲精品av一区二区 | 在线观看www视频免费| 少妇粗大呻吟视频| 免费在线观看影片大全网站| 久久久久久人人人人人| 91成人精品电影| 无遮挡黄片免费观看| 男女午夜视频在线观看| 国产亚洲精品第一综合不卡| 亚洲专区中文字幕在线| 亚洲专区中文字幕在线| 国产深夜福利视频在线观看| 亚洲美女黄片视频| 又黄又粗又硬又大视频| 免费在线观看日本一区| 午夜免费鲁丝| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区| 在线观看66精品国产| 亚洲国产精品合色在线| 又黄又爽又免费观看的视频| 一进一出抽搐gif免费好疼 | 午夜老司机福利片| 精品第一国产精品| 亚洲av片天天在线观看| 久久精品91蜜桃| 午夜影院日韩av| 他把我摸到了高潮在线观看| 国内毛片毛片毛片毛片毛片| 成年人黄色毛片网站| 99香蕉大伊视频| 欧美久久黑人一区二区| 99国产精品一区二区三区| 国产高清视频在线播放一区| 亚洲精品美女久久av网站| 精品福利永久在线观看| 中文字幕人妻熟女乱码| 制服人妻中文乱码| av免费在线观看网站| 久久久久亚洲av毛片大全| 91麻豆精品激情在线观看国产 | 亚洲精品久久午夜乱码| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 在线看a的网站| 中文字幕色久视频| 无限看片的www在线观看| 新久久久久国产一级毛片| 露出奶头的视频| 人人妻人人澡人人看| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品久久久久久毛片| 日韩欧美一区视频在线观看| 久久久精品欧美日韩精品| 国产欧美日韩一区二区精品| 成人三级做爰电影| 成人精品一区二区免费| 中文亚洲av片在线观看爽| 亚洲第一av免费看| 女生性感内裤真人,穿戴方法视频| www.www免费av| 国产精品亚洲av一区麻豆| 日日夜夜操网爽| 女同久久另类99精品国产91| 色在线成人网| 亚洲精品粉嫩美女一区| 亚洲五月天丁香| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| av超薄肉色丝袜交足视频| 我的亚洲天堂| 国产xxxxx性猛交| 十八禁人妻一区二区| 日日爽夜夜爽网站| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| 搡老乐熟女国产| 国产激情欧美一区二区| 麻豆一二三区av精品| 亚洲成人免费电影在线观看| 国产精品一区二区精品视频观看| av天堂在线播放| 另类亚洲欧美激情| 黄频高清免费视频| 国产精品美女特级片免费视频播放器 | 亚洲精品国产区一区二| 一a级毛片在线观看| 久久人妻福利社区极品人妻图片| 99精品久久久久人妻精品| 欧美大码av| 精品福利观看| 国产成人系列免费观看| 欧美日韩乱码在线| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| 黑人欧美特级aaaaaa片| 99re在线观看精品视频| 99在线视频只有这里精品首页| 国产熟女xx| 午夜福利一区二区在线看| 中文字幕人妻熟女乱码| 老司机在亚洲福利影院| 亚洲av成人av| 丰满人妻熟妇乱又伦精品不卡| 一进一出抽搐gif免费好疼 | 亚洲人成网站在线播放欧美日韩| 性色av乱码一区二区三区2| 91大片在线观看| 精品人妻1区二区| 老鸭窝网址在线观看| 一级毛片精品| 国产免费av片在线观看野外av| 人人妻人人澡人人看| 老司机在亚洲福利影院| 国产精品av久久久久免费| 国产av一区在线观看免费| 日韩精品青青久久久久久| 久久久久久久久久久久大奶| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| 欧美中文日本在线观看视频| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一出视频| 久久精品影院6| 精品日产1卡2卡| 国产精品综合久久久久久久免费 | 男人的好看免费观看在线视频 | 亚洲成人免费电影在线观看| 大型av网站在线播放| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 亚洲精品一二三| 女人精品久久久久毛片| 午夜精品国产一区二区电影| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 亚洲av成人av| 91大片在线观看| 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| 热re99久久国产66热| 在线视频色国产色| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠躁躁| 午夜福利在线免费观看网站| 很黄的视频免费| 黄色毛片三级朝国网站| 18禁观看日本| 久久精品影院6| 国产欧美日韩一区二区精品| 日韩大尺度精品在线看网址 | 一级黄色大片毛片| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 亚洲欧洲精品一区二区精品久久久| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 久久九九热精品免费| 一级毛片女人18水好多| 999精品在线视频| 日本黄色日本黄色录像| 日本vs欧美在线观看视频| 咕卡用的链子| 