• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speedup of Elastic–Plastic Analysis of Large-scale Model with Crack Using Partitioned Coup ling Method with Subcycling Technique

    2014-04-17 06:18:33YasunoriYusaandShinobuYoshimura

    Yasunori Yusa and Shinobu Yoshimura

    1 Introduction

    Fracture mechanics plays a significant role in evaluating structural integrity with maintenance codes such as ASME Boiler and Pressure Vessel Code Section XI(Rules for Inservice Inspection of Nuclear Power Plant Components)and the JSME Code for Nuclear Power Generation Facilities(Rules on Fitness-for-service for Nuclear Power Plants).Although linear elastic fracture mechanics(LEFM)is utilized for fatigue and stress corrosion cracking(SCC)in such codes,elastic–plastic cracks are not generally considered at present.Recently,mainly due to disasters such as earthquakes and tsunamis,it has become important to study the behavior of a cracked structure in a plastic state.There is an issue in analyzing a cracked structure with plasticity.Elastic–plastic analysis with a nonlinear finite element method(FEM)requires much more computation time than linear elastic analysis.Plasticity is,however,observed near the crack in the case of small strain,whereas a large portion far from the crack can be regarded as an elastic body.A structure of complicated shape in the real world tends to be modeled as a largescale finite element model.For this issue,we have studied a partitioned coupling method[Yusa and Yoshimura(2013)],which was imported from the field of fluid–structure interaction coupling[M inami and Yoshimura(2010)].In this method,the entire analysis model is decomposed into two non-overlapped domains,i.e.,global and local domains.The two domains are analyzed separately and iteratively with an iterative method to satisfy both geometrical compatibility and force equilibrium on the global–local interface.

    Various methods that utilize two meshes or a mesh with a non-numerical solution have been proposed.S-version FEM(SFEM)[Fish(1992)]was proposed to reduce the number of finite elements required for a sufficiently accurate solution and to reduce the human effort in meshing.In SFEM,a fine local mesh that may contain a crack is superimposed on a coarse global mesh,and the two meshes are connected with Lagrange multipliers.Elastic–plastic problems were analyzed explicitly using SFEM[Nakasumi,Suzuki,Fujii,and Ohtsubo(2002);Okada,Endoh,and Kikuchi(2007)].Nakasumi,Suzuki,Fujii,and Ohtsubo(2002)analytically gave that the elastic constants on the local mesh can be different from those on the global mesh.Okada,Endoh,and Kikuchi(2007)applied the SFEM for an elastic–plastic fracture problem and evaluated theJ-integral.In their studies,incremental analysis was employed without an implicit iterative method such as the New ton–Raphson method.Nodal unbalance evaluation,which is necessary for implicit iterative methods,is troublesome in SFEM since the effect of the local reaction force is complicatedly added to that of the global reaction force.Suzuki,Ohtsubo,Nakasumi,and Shinmura(2002)utilized iterative methods with SFEM and analyzed benchmark problems with a general-purpose commercial code.The iterative substructure method[Nishikawa,Serizawa,and Murakawa(2007)]is a similar method to SFEM with regard to meshing.In this method,an iterative method is used to obtain a converged solution.Thermal elastic–plastic problems in welding were analyzed by Nishikawa,Serizawa,and Murakawa(2007).The global–local method[Whitcomb(1991)],which is also known as the zooming method,is a popular approach in structural analysis.In this method,the numerical result of a global analysis is given to a local model as the boundary conditions,and then,the local model is analyzed in detail.Since the result of the local analysis cannot affect the global analysis,in general,either geometrical compatibility or force equilibriumis not satisfied.Iterative global–local analysis was studied by Whitcomb(1991)to solve this issue.These three iterative methods[Suzuki,Ohtsubo,Nakasumi,and Shinmura(2002);Nishikawa,Serizawa,and Murakawa(2007);Whitcomb(1991)]described above are not sophisticated with regard to it-erative algorithms.In the present study,a quasi-New ton method,which showed the best performance of several iterative algorithms with several line search algorithms in fluid–structure interaction benchmarks[M inami and Yoshimura(2010)],is used.In addition,in the case of elastic–plastic problems or generally nonlinear problems,methods based on the principle of superposition would not be appropriate since the principle does not hold.Extended FEM(XFEM)[Mo?s,Dolbow,and Belytschko(1999)]was proposed to avoid meshing efforts concerning a crack.In the XFEM,a Heaviside function representing the crack discontinuity is superimposed on the finite element interpolation functions.The XFEM has been applied for various problems[Abdelaziz and Hamouine(2008)],which include elastic–plastic fracture problems.Elguedj,Gravouil,and Combescure(2006)employed the Hutchinson–Rice–Rosengren(HRR) field[Hutchinson(1968);Rice and Rosengren(1968)]to represent the singularity of an elastic–plastic crack.Prabel,Combescure,Gravouil,and Marie(2007)solved a dynamic crack propagation problemin elastic–plastic media using XFEM linear function approximation.Samaniego and Belytschko(2005)modeled shear bands in plasticity using XFEM.The elastic finite element alternating method(FEAM)[Nishioka and Atluri(1983)]was proposed to connect the analytical solutions of the stress intensity factors(SIFs)with the uncracked structure mesh.In FEAM,the analytical solution and the mesh are solved iteratively,and a converged solution is obtained.The elastic FEAM was then extended to elastic–plastic FEAM[Pyo,Okada,and Atluri(1995)]by coupling the FEAM with the initial stress algorithm[Nikishkov and Atluri(1994)].Compared to XFEM and FEAM,our method can be applied for any plasticity models as far as the model can be applied for conventional FEM.FEAM was extended to SGBEM–FEM alternating method that utilizes symmetric Galerkin boundary element method(SGBEM)instead of a theoretical solution[Nikishkov,Park,and Atluri(2001)].In SGBEM–FEM,a global uncracked FEM mesh and a local cracked SGBEM mesh are solved alternately to satisfy force equilibrium,using forces on a mesh interface and for cesonacrack surface.Various two-and three-dimensional problems of fracture and fatigue crack grow th were analyzed by SGBEM–FEM[Dong and Atluri(2013a,b)].The domain decomposition method(DDM)based on the preconditioned conjugate gradient(PCG)methods[Yoshimura,Shioya,Noguchi,and Miyamura(2002);Ogino,Shioya,Kawai,and Yoshimura(2005);Miyamura,Noguchi, Shioya,Yoshimura,and Yagawa(2002)]has been used for parallel finite element analysis(FEA).In DDM,the entire analysis model is decomposed into multiple subdomains,and the PCG solver is employed for the subdomain interface.Since multiple FEAs are performed for every subdomain at every PCG iteration,this approach gives high parallelism.The ADVENTURE System by Yoshimura,Shioya,Noguchi,and Miyamura(2002)includes a parallel solid mechanics solver based on DDM.Ogino,Shioya,Kawai,and Yoshimura(2005)solved an elastodynamic problem of a large-scale structure using the solver on a supercomputer.Miyamura,Noguchi,Shioya,Yoshimura,and Yagawa(2002)applied DDM for a large-scale elastic–plastic problem.Plasticity is observed everywhere in their study,whereas it is modeled to be observed locally near the crack in the present study.The latter approach can lead to an efficient simulation since a large portion far from the crack is modeled as an elastic body.

