• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of drag reduction characteristics for transverse groove pipeline*

    2014-04-16 10:01:34LeleDUANSiyuSONGWangXIXiaoWEIYunboLIWeigangZHEN
    機床與液壓 2014年2期
    關(guān)鍵詞:武漢理工大學(xué)漩渦凹槽

    Le-le DUAN,Si-yu SONG,Wang XI,Xiao WEI,Yun-bo LI,Wei-gang ZHEN

    1School of Transportation, Wuhan University of Technology, Wuhan 430063, China;2Engineering Training Center,Wuhan University of Technology,Wuhan 430063,China

    Numerical simulation of drag reduction characteristics for transverse groove pipeline*

    Le-le DUAN?1,Si-yu SONG1,Wang XI1,Xiao WEI1,Yun-bo LI1,Wei-gang ZHEN?2

    1SchoolofTransportation,WuhanUniversityofTechnology,Wuhan430063,China;2EngineeringTrainingCenter,WuhanUniversityofTechnology,Wuhan430063,China

    In order to analyze the characteristics of the resistance in the transverse groove of pipelines, the standardk-εmodel was adopted to numerically calculate and compare the resistances under the conditions of different velocities in ten groups of pipelines, and the impact of speed and groove shape on the drag reduction could be obtained through these numerical simulations. Based on all these analysis, the drag reduction mechanism of groove pipelines could be obtained, i.e., the low-speed fluid is regarded as a layer of water film, which makes the high-speed fluid contacts with the inner wall of the tube, and the friction of the groove could be indirectly reduced. Therefore, the local fluid flow resistance will be decreased as the vortex zone within the groove becomes more regular.

    Transverse grooves, Vortex zone, Drag reduction characteristics, Numerical simulation, Mechanism of drag reduction

    1.Introduction

    At the end of 1950s, Stanford has conducted a series of researches about turbulent boundary layer based on the flow field display technique. The following researches also show that the flow at the bottom of the viscous layer is different from the original concept and they further confirmed that the near-wall region has turbulence characteristics. All these researches guide scientists develop some surfaces to influence the fluid flow in the near-wall region of the turbulent boundary layer. Liu Kline and Johnson from Stanford tried this at the first time in 1966. From then on, many researches have been expanding based on the concept of ‘utilizing some unsmooth surface to reduce the frictional resistance’. In 1965, Kramer started to study the movements of dolphins which seemed as a start of researches on streak grooves. In 1967, Kiev hydrodynamics laboratory studied vortex screen and put forward the possibility of reduction in dynamics resistance on streak grooves. In 2005, Huang De-bin used numerical simulation to study the drag reduction on turbulence in the groove of pipelines and gained the same results from the grooves of planks[1]. Lee and Jang pasted V-grooves on NACA 0012 airfoil section and found that the resistance of rear airfoil was reduced by 6.6%[2-3].

    In the real pipelines, head loss contains frictional loss and local resistance loss. The transverse grooves will increase the local resistance, at the same time, the friction loss could be reduced. This paper analyzed the drag reduction of different place to smoothing in grooves by using the Fluent software.

    2.Numerical computation methods

    2.1.Objects description

    There are ten types of rotation faces for pipelines, as shown in Figure 1. The pipe diameter is 8 mm, pipe range is 23 mm, groove height is 2 mm, groove range is 3 mm, and the radius of transitional curve is 1 mm. The turning points of the different parts are named as the number 1, 2, 3 and 4, as shown in Figure 1. The groove represents the transverse groove without transitional curve. Since it is centrosymmetric periodic flow in the pipes, the revolution surfaces will be studied and the corresponding grids are shown in Figure 2.

    Figure 1. Pipe model

    Figure 2. Schematic diagram of grid

    2.2.Numerical model

    Since the steady state centrosymmetric incompressible flow in pipes will be studied in this paper, the continuity equation of three-dimensional incompressible fluid flow is as follows.

    Where,ux,uy,uzare the velocity components inx,yandzdirection, respectively. The variable oftis time.

    Conservation of momentum equations for incompressible fluid flow could be obtained as follows.

