• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element M ethod

    2014-04-16 11:37:26JiaweiXiangHaifengGaoYongyingJiangYuqingZhou
    關(guān)鍵詞:信心班集體主人

    Jiawei XiangHaifeng GaoYongying JiangYuqing Zhou

    1 Introduction

    Phononic crystals(PCs)are artificial materials with a periodic structure and were first investigated in the early seventies of the last centenary.The study of wave propagation in periodic structures has originated many novel discoveries in physics.Since the 1990s,there has been a great deal of work devoted to the study of phononic crystals[Kushwaha et al.(1993);Tarasenko et al.(2004)].The existence of phononic BGs where the propagation of acoustic or elastic waves is forbidden exhibits a lot of potential applications,such as noise reduction,waveguides,acoustic filters,etc.Therefore,the mechanism for tuning the band gap is always an important topic of the theoretical studies of PCs.

    One of the most major content of phononic crystals is its band structure calculations.There are several numerical methods to calculate band structures.The plan-wave expansion(PWE)[Kushwaha et al.(1994);Tanaka and Tamura(1999)]is a powerful tool to investigate wave propagation problems and band structures.However,to deal with the problems of varied material parameters of components,the convergence is slow.Besides,when the classical PWE method is employed to solve fluid-solid PCs,the fictitious transversal modes are often occurred.Therefore,the extended PWE(EPWE)technique was presented to calculate fluid-solid PCs[Moiseyenko and Laude(2011)].Morover,the finite-difference time-domain method(FDTD)was developed to obtain the unique solutions of PCs with nonlinear material properties in a natural way[Tanaka and Tamura(1998)].However,FDTD can not be applied to PCs structures with complex geometry.Finite element method(FEM)is suitable to solve structural mechanics problems in complicated domains and then introduced to calculate band gaps(BGs)of PCs[Assouar and Oudich(2011)].FEM models of PCs lead to an eigenvalue problem,which is usually solved for the unknown frequencies(ω)with a real wave number(k),i.e.,theω(k)technique[Assouar and Oudich(2011)].Recently,boundary element method is proposed to solve band gaps of PCs with good performance[Gao et al.(2013a,2013b)].

    Wavelet finite element method(WFEM)is developed in recent years as a new numerical method using scale function or/and wavelet function to replace the traditional polynomial as approximating function.Ko et al.constructed a class of one-dimensional wavelet based element by using orthogonal Daubechies wavelet[Ko et al.(1997)];Chen et al.proposed wavelet-based elements using Daubechies wavelet,B-spline wavelet wavelet on the interval(BSW I)respectively to analysis structural problems and developed adaptive WFEM[Chen et al.(2004,2010,2012)];Hang etal.extended the WFEM by using mixed variational principle[Hang et al.(2005,2006)];He and Ren continued to develop WFEM[He and Ren(2013a,2013b)].By utilizing multi-resolution characteristics,we can obtain a variety of wavelet-based elements to solve partial differential equations(PDEs)in engineering.Since BSW I scale functions at all level have the analytical expression,the elemental stiffness and mass matrices can be calculated conveniently[Xiang et al.(2007,2008a,2008b)].Therefore,the wavelet finite element method has been successfully applied to solve stress intensity factor[Xiang et al.(2012)]and damage detection field[Xiang and Liang(2011),Xiang et al.(2011),Li and Dong(2012),Li and He(2013)].Furthermore,for one-dimensional structures there have been applications of WFEM for curved beams[Yang et al.(2014)]and wave motion analysis in arch structures[Yang et al.(2014)].For two-dimensional structures,the vibration analysis of curved shell[Yang et al.(2012)]and free vibration and buckling analysis of plates[Yang et al.(2013)]are investigated using WFEM.Recently,WFEM was summarized by Li and Chen and the classification and further research directions were given[Li and Chen(2014)].Therefore,the WFEM is an effective numerical simulation method in structure analysis.