    In this paper,the partitioned coupling method,which has already been applied for a linear elastic fracture problem[Yusa and Yoshimura(2013)],is applied for an elastic–plastic problem with a crack.The cracked local domain is modeled as an elastic–plastic body,whereas the large-scale global domain is modeled as an elastic body.The subcycling technique[Farhat,Lesoinne,and Maman(1995)]is utilized for incremental analysis to reduce the number of global elastic analyses.The methodology is presented in detail in Section 2.A benchmark problemis then analyzed using the present method and conventional FEM in Section 3,and the computational performance of these methods is carefully examined.A conclusion is finally given in Section 4.

    2 Method

    2.1 Partitioned Coupling Method

    First of all,the entire analysis model is decomposed into two non-overlapped domains,as shown in Fig.1.Since the two domains are analyzed separately in a partitioned coupling method,in general,either geometrical compatibility or force equilibrium on the global–local interface is not satisfied.However,they become satisfied by an iterative solution technique.Here,the analysis on the local domain,?L,is represented as

    and the analysis on the global domain,?G,is represented as

    Here,kis the iteration step,uΓis the displacement vector on the global–local interface,Γ,?uΓis the predicted displacement vector onΓ,andfΓis the force vector onΓ.Lis a function in which local analysis is performed under an enforced displacement boundary condition,uΓ,onΓ,and the negative of the reaction force vector,fΓ,is returned.Gis also a function in which global analysis is performed under an external force boundary condition,fΓ,onΓ,and the displacement vector,uΓ,is returned.These functions themselves would be nonlinear ow ing to plasticity.From Eq.1 and Eq.2,

    is obtained.A residual vector,R,is now de fined as a function of

    When geometrical compatibility on the global–local interface is satis fied,the residual should vanish as

    This nonlinear equation is to be solved by an iterative solution algorithm described in the next paragraph.Equation 5 is checked numerically with a tolerance,τ,as

    in the present study.In addition,force equilibrium also becomes satisfied when geometrical compatibility is satisfied at thek-th iteration step as

    From this equation,

    is obtained.The function ofLis applied to both sides,and then Eq.1 is used.Finally,

    is derived.The left side of this equation is the force-based residual vector,whose formis similar to Eq.4.

    In the present study,the limited-memory Broyden method[Minami and Yoshimura(2010);Kelley(2003)]is adopted to solve Eq.5.The limited-memory Broyden method is a quasi-New ton method and satisfies the secant condition

    Figure 1:Decomposed analysis model and assumed boundary conditions on global–local interface.

    Here,Bis an approximate Jacobian matrix,

    is the search direction vector,and

    is the residual vector.The Broyden updating formula is here de fined as

    Using the Sherman–Morrison formula,

    whereMis an invertible matrix,anduandvare vectors whose size is the same as the matrix size,one can derive

    and

    A dense matrix,B,is eliminated in the above equations so that this method does not require a large amount of memory.The algorithm of the limited-memory Broyden method is summarized as follows.

    end while

    An initial inverse approximate Jacobian matrix,B(0)-1,is a user-defined parameter,which is determined to be a diagonal matrix whose diagonal entries are 0.1 in the present study.