    The standardk-εmodel is adopted as turbulent model.

    Where,kis the power of turbulence,Eis the dissipation rating, andCL=0.09,C1ε=1.44,C2ε=1.92,Rk=1.0.

    2.3.Boundary conditions

    According to the Fluent software, the solver could be chosen as Pressure-Based type, steady state, non-slip wall boundary and 2D axisymmetric swirl flow. The viscous model is standard k-ε model and the standard Wall Function is applied. The fluid material is liquid water and inlet velocities are 1.0 m/s, 2.0 m/s, 4.0 m/s, 6.0 m/s, 8.0 m/s and 10 m/s respectively.

    The velocity-inlet boundary is applied in this paper and the The entrance is velocity-inlet,velocity specification method is magnitude/normal to boundary, the exit boundary is outflow.

    3.Analysis of numerical simulation results

    3.1.Relationships between pressure drag and velocity

    The relationships between pressure drag and velocity are shown in Figure 3. Since the pressure drag of straight pipe is the reference value, it is set as zero. From this figure, it could be seen that the pressure drags of other pipes are increased as the increase of inlet velocity. When the inlet velocity is small, the values of pressure drag for all these pipes are very close. However, once the inlet velocity is beyond 6 m/s, place1 has the max pressure drag while the place 3 and place 4 have the minimum values.

    Figure 3. Pressure drags in different velocities

    3.2.Frictional drag with different velocities

    As shown in Figure 4, the frictional drag in straight pipe is increased faster than that in the pipes with grooves when the inlet velocity gets increased. However, all the pipes with groove have nearly the same increase in terms of frictional drag and the flow resistance mainly depends on pressure drags. Therefore, in order to reduce the flow resistance in pipes when velocity is high, the pressure drags need to be reduced.

    Figure 4. Frictional drag in different velocities

    3.3.Total resistance with different velocities

    As shown in Figure 5, the relationships between total resistance and velocity are presented. The total resistance is defined as the summation of pressure drag and frictional drag. From this figure, it could be seen that the total resistances of different pipes have almost the same growth rate with the increase of velocity. However, with the increase of velocity, the minimum flow resistance is changed for different types of grooves. When the velocity is below 3.3 m/s, the square shaped groove has the minimum resistance. When the velocity reaches up to 4 m/s, pipes with 34 smoothing have the minimum resistances.

    Figure 5. Total resistance in different velocities

    4.Analyzing of drag reduction efficiency

    Figure 6 shows the differences between straight pipes and groove pipes under the conditions of different velocities. Figure 7 shows the drag reduction efficiency in different types of grooves.

    DFi=Fz-Fi

    Drag reduction efficiency is defined as follows:

    ?=DFi/Fz

    Where,Fzis the total resistance in straight pipe,Fiis the total resistance in different types of grooves.

    From the Figure 6, it could be seen that the grooves with 134 smoothing have no drag reduction. The higher the velocity is, the faster the total resistance increase. When velocity reaches up to 6 m/s, most pipes have best efficiencies; however, when velocity is beyond 9 m/s, straight pipes have minimum resistance among all these pipes and other pipes have no drag reduction when the velocity is up to 10 m/s.

    It could be seen in Figure 7, when velocity is 2 m/s, the square grooves have the best drag reduction at 33%. Once the velocity is below 4 m/s, most of the drag reduction efficiencies in various types will increase alone with the velocity. When the velocity is higher than 4 m/s, the drag reduction efficiencies of all these various types will decrease as the increase of velocity. The grooves with 34 smoothing have the best drag reduction. When velocity is 4 m/s, the drag reduction efficiency is 21.63%.

    Figure 6. Drag reduction in straight pipes and grooves pipes in different velocities

    Figure 7. Drag reduction efficiency in different types of grooves

    5.Analysis of drag reduction mechanism

    Since the existence of grooves within pipe makes the fluid velocity become slow and they work as water film which could force the fluid contact with the tube wall indirectly, the frictional resistance will be reduced. Meanwhile, as shown in Figure 8 and Figure 9, the turbulence area has been moved back due to the existence of grooves and the Fluid becomes steady both in front of the groove and behind the grooves. Therefore, the turbulence area has almost gone. When the grooves are optimized, the decrement of the frictional resistance is greater than the increment of pressure resistance. When the velocity is small, the vortex becomes nearly static due to the arise of the square grooves, as there is only a large regular vortex movement in the groove, as a result, most wetted surface is at a small velocity region and the frictional resistance is within a small range. As shown in Figure 10 and Figure 11, those transitional curves make the wetted surface larger and the vortex becomes irregular so that the local resistance gets increased.