在线观看一区二区三区| 啪啪无遮挡十八禁网站| 亚洲色图综合在线观看| 国产男靠女视频免费网站| 国产精品 国内视频| 精品国产乱子伦一区二区三区| 国产深夜福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 国产97色在线日韩免费| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 久久伊人香网站| 久久精品91蜜桃| 国产亚洲欧美在线一区二区| 国产区一区二久久| 老司机亚洲免费影院| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| 美女福利国产在线| 亚洲国产毛片av蜜桃av| 免费搜索国产男女视频| 我的亚洲天堂| 99久久人妻综合| 久久精品国产亚洲av高清一级| 黄色丝袜av网址大全| 亚洲全国av大片| 亚洲七黄色美女视频| 丰满迷人的少妇在线观看| 天天影视国产精品| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美激情在线| 久久精品成人免费网站| 欧美日韩av久久| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 亚洲,欧美精品.| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av在线| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 国产亚洲av高清不卡| 国产精品日韩av在线免费观看 | 97碰自拍视频| 19禁男女啪啪无遮挡网站| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 亚洲片人在线观看| 国产熟女午夜一区二区三区| 91在线观看av| 精品人妻在线不人妻| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 国产欧美日韩一区二区三| 一级作爱视频免费观看| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 久久这里只有精品19| 手机成人av网站| 长腿黑丝高跟| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 免费av中文字幕在线| 欧美在线黄色| 美女扒开内裤让男人捅视频| 国产高清激情床上av| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 黄色 视频免费看| 成年人黄色毛片网站| 亚洲中文字幕日韩| 中文欧美无线码| 中文亚洲av片在线观看爽| av超薄肉色丝袜交足视频| 欧美激情久久久久久爽电影 | 女人精品久久久久毛片| 久久久国产欧美日韩av| 国产成人欧美在线观看| 欧美在线黄色| 国产成人啪精品午夜网站| 丁香欧美五月| 色综合欧美亚洲国产小说| 亚洲自拍偷在线| 极品人妻少妇av视频| 999久久久国产精品视频| 男人操女人黄网站| 悠悠久久av| 国产欧美日韩一区二区精品| 男人舔女人的私密视频| 亚洲欧美激情综合另类| 在线视频色国产色| 校园春色视频在线观看| 久久亚洲精品不卡| av天堂久久9| 91麻豆精品激情在线观看国产 | 色综合站精品国产| 精品卡一卡二卡四卡免费| 露出奶头的视频| 亚洲av成人一区二区三| 欧美日韩亚洲高清精品| 别揉我奶头~嗯~啊~动态视频| 每晚都被弄得嗷嗷叫到高潮| 99香蕉大伊视频| 欧美一区二区精品小视频在线| 中文字幕人妻熟女乱码| 久久久久亚洲av毛片大全| 免费在线观看亚洲国产| 成人三级黄色视频| www.精华液| 在线观看免费视频网站a站| 久久久国产一区二区| av欧美777| 色尼玛亚洲综合影院| 午夜a级毛片| 成人18禁在线播放| 人人妻人人爽人人添夜夜欢视频| 国产激情欧美一区二区| 日韩视频一区二区在线观看| 久久精品国产综合久久久| 黑丝袜美女国产一区| 一级毛片高清免费大全| 国产91精品成人一区二区三区| 操美女的视频在线观看| 欧美精品啪啪一区二区三区| 麻豆一二三区av精品| 丁香欧美五月| 制服诱惑二区| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 一本综合久久免费| 满18在线观看网站| 女同久久另类99精品国产91| 久9热在线精品视频| 女人被躁到高潮嗷嗷叫费观| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| 黑人猛操日本美女一级片| 久久天堂一区二区三区四区| 免费在线观看日本一区| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 免费人成视频x8x8入口观看| 亚洲欧美激情在线| 操出白浆在线播放| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 欧美精品一区二区免费开放| 神马国产精品三级电影在线观看 | 91字幕亚洲| 精品国产一区二区久久| 在线观看一区二区三区激情| √禁漫天堂资源中文www| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 黄频高清免费视频| 女同久久另类99精品国产91| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 成熟少妇高潮喷水视频| 亚洲av美国av| 国产成人免费无遮挡视频| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 青草久久国产| 99国产极品粉嫩在线观看| 久久久国产成人精品二区 | 91老司机精品| 淫秽高清视频在线观看| 曰老女人黄片| 欧美成狂野欧美在线观看| www.