    2.2 Subcycling Technique

    Owing to strain path dependence,elastic–plastic analysis with nonlinear FEM generally requires incremental analysis as follows:

    forloop of incremental stepsdo

    Analysis with New ton–Raphson method

    end for

    One can select two approaches for incremental analysis with the partitioned coupling method.

    The first approach is the incremental approach,in which partitioned coupling iterations are conducted at every incremental step.The algorithm of the incremental approach is described as follows.

    forloop of incremental stepsdo

    whileloop of partitioned coupling iterationsdo

    Local analysis with New ton–Raphson method

    Global analysis

    end while

    end for

    An initial guess,,of the Broyden method described in the previous subsection is zero filled at the first incremental step or filled with a previous converged solution,at other incremental steps.However,in this approach,the global domain is analyzed with incremental steps,even though it is an elastic body.

    The second approach is the subcycling approach,in which incremental steps are conducted at each partitioned coupling iteration.This approach enables the reduction of the number of global analyses.The subcycling technique is occasionally used in the field of fluid–structure interaction coupling[Farhat,Lesoinne,and Maman(1995)],especially with staggered algorithms.This technique is preferred because the time scale required for fluid analysis is smaller than that for structural analysis.This situation is very similar to the present study.The algorithm of the subcycling approach is described in the following:

    forloop of partitioned coupling iterationsdo

    Decision of number of incremental steps

    whileloop of incremental stepsdo

    Local analysis with New ton–Raphson method

    end while

    Global analysis

    Turning back incremental time(restoring internal variables such as equivalent plastic strain and yield stress)

    end for

    In this algorithm,the number of incremental steps is determined at each partitioned coupling iteration by a simple formula:

    Figure 2:Dimension parameters and boundary conditions of pressure vessel model.

    is calculated as and ?εcharis a user-defined parameter.uΓidenotes an assumed enforced displacement boundary condition on the global–local interface,andxirepresents the nodal coordinates.?εcharis determined to be 0.01%in the present study.

    3 Benchmark

    A cracked pressure vessel model with 6 million degrees offreedom(DOFs)was analyzed by the developed partitioned coupling solver as well as the developed conventional FEM solver.The dimension parameters and boundary conditions of the model are shown in Fig.2.An 18-deg through-wall crack is introduced at the nozzlepart.The decomposed mesh is visualized in Fig.3 by using ahandy graphics and GUI library,AutoGL[Kawai(2006)].The numbers of elements,nodes,and DOFs in the global mesh are 1,308,720,2,117,000,and 6,351,000,respectively.

    Those in the local mesh are 54,710,80,066,and 240,198,respectively.The ratio of the number of global DOFs to the number of local DOFs is 26:1.The numbers of nodes and DOFs in the global–local interface are 960 and 2,880,respectively.The employed material parameters are a Young’s modulus of 210 GPa,a Poisson’s ratio of 0.3,and an initial yield stress,σy0,of 250 MPa.The employed stress–strain curve is

    The von Mises’equivalent stress distribution computed by the subcycling partitioned coupling solver is visualized in Fig.4.Its deformation is magnified by 100.The computed yielding zone is visualized in Fig.5.The result of the partitioned coupling analysis seems almost the same as that of the conventional FEA.

    Figure 3:Mesh of pressure vessel model.Entire mesh(top left),mesh near skirt(bottom left),sectioned mesh near skirt(top middle),sectioned mesh near nozzle(bottom middle),decomposed mesh near nozzle(top right),and local mesh(bottom right).

    Figure 4:Computed equivalent stress distribution of pressure vessel model.Entire model(top left),model near skirt(bottom left),sectioned model near skirt(top middle),sectioned model near nozzle(bottom middle),decomposed model near nozzle(top right),and local model(bottom right).

    The computational performance was measured on a personal computer with an Intel Core i7-3930K Sandy Bridge CPU,64 GB of DDR3 SDRAM PC3-12800,and a Debian GNU/Linux 6.0 squeeze operating system.Intel C Compiler 13.0 was used with the-fast flag,and the PARDISO linear system solver in Intel Math K-ernel Library(MKL)10.2 was used for matrix LDL factorization and the triangular solution,which is also called forward and backward substitutions.The incremental partitioned coupling analysis was 3.40 times faster than conventional FEA,and the subcycling analysis was 3.34 times faster.Detailed computation time and memory usage are described in Tab.4.Speedup of the incremental partitioned coupling method was caused by a constant stiffness matrix in the global domain.The large stiffness matrix in the global elastic domain remained constant throughout the analysis.The matrix was factorized only once,and then,multiple triangular solutions were conducted.On the other hand,speedup of the subcycling method was caused by a reduction in the number of global analyses. Eighteen global analyses were conducted in the present method,whereas conventional FEA required 47.If a linear system solver based on the preconditioned conjugate gradient method,which has been used for very-large-scale problems[Yoshimura,Shioya,Noguchi,and Miya-mura(2002);Ogino,Shioya,Kawai,and Yoshimura(2005);M iyamura,Noguchi,Shioya,Yoshimura,and Yagawa(2002)],is selected for the global analysis,the subcycling partitioned coupling solver would still remain fast,but the incremental solver would become slow.This is because the constant matrix does not contribute to speedup in the PCG methods.