    Figure 8. Velocity vector in square groove

    Figure 9. Velocity vector in straight pipe

    Figure 10. Velocity vector in square groove

    Figure 11. Velocity vector in 134 smoothing groove

    6.Conclusion

    Within a relative big velocity range, i.e., from 1.0 m/s to 10.0 m/s, the numerical simulations are adopted to analyze the pressure resistance, frictional resistance and total resistance for ten types of grooves within pipes in this paper, and the efficiency of those pipes are evaluated as compared with that of straight pipes. The conclusions could be drawn as follows:

    1) Grooves in straight pipes could make turbulence area move back to reduce frictional resistance and fluid flow in grooves is at a relative low velocity, therefore the frictional resistance is at a low degree. Local resistance increases alone with the increase of velocity so that the drag reduction efficiency is low. When velocity reaches up to 10 m/s, the fluid flow resistance will be increased.

    2) The shape of the grooves has dominant effects on the fluid flow resistance. Different grooves have different levels of regular vortex. The more regular the vortex is, the less the resistance is. When velocity is small, the fluid in square groove works as a water film separating the fluid from the tube wall and the fluid flow resistance could be reduced. However, those transitional curves make the fluid and wall contact well, and the frictional resistance could be increased.

    3) Different velocities correspond to different optimal shapes of grooves. As a result, different shapes of grooves should be adopted for different values of velocity.

    [1] Guo X.Optimization Design Method For Drag reduction Over Riblet Structure[D].Xi’an:Northwest Polytechnic University,2007.

    [2] Huang D,Deng X,Wang Y.Numerical Simulation Study Of Turbulent Drag Reduction Over Riblet Surfaces Of Tubes[J].Journal Of Hydrodynamics,2005.

    [3] Lee S,Jan Y.Control of flow around a NACA0012 airfoil with a micro-riblet film[J].Journal of Fluids and Structures,2005.

    橫向凹槽管道的減阻特性數(shù)值模擬研究*

    段樂樂1,宋思宇1,奚 望1,魏 驍1,李云波1,鄭衛(wèi)剛2

    1.武漢理工大學(xué) 交通學(xué)院,武漢 430063;2.武漢理工大學(xué) 工程訓(xùn)練中心,武漢 430063

    針對管道內(nèi)橫向凹槽減阻問題,采用標(biāo)準(zhǔn)κ-ε模型,通過數(shù)值仿真,計算比較了在10組管道內(nèi)不同流速情況下的阻力,分析了速度和凹槽形狀對減阻的影響。得到凹槽減阻機理:凹槽內(nèi)的低速流體相當(dāng)于一層水膜,可使高速流體不直接與管內(nèi)壁接觸,從而減小摩擦阻力;同時凹槽內(nèi)漩渦區(qū)越規(guī)則,局部阻力越小。

    橫向凹槽;漩渦區(qū);減阻特性;數(shù)值仿真;減阻機理

    TQ022.1

    2014-02-01

    10.3969/j.issn.1001-3881.2014.12.011

    *Project supported by National Undergraduate Training Programs for Innovation and Entrepreneurship(20131049702002)