    In this paper,we employed the wavelet-based element to construct FEM model of one-dimensional phononic crystals(1DPCs).The numerical dispersion relation of 1DPCs will be presented and it w ill be shown that for rational wave vectors,a Polynomial eigenvalue problem w ill be obtained.The BGs of 1DPCs are calculated using BSW I elements at different wavelet level.The results are verified and compared with the traditional finite element method.

    2 WFEM model of 1DPCs

    BGs for periodic structures are usually calculated in the frequency domain by utilizing unit cells and periodic boundary conditions(BCs).The same principle will be followed in the presented paper to investigate 1DPCs using wavelet-based element.Fig.1 shows the schematic structure of 1DPCs made of a series of identical segments.Each segment includes two differential materials forAandB(AandBhave the same cross-section)with their thickness area1anda2,respectively.The thickness(lattice constant or periodic distance)of a unit cell(lattice constant)isa=a1+a2.

    Figure 1:Schematic structure of 1DPCs.

    Figure 2:The diagram of a segment represented by 2n BSW I4j elements.

    Fig.2 shows a unit cell of the structure.Consider the periodic characteristic,we can solve the band structure only using a unit cell of 1DPCs.Therefore,we focus on the calculation model using wavelet-based element on a unit cell.Suppose 2nBSW I4j(4 is the order of BSW I bases[Xiang et al,(2008a)],jis the wavelet level)Euler beam elements[Xiang et al.(2007)](nelements supported on sectionAand the othernelements supported on sectionB)are employed to discretize the unit cell,the degrees of freedom(DOF)corresponding to the node on the left hand boundaryqListhe node on the right hand boundaryqRisvR=and the other inner nodes is

    Thus,the total DOF of a unit cell is

    Corresponding to DOF in a unit cell,there will be a generalized force as[Veres and Berer,(2012)]

    whereFL,FRandFIare the generalized force on the left hand boundary,the right hand boundary and the other inner nodes.

    When a free wave propagates through an in finite structure,FIis zero.At this point,the periodic boundary conditions are not yet applied.Therefore,according to Bloch-Floquet theorem,the propagation constants between the nodes on left and right hand boundaries(exterior nodes)of a unit cell are given aseika(kis the wave number andiis the imaginary unit).The generalized forces at the exterior nodes,i.e.,FLandFR,are not zero,since these forces are responsible for transmitting the wave motion.

    BecausevLandvRare separated by the periodic distancea,the relationship of the two DOF on the exterior nodes can be represented by[Veres and Berer(2012)]

    讓學生自己當家作主,做班集體的主人,相信他們,多給他們一些耐心與信心,多給他們一些鼓勵與支持,靜待花開。

    similarly,the correspondingFLandFRshould have the relationship as

    Therefore,the equation of motion of a unit cell(periodic section)is[Veres and Berer(2012)]

    whereωis the angular frequency(rad/s),andare the global stiffness and mass matrices of a unit cell and the corresponding superscriptsjare also the wavelet level.

    Because a unit cell consist of 2nBSW I4jEuler beam elements,andare formed by superposition of(the superposition of BSW I4jEuler beam element stiffness matricesof sectionA)and(the superposition of BSW I4jEuler beam element stiffness matricesof sectionB),(the superposition of BSW I4jEuler beam element mass matricesof sectionA)and(the superposition of BSW I4jEuler beam element mass matricesof sectionB).The BSW I4jEuler beam element stiffness and mass matricesandare[Xiang et al.(2007)]

    in whichE1andE2,ρ1andρ2are the Young’s moduli and material densities of the two sectionsAandB,respectively,IandSare the moment of inertia,the area of cross-section for the two sectionsAandB,respectively,andare the column vector combined by the BSW I scaling functions for 4thorder at the levelj,the transformation matrices,respectively,as[Xiang et al.(2008a)]

    in which r=2jand the scaling functionsare shown in.[Xiang et al.(2008a)].