    Table 1:Given and measured number of partitioned coupling iterations and incremental steps in pressure vessel model analysis

    Table 2:Measured number of New ton–Raphson iterations in pressure vessel model analysis

    Table 3:Measured number of linear system solutions in pressure vessel model analysis

    4 Conclusion

    In this paper,the partitioned coupling method was applied for elastic–plastic analysis of a large-scale model with a crack.In the method,the entire analysis model is decomposed into two non-overlapped domains(i.e.,global and local domains),and the two domains are analyzed with an iterative method.The cracked local domain was modeled as an elastic–plastic body,whereas the large-scale global domain wasmodeled as an elastic body.The subcycling technique was utilized for incremental analysis to reduce the number of global elastic analyses.In Section 2,the modeling of the partitioned coupling method with the limited-memory Broyden method and the subcycling technique with a simple formula to determine the number of incremental steps were presented in detail.A cracked pressure vessel model with 6 million degrees offreedom was analyzed in Section 3.The number of partitioned coupling iterations,incremental steps,New ton–Raphson iterations,and linear system solutions were carefully examined,and the computational performance was also measured.The incremental partitioned coupling solver was 3.40 times faster than the conventional FEM solver,and the subcycling partitioned coupling solver was 3.34 times faster.This is because the number of linear system solutions was reduced by the subcycling technique,and the large stiffness matrix in the global domain remained constant throughout the analysis.In the partitioned coupling method with the subcycling technique,this feature would remain if a linear system solver based on a preconditioned conjugate gradient method were selected instead of the direct LDL solver used in the present study.

    Table 4:Measured computation time and memory usage in pressure vessel model analysis

    In the future,modeling of more nonlinear and complicated phenomena such as large strain,crack surface contact,and crack propagation will become possible in the local domain,as will effective analysis with the partitioned coupling method,in which two different solvers work together.

    Acknowledgement:This work was supported by a MEXT grant forHPCI S-trategic Program Field 4:Next-generation Industrial Innovations.The authors wish to thank Dr.M inamiat Chuo University for advising on constructing the Broyden algorithm and the members ofADVENTURE Projectfor engaging in helpful discussions.

    Abdelaziz,Y.;Hamouine,A.(2008):A survey of the extended finite element.Computers and Structures,vol.86,no.11–12,pp.1141–1151.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM–FEM or XFEM?part 1:2D structures.Computer Modeling in Engineering and Sciences,vol.90,no.2,pp.91–146.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM–FEM or XFEM?part 2:3D solids.Computer Modeling in Engineering and Sciences,vol.90,no.5,pp.379–413.

    Elgued j,T.;Gravouil,A.;Combescure,A.(2006):Appropriate extended functions for X-FEM simulation of plastic fracture mechanics.Computer Methods in Applied Mechanics and Engineering,vol.195,no.7–8,pp.501–515.

    Farhat,C.;Lesoinne,M.;Maman,N.(1995):Mixed explicit/implicit time integration of coupled aeroelastic problems:Three- field formulation,geometric conservation and distributed solution.International Journal for Numerical Methods in Fluids,vol.21,no.10,pp.807–835.

    Fish,J.(1992):The s-version of the finite element method.Computers and Structures,vol.43,no.3,pp.539–547.

    Hutchinson,J.W.(1968):Singular behaviour at the end of a tensile crack in a hardening material.Journal of the Mechanics and Physics of Solids,vol.16,no.1,pp.13–31.

    Kawai,H.(2006):ADVENTURE AutoGL:A handy graphics and GUI library for researchers and developers of numerical simulations.Computer Modeling in Engineering and Sciences,vol.11,no.3,pp.111–120.

    Kelley,C.T.(2003):Solving Nonlinear Equations with Newton’s Method.Society for Industrial and Applied Mathematics,Philadelphia.

    Minami,S.;Yoshimura,S.(2010):Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid–structure interactions.International Journal for Numerical Methods in Fluids,vol.64,no.10–12,pp.1129–1147.

    Miyamura,T.;Noguchi,H.;Shioya,R.;Yoshimura,S.;Yagawa,G.(2002):Elastic–plastic analysis of nuclear structures with millions of DOFs using the hierarchical domain decomposition method.Nuclear Engineering and Design,vol.212,no.1–3,pp.335–355.

    Mo?s,N.;Dolbow,J.;Belytschko,T.(1999):A finite element method for crack grow th without remeshing.International Journal for Numerical Methods in Engineering,vol.46,pp.131–150.

    Nakasumi,S.;Suzuki,K.;Fujii,D.;Ohtsubo,H.(2002):An elastic and elasto–plastic mixed analysis using overlaying mesh method[in Japanese].Transactions of the Japan Society of Mechanical Engineers,A,vol.68,no.668,pp.603–610.