    ? Wei-gang ZHEN. E-mail: zfeidiao@126.com

    猜你喜歡
    武漢理工大學(xué)漩渦凹槽
    一種智能立式壓濾機專用的塑料濾板
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    FF陷控制權(quán)爭奪漩渦
    汽車觀察(2018年10期)2018-11-06 07:05:06
    雙面圓弧凹槽細頸的高速銑削加工
    魚群漩渦
    中外文摘(2017年19期)2017-10-10 08:28:41
    環(huán)形凹槽類鑄件鑄造工藝
    中醫(yī)教育陷“量升質(zhì)降”漩渦
    Lanterne-volant
    幾何形態(tài)和視覺感知的探討
    九九在线视频观看精品| 亚洲欧洲国产日韩| 亚洲精品国产成人久久av| 欧美成人a在线观看| 干丝袜人妻中文字幕| 联通29元200g的流量卡| 制服丝袜香蕉在线| 中文精品一卡2卡3卡4更新| av国产精品久久久久影院| 国产精品国产三级国产专区5o| 一级爰片在线观看| 日韩欧美 国产精品| 亚洲av男天堂| 欧美成人一区二区免费高清观看| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| 亚洲精品乱码久久久久久按摩| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 看免费成人av毛片| 国产亚洲5aaaaa淫片| 亚洲天堂av无毛| 一区二区av电影网| 日日啪夜夜撸| av在线观看视频网站免费| 这个男人来自地球电影免费观看 | 亚洲伊人久久精品综合| 亚洲成人中文字幕在线播放| 搡女人真爽免费视频火全软件| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡动漫免费视频| 国产欧美另类精品又又久久亚洲欧美| 久久久国产一区二区| 大片电影免费在线观看免费| 激情 狠狠 欧美| 天美传媒精品一区二区| 欧美成人a在线观看| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 国产成人freesex在线| 亚洲真实伦在线观看| 激情五月婷婷亚洲| 热re99久久精品国产66热6| 日韩在线高清观看一区二区三区| 亚洲欧美日韩无卡精品| 午夜福利视频精品| 久久久久久久国产电影| 99视频精品全部免费 在线| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 视频区图区小说| 久久6这里有精品| 91精品国产九色| 国产精品99久久久久久久久| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 乱码一卡2卡4卡精品| 成人免费观看视频高清| 大码成人一级视频| 99热全是精品| 国产欧美亚洲国产| 99久久中文字幕三级久久日本| 精品久久久精品久久久| 精品亚洲成国产av| av网站免费在线观看视频| 2018国产大陆天天弄谢| 青春草国产在线视频| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 国精品久久久久久国模美| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 精品人妻熟女av久视频| 亚洲在久久综合| 亚洲美女黄色视频免费看| 免费大片18禁| 亚洲精品一区蜜桃| 男女免费视频国产| 成人漫画全彩无遮挡| 性色av一级| 免费看光身美女| 欧美日韩精品成人综合77777| 亚洲aⅴ乱码一区二区在线播放| 九九爱精品视频在线观看| 黄色日韩在线| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 一个人免费看片子| 亚洲精品日韩在线中文字幕| 国产高清有码在线观看视频| 亚洲人成网站高清观看| 午夜福利在线在线| 亚洲婷婷狠狠爱综合网| 在线观看免费视频网站a站| 国产黄色免费在线视频| av卡一久久| 又爽又黄a免费视频| 成年美女黄网站色视频大全免费 | 亚洲国产av新网站| 亚洲国产色片| 日本黄色日本黄色录像| 日韩三级伦理在线观看| 美女高潮的动态| 亚洲欧美日韩东京热| 久久精品久久久久久噜噜老黄| videossex国产| 国产色婷婷99| 国产真实伦视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产乱人偷精品视频| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 老熟女久久久| 亚洲精品日韩在线中文字幕| 国精品久久久久久国模美| 国产在线一区二区三区精| 天堂中文最新版在线下载| 亚洲国产欧美人成| 如何舔出高潮| 熟女电影av网| 亚洲国产精品一区三区| 新久久久久国产一级毛片| 亚洲欧美一区二区三区黑人 | 51国产日韩欧美| 国产伦理片在线播放av一区| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| a 