    To simple the calculation,the global stiffness and mass matrices are partitioned to nine sub-blocks in associated with the three types of nodes,i.e.,a node on the left hand boundary,a node on the right hand boundary and nodes on the interior.Thus,we have

    and

    where L=2,I=n2j+1+2n?2,R=2.

    In the present,we only calculate the band structure of PCs.Therefore,the generalized force matrix becomes zero and the equation of free vibration is

    According to[Mead et al.(1973)],submitting Eq.(3)into Eq.(15),we have

    By separating real and imaginary parts[Wilkinson(1965)]and letandEq.(16)becomes

    The corresponding free vibration frequency equation is

    Let the matrices

    Eq.(18)becomes

    Eq.(21)represents a symmetric eigenvalue problem relatingkandωfor the discretised structure,whose solutions give WFEM estimates of the dispersion relations for the continuous structure.Corresponding to each value ofkin Eq.(21),there w ill be a discrete set of frequencies that occur in equal pairs.Each frequency will have associated with correspondence an eigenvector.This eigenvector defines the wave motion in the periodic section at that frequency.

    3 Numerical investigation

    As shown in Fig.1,we investigate PCs composed of copper(segmentA)and epoxy(segmentB)arranged in a lattice with a filling fractiona1:a2=1:1 and the lattice constanta=150mm.Table 1 shows the material parameters of copper and epoxy.

    Table 1:Materials properties

    Figure 3:The band structure of WFEM(squares)and traditional FEM(dashed and solid lines)

    Figure 4:The band structure calculated by 2 and 4 BSW I43 Euler beam elements

    In order to verify the validity of the present method,we employ 2 BSW I43Euler beam elements(20 DOFs),4 and 16 traditional Euler beam elements[Zienkiew icz et al.(2005)](10 and 34 DOFs)to solve the band structure of the 1DPCs.The results are plotted in Fig.3 and the squares,the dashed lines and the solid lines denote the solutions of 2 BSW I43Euler beam elements,4 and 16 traditional Euler beam elements,respectively.From Fig.3,we find that the results from the two methods are in good agreement and the 2 BSW I43Euler beam elements can reach the accuracy of 16 traditional beam elements.As well known,FEM is efficient and reliable to compute 1DPCs,which verifies that the developed WFEM can yield accurate results.It points out that the DOF used for traditional element more than 1.5 times of that of the present method.

    The above results indicate that good calculation accuracy can be achieved for the 1DPCs by the proposed WFEM.The main advantage of the proposed method is the time savings due to the reduction of DOF.

    To testify the convergence of the present wavelet FEM,we adopted 2(20 DOFs)and 4(38 DOFs)BSW I43Euler beam elements to calculate the BGs of 1DPCs,respectively.The results are shown in Fig.4.The solution of 2 elements also can reach high precision.This is because the resulting matrices are very sparse in the wavelet-based method.

    Furthermore,we give a performance comparison of BSW I Euler beam element at different wavelet level,i.e.,BSWI43,BSW I44,BSW I45and BSW I46Euler beam elements.The results are basically identical with BSW I43.It illustrates BSW I43elements can gain a high accuracy to calculate the band structure.

    The numerical results are presented in this paper demonstrating the accuracy,efficiency and reliability of the BSW I beam element.The fundamental cause of the good performance of BSW I beam element lies in the BSW I scaling functions with the advantages of high approximation precision and the excellent localization characteristic in space domain.

    4 Conclusions

    In this paper,the good approximation capability of BSW I4jbeam element has been explored to approximate the displacement fields of 1DPCs.More specifically,two BSW I4jbeam element are employed to discretize a unit cell and the corresponding equation of motion and further the corresponding frequency equation for calculating BGs are obtained.The numerical results show that the advantage of this method is its computational efficiency.This is reflected by the fact that it requires fewer elements,in comparison to the popular finite element method,to achieve the same solution quality.The further work is to compute BGs of 2D or 3D phononic crystals.