    Nikishkov,G.P.;Atluri,S.N.(1994):An analytical–numerical alternating method for elastic–plastic analysis of cracks.Computational Mechanics,vol.13,no.6,pp.427–442.

    Nikishkov,G.P.;Park,J.H.;Atluri,S.N.(2001):SGBEM–FEM alternating method for analyzing 3D non-planar cracks and their grow th in structural components.Computer Modeling in Engineering and Sciences,vol.2,no.3,pp.401–422.

    Nishikawa,H.;Serizawa,H.;Murakawa,H.(2007):Actualapplication of FEM to analysis of large scale mechanical problems in welding.Science and Technology of Welding and Joining,vol.12,no.2,pp.147–152.

    Nishioka,T.;Atluri,S.N.(1983):Analytical solution for embedded elliptical cracks,and finite element alternating method for elliptical surface cracks,subjected toarbitrary loadings.Engineering Fracture Mechanics,vol.17,no.3,pp.247–268.

    Ogino,M.;Shioya,R.;Kawai,H.;Yoshimura,S.(2005):Seismic response analysis of nuclear pressure vessel model with ADVENTURE system on the Earth Simulator.Journal of the Earth Simulator,vol.2,pp.41–54.

    Okada,H.;Endoh,S.;K ikuchi,M.(2007):Application of s-version finite element method to two-dimensional fracture mechanics problems.Journal of Solid Mechanics of Material in Engineering,vol.1,no.5,pp.699–710.

    Prabel,B.;Combescure,A.;Gravouil,A.;Marie,S.(2007):Level set X-FEM non-matching meshes:application to dynamic crack propagation in elastic–plastic media.International Journal for Numerical Methods in Engineering,vol.69,no.8,pp.1553–1569.

    Pyo,C.R.;Okada,H.;Atluri,S.N.(1995):An elastic–plastic finite element alternating method for analyzing wide-spread fatigue damage in aircraft structures.Computational Mechanics,vol.16,no.1,pp.62–68.

    Rice,J.R.;Rosengren,G.F.(1968):Plane strain deformation near a crack tip in a power-law hardening material.Journal of the Mechanics and Physics of Solids,vol.16,no.1,pp.1–12.

    Samaniego,E.;Belytschko,T.(2005):Continuum–discontinuum modelling of shear bands.International Journal for Numerical Methods in Engineering,vol.62,no.13,pp.1857–1872.

    Suzuki,K.;Ohtsubo,H.;Nakasumi,S.;Shinmura,D.(2002):Global local iterative analysis using overlaying mesh method[in Japanese].Journal of the Society of Naval Architects of Japan,vol.192,pp.691–696.

    W hitcomb,J.D.(1991):Iterative global/local finite element analysis.Computers and Structures,vol.40,no.4,pp.1027–1031.

    Yoshimura,S.;Shioya,R.;Noguchi,H.;Miyamura,T.(2002):Advanced general-purpose computational mechanics system for large-scale analysis and design.Journal of Computational and Applied Mathematics,vol.149,no.1,pp.279–296.

    Yusa,Y.;Yoshimura,S.(2013):Mixed-mode fracture mechanics analysis of large-scale cracked structures using partitioned iterative coupling method.Computer Modeling in Engineering and Sciences,vol.91,pp.445–461.