毛片基地| 久久av网站| 最黄视频免费看| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 又大又黄又爽视频免费| 免费观看的影片在线观看| 久热这里只有精品99| 国产免费一级a男人的天堂| 久久影院123| 女的被弄到高潮叫床怎么办| av在线蜜桃| 久久ye,这里只有精品| 18禁动态无遮挡网站| 波野结衣二区三区在线| 丰满乱子伦码专区| av黄色大香蕉| 中文字幕av成人在线电影| 天美传媒精品一区二区| 久久婷婷青草| 草草在线视频免费看| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 国产欧美亚洲国产| 97在线视频观看| 晚上一个人看的免费电影| 高清午夜精品一区二区三区| 久久人人爽av亚洲精品天堂 | 欧美国产精品一级二级三级 | 性高湖久久久久久久久免费观看| 日韩三级伦理在线观看| 亚洲av不卡在线观看| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| av黄色大香蕉| 亚洲精品,欧美精品| 亚洲成人手机| 少妇精品久久久久久久| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 国产精品麻豆人妻色哟哟久久| 日韩人妻高清精品专区| 精品久久久久久久末码| 久久精品国产a三级三级三级| 亚洲中文av在线| 久久热精品热| 国产午夜精品久久久久久一区二区三区| 久久久成人免费电影| 人人妻人人添人人爽欧美一区卜 | 国产成人午夜福利电影在线观看| 只有这里有精品99| 久久人人爽人人爽人人片va| 高清不卡的av网站| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影| 蜜桃在线观看..| 男人舔奶头视频| 多毛熟女@视频| 下体分泌物呈黄色| 成年女人在线观看亚洲视频| 天堂中文最新版在线下载| 97超视频在线观看视频| 成人无遮挡网站| av线在线观看网站| 黄色日韩在线| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 一级av片app| 内射极品少妇av片p| 国产精品无大码| 免费观看无遮挡的男女| 亚洲人成网站在线观看播放| 大码成人一级视频| 精品亚洲乱码少妇综合久久| 日本与韩国留学比较| 午夜福利影视在线免费观看| 九草在线视频观看| 搡老乐熟女国产| 国产日韩欧美亚洲二区| av国产免费在线观看| 国语对白做爰xxxⅹ性视频网站| 久久婷婷青草| 精品一区二区免费观看| 一级黄片播放器| 国产欧美亚洲国产| 成人特级av手机在线观看| 18禁动态无遮挡网站| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 日韩av不卡免费在线播放| 国产黄片视频在线免费观看| 久久久久久久久久久丰满| 电影成人av| 高清不卡的av网站| 精品人妻在线不人妻| av福利片在线| 亚洲专区国产一区二区| 大陆偷拍与自拍| 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 午夜福利在线免费观看网站| 国产片内射在线| 自线自在国产av| 精品福利永久在线观看| 精品国产国语对白av| 宅男免费午夜| svipshipincom国产片| 97在线人人人人妻| 视频区图区小说| 久久人人爽人人片av| 国产av精品麻豆| 亚洲欧美日韩高清在线视频 | 国产无遮挡羞羞视频在线观看| 久久人妻熟女aⅴ| 国精品久久久久久国模美| 赤兔流量卡办理| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 宅男免费午夜| svipshipincom国产片| 精品亚洲成国产av| 国产成人91sexporn| 国产亚洲一区二区精品| 男女边摸边吃奶| 一本久久精品| 午夜福利在线免费观看网站| 国产免费视频播放在线视频| 男女午夜视频在线观看| 国产有黄有色有爽视频| 免费久久久久久久精品成人欧美视频| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 国产成人影院久久av| 黄片播放在线免费| 嫩草影视91久久| 国产免费福利视频在线观看| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 一二三四社区在线视频社区8| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区久久| 精品视频人人做人人爽| 亚洲人成电影观看| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 男女边摸边吃奶| 国产99久久九九免费精品| 乱人伦中国视频| 在线看a的网站| av天堂久久9| 日韩电影二区| 一边亲一边摸免费视频| 国产在线观看jvid| 可以免费在线观看a视频的电影网站| 午夜精品国产一区二区电影| 69精品国产乱码久久久| 老汉色∧v一级毛片| 1024视频免费在线观看| 