自偷自拍.com| 国产亚洲欧美精品永久| 99热只有精品国产| 亚洲av成人一区二区三| 日韩av在线大香蕉| 欧美亚洲日本最大视频资源| 国产区一区二久久| 精品国产美女av久久久久小说| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 成人18禁高潮啪啪吃奶动态图| 日本黄色视频三级网站网址| 69av精品久久久久久| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网| a级毛片在线看网站| 色播在线永久视频| 午夜a级毛片| 久久精品国产99精品国产亚洲性色 | 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 久久精品影院6| xxx96com| 丰满的人妻完整版| 午夜久久久在线观看| 国产真人三级小视频在线观看| 亚洲免费av在线视频| 乱人伦中国视频| 99热国产这里只有精品6| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 水蜜桃什么品种好| 欧美在线一区亚洲| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 日韩免费高清中文字幕av| 天天添夜夜摸| 色播在线永久视频| 国产精品爽爽va在线观看网站 | 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院| 夫妻午夜视频| 国产精品国产av在线观看| 国产精品一区二区在线不卡| 亚洲视频免费观看视频| 校园春色视频在线观看| 国产又爽黄色视频| 在线av久久热| 精品人妻1区二区| 免费在线观看亚洲国产| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 久久九九热精品免费| 热re99久久精品国产66热6| 高清毛片免费观看视频网站 | 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 精品福利永久在线观看| 国产乱人伦免费视频| 亚洲黑人精品在线| 九色亚洲精品在线播放| 麻豆av在线久日| 久久国产精品影院| 色精品久久人妻99蜜桃| 一级a爱视频在线免费观看| 夜夜爽天天搞| 少妇 在线观看| 久久久久九九精品影院| 动漫黄色视频在线观看| 国产色视频综合| 999精品在线视频| 亚洲人成电影免费在线| 亚洲 国产 在线| e午夜精品久久久久久久| 国产在线观看jvid| 国产精品久久电影中文字幕| 久久精品aⅴ一区二区三区四区| 久久伊人香网站| 在线永久观看黄色视频| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 国产av一区在线观看免费| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一av免费看| 久久久久久亚洲精品国产蜜桃av| www.自偷自拍.com| 色婷婷av一区二区三区视频| 久久久国产欧美日韩av| 91麻豆av在线| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 十八禁网站免费在线| 日日爽夜夜爽网站| 天天添夜夜摸| 热99国产精品久久久久久7| 日韩av在线大香蕉| 变态另类成人亚洲欧美熟女 | 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 波多野结衣一区麻豆| 99久久人妻综合| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 高潮久久久久久久久久久不卡| 91成年电影在线观看| 一边摸一边抽搐一进一出视频| 欧美精品一区二区免费开放| 人人妻,人人澡人人爽秒播| www国产在线视频色| 亚洲精品久久成人aⅴ小说| 久久影院123| 97碰自拍视频| 国产一区二区三区综合在线观看| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 久久热在线av| 欧美激情 高清一区二区三区| 成熟少妇高潮喷水视频| 精品一区二区三卡| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 最新美女视频免费是黄的| 亚洲精品美女久久久久99蜜臀| 在线观看免费高清a一片| 香蕉丝袜av| 欧美精品亚洲一区二区| 中文欧美无线码| 波多野结衣高清无吗| 人妻久久中文字幕网| 宅男免费午夜| 国产1区2区3区精品| 少妇裸体淫交视频免费看高清 | 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 欧美一级毛片孕妇| 亚洲精品一二三| 黄色毛片三级朝国网站| 一夜夜www| 亚洲中文字幕日韩| 99久久国产精品久久久| 啦啦啦免费观看视频1| 国产av一区在线观看免费| 美女高潮到喷水免费观看| 黑人巨大精品欧美一区二区mp4| 少妇的丰满在线观看| 琪琪午夜伦伦电影理论片6080| 夜夜看夜夜爽夜夜摸 | 乱人伦中国视频| 夜夜躁狠狠躁天天躁|