    国产日韩欧美亚洲二区| 亚洲国产av新网站| 尾随美女入室| 极品少妇高潮喷水抽搐| www.自偷自拍.com| 日日爽夜夜爽网站| 久久精品国产自在天天线| 欧美精品一区二区大全| 深夜精品福利| av在线app专区| 欧美日韩精品网址| 搡老乐熟女国产| 中文字幕人妻熟女乱码| 亚洲中文av在线| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 久久久久久久国产电影| 亚洲精品久久午夜乱码| 免费久久久久久久精品成人欧美视频| 少妇被粗大猛烈的视频| 婷婷色麻豆天堂久久| 亚洲国产精品一区二区三区在线| av有码第一页| 国产精品久久久久久精品古装| 欧美少妇被猛烈插入视频| 少妇人妻 视频| 黄频高清免费视频| 欧美老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区久久| av有码第一页| 国产午夜精品一二区理论片| 亚洲美女搞黄在线观看| 国产精品免费大片| 亚洲av日韩在线播放| 免费黄频网站在线观看国产| 丰满饥渴人妻一区二区三| 丰满少妇做爰视频| 搡老乐熟女国产| 97在线视频观看| av片东京热男人的天堂| 五月伊人婷婷丁香| 久久久国产精品麻豆| 欧美变态另类bdsm刘玥| 国产精品二区激情视频| 一边摸一边做爽爽视频免费| 一区二区三区乱码不卡18| 国产精品秋霞免费鲁丝片| 欧美日韩视频精品一区| 国产精品.久久久| 亚洲精品久久成人aⅴ小说| 亚洲精品一区蜜桃| 黑人猛操日本美女一级片| 欧美人与性动交α欧美精品济南到 | 黄片小视频在线播放| 国产一级毛片在线| 韩国高清视频一区二区三区| 国产亚洲一区二区精品| 精品少妇一区二区三区视频日本电影 | 亚洲精品美女久久av网站| 亚洲国产精品999| 久热这里只有精品99| 一个人免费看片子| 国产深夜福利视频在线观看| 亚洲国产精品国产精品| 亚洲三区欧美一区| 亚洲一区中文字幕在线| www日本在线高清视频| 欧美 亚洲 国产 日韩一| 精品一区二区免费观看| 午夜福利,免费看| 一区二区三区激情视频| 久久韩国三级中文字幕| 久久青草综合色| 午夜日韩欧美国产| 国产精品女同一区二区软件| 制服人妻中文乱码| 亚洲,一卡二卡三卡| 最近手机中文字幕大全| 亚洲国产欧美网| 精品一区在线观看国产| 亚洲精品乱久久久久久| 亚洲美女视频黄频| 纵有疾风起免费观看全集完整版| 久久鲁丝午夜福利片| 久久久精品免费免费高清| 一级爰片在线观看| 精品亚洲乱码少妇综合久久| 久热久热在线精品观看| 欧美成人午夜精品| 免费黄色在线免费观看| 色婷婷久久久亚洲欧美| 好男人视频免费观看在线| 观看美女的网站| 国产精品一区二区在线不卡| 欧美中文综合在线视频| 亚洲国产欧美在线一区| 桃花免费在线播放| 如日韩欧美国产精品一区二区三区| 国产成人精品久久久久久| videosex国产| 亚洲中文av在线| 欧美黄色片欧美黄色片| 久久精品aⅴ一区二区三区四区 | 久久人人爽人人片av| 中文字幕精品免费在线观看视频| 亚洲精品久久午夜乱码| 9色porny在线观看| 亚洲综合色惰| 国产欧美日韩综合在线一区二区| 99香蕉大伊视频| av在线观看视频网站免费| 亚洲成人av在线免费| 精品国产乱码久久久久久男人| 黑丝袜美女国产一区| 十八禁高潮呻吟视频| 欧美日韩精品网址| 一级a爱视频在线免费观看| 麻豆乱淫一区二区| 久久久久国产精品人妻一区二区| 不卡av一区二区三区| 人妻少妇偷人精品九色| 老司机影院成人| 黄色视频在线播放观看不卡| a 毛片基地| 亚洲一区中文字幕在线| 欧美精品亚洲一区二区| 中文乱码字字幕精品一区二区三区| 国产精品久久久久成人av| 丝袜美足系列| 热re99久久国产66热| 日日爽夜夜爽网站| 色播在线永久视频| 精品国产国语对白av| 毛片一级片免费看久久久久| 久久久久久久久免费视频了| 日韩大片免费观看网站| 最近最新中文字幕免费大全7| 搡老乐熟女国产| 国产精品三级大全| 极品人妻少妇av视频| 日韩中文字幕视频在线看片| 午夜av观看不卡| 日韩av不卡免费在线播放| 精品人妻偷拍中文字幕| 丝袜人妻中文字幕| 久久久亚洲精品成人影院| 亚洲激情五月婷婷啪啪| 亚洲av国产av综合av卡| 如日韩欧美国产精品一区二区三区| 日韩制服骚丝袜av| 最黄视频免费看| 国产精品亚洲av一区麻豆 | 老鸭窝网址在线观看| 亚洲av男天堂| 免费观看无遮挡的男女| 亚洲国产成人一精品久久久| 伦精品一区二区三区| 1024香蕉在线观看| videosex国产| 国产av精品麻豆| 欧美精品人与动牲交sv欧美| 久久精品亚洲av国产电影网| 久久久精品国产亚洲av高清涩受| 美女国产视频在线观看| 有码 亚洲区| 中国国产av一级| av在线播放精品| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成电影观看| 婷婷色综合大香蕉| 视频区图区小说| 一本色道久久久久久精品综合| av一本久久久久| 久久韩国三级中文字幕| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 欧美av亚洲av综合av国产av | 国产日韩欧美在线精品| 蜜桃在线观看..| 伦理电影大哥的女人| 成年美女黄网站色视频大全免费| 这个男人来自地球电影免费观看 | 成人毛片a级毛片在线播放| 汤姆久久久久久久影院中文字幕| 波多野结衣一区麻豆| 欧美人与性动交α欧美精品济南到 | 天堂中文最新版在线下载| 成人毛片a级毛片在线播放| 麻豆av在线久日| 欧美精品一区二区免费开放| 香蕉国产在线看| 亚洲av男天堂| 午夜久久久在线观看| 欧美少妇被猛烈插入视频| av在线播放精品| 2021少妇久久久久久久久久久| 在现免费观看毛片| 久久人人爽人人片av| 晚上一个人看的免费电影| www.