亚洲专区国产一区二区| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 免费观看人在逋| 国产成人精品久久二区二区免费| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| 国产成人精品无人区| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 久久热在线av| 国产91精品成人一区二区三区 | 亚洲伊人久久精品综合| 亚洲伊人色综图| 欧美日韩福利视频一区二区| 丝袜在线中文字幕| 午夜av观看不卡| 一级黄片播放器| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 午夜福利乱码中文字幕| 大码成人一级视频| 一个人免费看片子| 国产一区亚洲一区在线观看| 少妇精品久久久久久久| xxx大片免费视频| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 免费看av在线观看网站| 香蕉国产在线看| 秋霞在线观看毛片| 久久人妻熟女aⅴ| 女人爽到高潮嗷嗷叫在线视频| 国产三级黄色录像| 91精品国产国语对白视频| 亚洲国产日韩一区二区| 国产1区2区3区精品| 国产在线视频一区二区| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 高潮久久久久久久久久久不卡| 成年动漫av网址| 欧美日韩一级在线毛片| 大香蕉久久网| 日韩av在线免费看完整版不卡| 青青草视频在线视频观看| 五月天丁香电影| 美女中出高潮动态图| 亚洲七黄色美女视频| 成人影院久久| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 欧美中文综合在线视频| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 国产精品一区二区免费欧美 | bbb黄色大片| 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 免费看十八禁软件| 日日夜夜操网爽| 亚洲欧美色中文字幕在线| 国产精品偷伦视频观看了| 亚洲成人手机| 蜜桃在线观看..| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 久久精品国产亚洲av涩爱| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 久久久亚洲精品成人影院| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 久9热在线精品视频| 黄色视频在线播放观看不卡| 国产伦人伦偷精品视频| 男男h啪啪无遮挡| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 日韩一卡2卡3卡4卡2021年| 免费在线观看影片大全网站 | 两个人看的免费小视频| 亚洲一区中文字幕在线| 成人亚洲欧美一区二区av| 精品少妇久久久久久888优播| 亚洲成人免费av在线播放| 最新的欧美精品一区二区| 在现免费观看毛片| 久久久国产精品麻豆| 黄色a级毛片大全视频| 婷婷色av中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品亚洲一区二区| 看十八女毛片水多多多| 最新在线观看一区二区三区 | av有码第一页| 黑人欧美特级aaaaaa片| 蜜桃国产av成人99| 欧美日韩成人在线一区二区| 久久午夜综合久久蜜桃| 丰满饥渴人妻一区二区三| 人体艺术视频欧美日本| 首页视频小说图片口味搜索 | 69精品国产乱码久久久| 久久久久久免费高清国产稀缺| 夫妻性生交免费视频一级片| 精品第一国产精品| 午夜福利乱码中文字幕| 中文字幕色久视频| 丝袜在线中文字幕| 交换朋友夫妻互换小说| 丁香六月欧美| www.av在线官网国产| 亚洲av男天堂| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 两个人看的免费小视频| 国产在线观看jvid| 日韩伦理黄色片| 国产一级毛片在线| 中国美女看黄片| www日本在线高清视频| 国产精品av久久久久免费| 亚洲欧美日韩高清在线视频 | 婷婷丁香在线五月| 亚洲 国产 在线| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 精品欧美一区二区三区在线| 韩国精品一区二区三区| 美女主播在线视频| 欧美成人午夜精品| a级毛片在线看网站| 亚洲自偷自拍图片 自拍| 香蕉丝袜av| xxxhd国产人妻xxx| 国产成人系列免费观看| 男人操女人黄网站| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 啦啦啦在线免费观看视频4| 一区福利在线观看| 国产成人欧美在线观看 | 午夜福利视频在线观看免费| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 