    Acknowledgement:The authors are grateful to the support from the National Science Foundation of China(No.51175097),the Zhejiang Provincial Natural Science Foundation for Excellent Young Scientists(No.LR13E050002)and the Project-sponsored by SRF for ROCS,SEM.

    Assouar,M.B.;Oudich,M.(2011):Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal.Appl.Phys.Lett.vol.99,no.12,123505.

    Chen,X.F.;Yang,S.J.;M a,J.X.;He,Z.J.(2004):the construction of wavelet finite element and its application.Finte Elem.Anal.Des,vol.40,no.5,pp.541-554.

    Chen,X.F.;Xiang,J.W.;Li,B.;He,Z.J.(2010):A study of multiscale wave let based elements for adaptive finite element analysis.Adv.Eng.Softw,vol.41,no.2,pp.196-205.

    Chen,X.F.;Yang,Z.B.;Zhang,X.W.;He,Z.J.(2012):Modeling of wave propagation in one-dimension structures using B-spline wavelet on interval finite element.Finite Elem.Anal.Des,vol.51,pp.1-9.

    Gao,H.F.;M atsumoto,T.;Takahashi,T.;Isakari,H.(2013a):Analysis of band structure for 2D acoustic phononic structure by BEM and the block SS method.CMES-Comput.Model.Eng.Sci.,vol.90,pp.283-301.

    Gao,H.F.;M atsumoto,T.;Takahashi,T.;IsakariH.(2013b):Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai-Sugiura method.Eng.Anal.Bound.Elem.,vol.37,pp.914-923.

    Hang,J.G.;Ren,W.X.;Huang,Y.(2005):A multi variable wavelet based finite element method and its application to thick plates.Finte Elem.Anal.Des,vol.41,pp.821-833.

    Hang,J.G.;Ren,W.X.;Huang,Y.(2006):A spline wavelet finite-elementmethodin structural mechanics.Int.J.Num.Meth.Engng,vol.66,pp.166-190.

    He,W.Y.;Ren,W.X.(2013a):Adaptive trigonometric herm ite wavelet finite element method for structural analysis.Int.J.Struct.Stab.Dyn,vol.13,1350007.

    He,W.Y.;Ren,W.X.(2013b):Trigonometric wavelet-based method for elastic thin plate analysis.Appl.Math.Model,vol.37,pp.1607-1617.

    Kushwaha,M.S.;Halevi,P.;Dobrzynsi,L.;Diafari-Rouhani,B.(1993):A-coustic band structure of periodic elastic composites.Phys.Rev.Lett.vol.71,pp.2022-2025.

    Kushwaha,M.S.;Halevi,P.;M artinez,G.;Dobrzynski,L.;Djafari-Rouhani,B.(1994):Theory of acoustic band structure of periodic elastic composites.Phys.Rev.B,vol.49,pp.2313-2322.

    Ko,J.;Kurdila,A.J.;Pilant,M.S.(1997):Triangular wavelet based finite elements via multivalued scaling equations.Comput.Meth.Appl.Mech.Eng,vol.146,pp.1-17.

    Li,B.;Dong,H.B.(2012):Quantitative identification of multiple cracks in a rotor utilizing wavelet finite element method.CMES-Comput.Model.Eng.Sci.,vol.84,no.3,pp.205-228.

    Li,B.;He,Z.J.(2013):A benchmark problem for comparison of vibration-based crack identification methods.CMES-Comput.Model.Eng.Sci.,vol.93,no.4,pp.293-316.

    Li,B.;Chen,X.F.(2014):Wavelet-based numerical analysis:A review and classification.Finte Elem.Anal.Des,vol.81,pp.14-31.

    M oiseyenko,R.P.;Laude,V.(2011):Material loss influence on the complex bnad structure and group velocity in phononic crystals.Phys.Rev.B,vol.83,064301.