自偷自拍.com| h视频一区二区三区| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 1024视频免费在线观看| 波多野结衣一区麻豆| 在线观看三级黄色| 久久久久久久精品精品| 亚洲精品日本国产第一区| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 极品少妇高潮喷水抽搐| 久久女婷五月综合色啪小说| 黄频高清免费视频| 欧美日韩成人在线一区二区| 99热国产这里只有精品6| 国产精品欧美亚洲77777| 一二三四中文在线观看免费高清| 国产精品久久久久成人av| 777久久人妻少妇嫩草av网站| 成人二区视频| 国产xxxxx性猛交| 99国产综合亚洲精品| 国产精品一国产av| 中文精品一卡2卡3卡4更新| 精品少妇内射三级| 曰老女人黄片| 老熟女久久久| 午夜福利,免费看| 成人毛片60女人毛片免费| 久久久久精品久久久久真实原创| 亚洲精品国产色婷婷电影| av国产久精品久网站免费入址| 晚上一个人看的免费电影| 午夜免费男女啪啪视频观看| 国产av精品麻豆| 91aial.com中文字幕在线观看| av一本久久久久| 中文乱码字字幕精品一区二区三区| 波多野结衣av一区二区av| 久久久久国产网址| 这个男人来自地球电影免费观看 | 国产欧美日韩综合在线一区二区| 在线观看国产h片| 曰老女人黄片| 亚洲三级黄色毛片| 免费高清在线观看日韩| 一区在线观看完整版| 亚洲成国产人片在线观看| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 国产深夜福利视频在线观看| 国产探花极品一区二区| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 99久国产av精品国产电影| 女人高潮潮喷娇喘18禁视频| 波野结衣二区三区在线| 欧美人与性动交α欧美精品济南到 | 成人国产麻豆网| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 国产成人免费观看mmmm| 亚洲婷婷狠狠爱综合网| 中文字幕制服av| 亚洲,欧美,日韩| 国产精品 国内视频| 亚洲成国产人片在线观看| 精品久久久精品久久久| 九九爱精品视频在线观看| 岛国毛片在线播放| 午夜日本视频在线| www.精华液| av女优亚洲男人天堂| av在线老鸭窝| 国产高清不卡午夜福利| 99热网站在线观看| 毛片一级片免费看久久久久| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| av电影中文网址| 亚洲国产成人一精品久久久| 欧美97在线视频| 大陆偷拍与自拍| 亚洲天堂av无毛| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 国产精品香港三级国产av潘金莲 | 久久99热这里只频精品6学生| 王馨瑶露胸无遮挡在线观看| 亚洲成人一二三区av| 秋霞伦理黄片| 叶爱在线成人免费视频播放| 国产欧美日韩综合在线一区二区| 男女国产视频网站| 又黄又粗又硬又大视频| 18禁观看日本| 国产精品二区激情视频| 日韩av不卡免费在线播放| 中文字幕色久视频| 精品少妇内射三级| 亚洲精品国产av蜜桃| 久久亚洲国产成人精品v| 男女免费视频国产| 日韩一卡2卡3卡4卡2021年| av在线播放精品| 日韩中文字幕欧美一区二区 | 最新中文字幕久久久久| 国产一区二区 视频在线| av女优亚洲男人天堂| 男女午夜视频在线观看| 你懂的网址亚洲精品在线观看| 中国三级夫妇交换| 在线 av 中文字幕| 日韩视频在线欧美| av网站免费在线观看视频| 久久久久国产一级毛片高清牌| 不卡av一区二区三区| 久热这里只有精品99| 成人手机av| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| kizo精华| 久久精品亚洲av国产电影网| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠久久av| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影 | 国产一区亚洲一区在线观看| 免费日韩欧美在线观看| 欧美av亚洲av综合av国产av | av.在线天堂| 桃花免费在线播放| 老司机亚洲免费影院| 精品一品国产午夜福利视频| 久久久亚洲精品成人影院| 国产人伦9x9x在线观看 | 成人亚洲欧美一区二区av| 精品一区二区三区四区五区乱码 | 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| 又粗又硬又长又爽又黄的视频| 国产精品99久久99久久久不卡 | 国产野战对白在线观看| 国产在线视频一区二区| 欧美bdsm另类| 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| 亚洲经典国产精华液单| 极品人妻少妇av视频| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91 | 蜜桃在线观看..| 国产伦理片在线播放av一区| 日本色播在线视频| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美| 99国产综合亚洲精品| 中文字幕色久视频| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 亚洲av.av天堂| 五月天丁香电影| 午夜免费男女啪啪视频观看| 制服诱惑二区| 91精品国产国语对白视频| 丝袜喷水一区| 亚洲国产精品一区二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 咕卡用的链子| 国产色婷婷99| 免费人妻精品一区二区三区视频| 久久久久人妻精品一区果冻| 天天躁夜夜躁狠狠躁躁| 大香蕉久久网| 又大又黄又爽视频免费| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 中文天堂在线官网| 看免费av毛片| 国产乱人偷精品视频| 天堂中文最新版在线下载| 又粗又硬又长又爽又黄的视频| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 又大又黄又爽视频免费| av电影中文网址| 国产不卡av网站在线观看| 一级,二级,三级黄色视频| 9色porny在线观看| 日韩制服丝袜自拍偷拍| 欧美日韩一区二区视频在线观看视频在线| 亚洲综合色网址| 国产精品久久久久久精品古装| 黑丝袜美女国产一区| 高清av免费在线| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 97精品久久久久久久久久精品| 99re6热这里在线精品视频| 亚洲欧洲国产日韩| 丰满少妇做爰视频| 久久狼人影院| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 午夜福利,免费看| 少妇人妻 视频| 五月天丁香电影| 欧美人与善性xxx| 亚洲av.av天堂| 国产成人aa在线观看| 看免费成人av毛片| 哪个播放器可以免费观看大片| 一本久久精品| 久久久欧美国产精品| 99热网站在线观看| 国产成人aa在线观看| 国产精品.