9191精品国产免费久久| 亚洲,欧美,日韩| 免费av中文字幕在线| 国产xxxxx性猛交| 亚洲欧美激情在线| 国产成人精品久久二区二区91| netflix在线观看网站| 啦啦啦 在线观看视频| 精品第一国产精品| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 亚洲伊人色综图| 亚洲国产av新网站| 午夜福利乱码中文字幕| 啦啦啦 在线观看视频| 午夜久久久在线观看| 亚洲av美国av| 亚洲欧美一区二区三区久久| a级毛片在线看网站| 亚洲国产欧美日韩在线播放| 91麻豆精品激情在线观看国产 | 国产精品久久久久久精品电影小说| 日韩大码丰满熟妇| 亚洲 国产 在线| 中文精品一卡2卡3卡4更新| 亚洲第一青青草原| 99久久99久久久精品蜜桃| 人成视频在线观看免费观看| 老司机靠b影院| 成人国语在线视频| 91麻豆精品激情在线观看国产 | 97在线人人人人妻| 久久久精品94久久精品| 美女高潮到喷水免费观看| 99国产精品一区二区三区| 国产黄色免费在线视频| 老熟女久久久| 一级毛片电影观看| 国产精品九九99| 免费日韩欧美在线观看| 亚洲美女黄色视频免费看| 极品少妇高潮喷水抽搐| 欧美另类一区| 成人亚洲精品一区在线观看| 9热在线视频观看99| 一区在线观看完整版| 丝袜喷水一区| 久久综合国产亚洲精品| 精品国产乱码久久久久久男人| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 日韩电影二区| 中文字幕av电影在线播放| 亚洲七黄色美女视频| 啦啦啦啦在线视频资源| 一本—道久久a久久精品蜜桃钙片| 国产av一区二区精品久久| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 在线av久久热| 欧美人与善性xxx| 无限看片的www在线观看| 免费人妻精品一区二区三区视频| 久久精品国产a三级三级三级| 国产成人啪精品午夜网站| www.av在线官网国产| a级毛片黄视频| 最黄视频免费看| 日韩电影二区| 久久国产亚洲av麻豆专区| 欧美精品一区二区大全| 天天躁夜夜躁狠狠躁躁| 欧美中文综合在线视频| 国产免费现黄频在线看| 一级黄色大片毛片| 久久这里只有精品19| 欧美变态另类bdsm刘玥| 亚洲国产欧美网| 色精品久久人妻99蜜桃| 亚洲精品一区蜜桃| av天堂久久9| 亚洲九九香蕉| 热re99久久精品国产66热6| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 免费在线观看视频国产中文字幕亚洲 | 在线观看免费日韩欧美大片| 91成人精品电影| 制服人妻中文乱码| 女人久久www免费人成看片| 欧美日韩精品网址| 国产精品国产三级专区第一集| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 可以免费在线观看a视频的电影网站| 免费少妇av软件| 午夜久久久在线观看| 宅男免费午夜| 亚洲精品久久午夜乱码| 亚洲av电影在线进入| 亚洲自偷自拍图片 自拍| 人成视频在线观看免费观看| 秋霞在线观看毛片| 91国产中文字幕| 亚洲精品国产区一区二| 18禁黄网站禁片午夜丰满| av线在线观看网站| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看 | 精品人妻一区二区三区麻豆| 首页视频小说图片口味搜索 | 国产精品三级大全| 国产91精品成人一区二区三区 | 亚洲激情五月婷婷啪啪| 久久久久久免费高清国产稀缺| 精品熟女少妇八av免费久了| 极品少妇高潮喷水抽搐| 日韩av免费高清视频| 欧美老熟妇乱子伦牲交| 脱女人内裤的视频| 国产av精品麻豆| 欧美日韩精品网址| 成年人黄色毛片网站| 午夜精品国产一区二区电影| 国产男女内射视频| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 成年美女黄网站色视频大全免费| 18在线观看网站| 亚洲专区国产一区二区| 1024视频免费在线观看| 欧美日韩av久久| 国产亚洲精品久久久久5区| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 日本一区二区免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品94久久精品| 在线天堂中文资源库| 免费在线观看视频国产中文字幕亚洲 | 午夜福利视频精品| 午夜福利免费观看在线| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 亚洲av综合色区一区| 日韩一卡2卡3卡4卡2021年| 男人添女人高潮全过程视频| 搡老乐熟女国产| 国产精品.久久久| 免费日韩欧美在线观看| 嫁个100分男人电影在线观看 | 99热国产这里只有精品6| 新久久久久国产一级毛片| 亚洲欧洲日产国产| 久久精品国产亚洲av涩爱| 一级毛片我不卡| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 成人国产av品久久久|