久久久| 男女边吃奶边做爰视频| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 久久精品国产亚洲av高清一级| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 精品国产露脸久久av麻豆| 在线观看国产h片| 老熟女久久久| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 国产淫语在线视频| 日本午夜av视频| 天天躁日日躁夜夜躁夜夜| 久热这里只有精品99| 一区二区av电影网| av女优亚洲男人天堂| 中文字幕人妻丝袜一区二区 | freevideosex欧美| 精品少妇内射三级| 成人午夜精彩视频在线观看| 国产黄频视频在线观看| 一本大道久久a久久精品| 18禁国产床啪视频网站| 亚洲伊人久久精品综合| 人妻系列 视频| 国产精品av久久久久免费| 欧美国产精品一级二级三级| 亚洲国产成人一精品久久久| av卡一久久| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 久久久久视频综合| 天堂俺去俺来也www色官网| 亚洲人成77777在线视频| 国产精品欧美亚洲77777| 自线自在国产av| 大香蕉久久成人网| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 久久久精品94久久精品| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 一级毛片我不卡| 黄片小视频在线播放| 一区二区av电影网| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 美女脱内裤让男人舔精品视频| 久久99热这里只频精品6学生| 精品一区二区三卡| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 黄色配什么色好看| 免费久久久久久久精品成人欧美视频| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 久久精品国产综合久久久| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 国产爽快片一区二区三区| 视频在线观看一区二区三区| 咕卡用的链子| 国产欧美亚洲国产| 国产亚洲最大av| 老女人水多毛片| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 久久这里有精品视频免费| 亚洲av男天堂| 久热久热在线精品观看| 一级,二级,三级黄色视频| 婷婷色综合www| 亚洲中文av在线| 丰满迷人的少妇在线观看| 国产色婷婷99| 极品人妻少妇av视频| 在线亚洲精品国产二区图片欧美| 日本午夜av视频| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 欧美日韩亚洲高清精品| 日本午夜av视频| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 少妇 在线观看| 午夜福利网站1000一区二区三区| 一本久久精品| 夫妻性生交免费视频一级片| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 国产片内射在线| 欧美变态另类bdsm刘玥| 777米奇影视久久| 男女午夜视频在线观看| 最新中文字幕久久久久| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 夫妻性生交免费视频一级片| 免费观看性生交大片5| 18禁国产床啪视频网站| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美在线一区| videos熟女内射| 亚洲一级一片aⅴ在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利在线看| 成年动漫av网址| 高清av免费在线| 欧美在线黄色| 日韩大片免费观看网站| 国产在线一区二区三区精| 美女主播在线视频| 一区二区三区激情视频| 一级,二级,三级黄色视频| 亚洲av免费高清在线观看| 国产av精品麻豆| 9191精品国产免费久久| 国产在线视频一区二区| 国产一区二区 视频在线| 少妇被粗大的猛进出69影院| 啦啦啦在线观看免费高清www| 在线观看人妻少妇| 极品人妻少妇av视频| 久久久久久人妻| 99香蕉大伊视频| 国产成人欧美| 91国产中文字幕| 韩国高清视频一区二区三区| av在线观看视频网站免费| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 日本欧美国产在线视频| 熟女电影av网| 精品久久久精品久久久| 久久国产精品大桥未久av| 国产精品久久久久久av不卡| 岛国毛片在线播放| 免费观看性生交大片5| 欧美人与善性xxx| 久久综合国产亚洲精品| 亚洲欧美成人精品一区二区| 国产激情久久老熟女| 国产淫语在线视频| 亚洲精品国产一区二区精华液| 国产xxxxx性猛交| 精品午夜福利在线看| av在线老鸭窝| 色吧在线观看| 丁香六月天网| 一本—道久久a久久精品蜜桃钙片| 男人添女人高潮全过程视频| 中国国产av一级| 黄色一级大片看看| 国产免费视频播放在线视频| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 美女高潮到喷水免费观看| 日日摸夜夜添夜夜爱| 女人久久www免费人成看片| 国产成人免费无遮挡视频| 伦理电影大哥的女人| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 青春草亚洲视频在线观看| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品| 免费观看性生交大片5| 看免费成人av毛片| 在线观看免费高清a一片| 亚洲人成77777在线视频| 午夜91福利影院| 欧美日韩一区二区视频在线观看视频在线| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 国产成人精品久久久久久| 成年人午夜在线观看视频| 伊人亚洲综合成人网|