    M ead,D.J.(1973):A general theory of harmonic wave propagation in linear periodic systems with multiple coupling.J.Sound Vib,vol.27,pp.235-260.

    Tanaka,Y.;Tamura,S.-I.(1998):Surface acoustic waves in two-dimensional periodic elastic structures.Phys.Rev.B,vol.58,no.12,pp.7958.

    Tanaka,Y.;Tamura,S.(1999):Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer.Phys.Rev.B,vol.60,pp.13294-13297.

    Tarasenko,O.S.;Tarasenko,C.V.;Yurchenko,V.M.(2004):Localization of a transverse elastic wave in a sem i-bounded acoustic superlattice of ferromagnetic and superconducting layers:1.slip boundary.Acoust.Phys.,vol.50,no.5,pp.602-611.

    Veres,I.A.;Berer,T.(2012):Complexity of band structures:sem i-analytical finite element analysis of one-dimensional surface phononic crystals.Phys.Rev.B,vol.86,104304.

    W ilkinson,J.H.(1965):The Algebraic Eigenvalue Problem.Oxford:The Clarendon Press.

    Xiang,J.W.;Chen,X.F.;He,Z.J.;Dong,H.B.(2007):The construction of 1D wavelet finite elements for structural analysis.Comput.Mech,vol.40,pp.325-339.

    Xiang,J.W.;Chen,X.F.;He,Z.J.;Zhang,Y.H.(2008a):A new wavelet-based thin plate element using B-spline wavelet on the interval.Comput.Mech,vol.41,pp.243-255.

    Xiang,J.W.;Chen,X.F.;Yang,L.F.;He,Z.J.(2008b):A class of waveletbased flat shell elements using B-spline wavelet on the interval and its applications.CMES-Comput.Model.Eng.Sci.,vol.23,pp.1-12.

    Xiang,J.W.;Liang,M.(2011):Multiple damage detection method for beams based on multi-scale elements using Herm ite cubic spline wavelet.CMES-Comput.Model.Eng.Sci.,vol.73,pp.267-298.

    Xiang,J.W.;M atsumoto,T.;Wang,Y.X.;Jiang,Z.S.(2011):A hybrid of interval wavelets and wavelet finite element model for damage detection in structures.CMES-Comput.Model.Eng.Sci.,vol.81,pp.269-294.

    Xiang,J.W.;Wang,Y.X.;Jiang,Z.S.;Long,J.Q.;M a,G.(2012):Numerical simulation of plane crack using herm ite cubic spline wavelet.CMES-Comput.Model.Eng.Sci.,vol.88,pp.1-16.

    Yang,Z.B.;Chen,X.F.;Li,B.;He,Z.J.;M iao,H.H.(2012):Vibration analysis of curved shell using B-spline wavelet on the interval(BSW I) finite elements method and general shell theory.CMES-Comput.Model.Eng.Sci.,vol.85,no.2,pp.129-155.

    Yang,Z.B.;Chen,X.F.;Zhang,X.W.;He,Z.J.(2013):Free vibration and buckling analysis of plates using B-spline wavelet on the interval Mindlin element.Appl.Math.Model.,vol.37,no.5,pp.3449-3466.

    Yang,Z.B.;Chen,X.F.;Li,X.;Jiang,Y.Y.;M iao,H.H.;He,Z.J.(2014):Wave motion analysis in arch structures via wavelet finite element method.J.Sound Vib.,vol.332,no.2,pp.446-469.

    Yang,Z.B.;Chen,X.F.;He,Y.M.;He,Z.J.;Zhang,J.(2014):The analysis of curved beam using B-spline wavelet on interval finite element method.Shock Vib.,738162.

    Zienkiew icz,O.C.;Taylor,R.L.;Zhu,J.Z.(2005):The Finite Element Method:Its Basis and Fundamentals(Sixth editon).Oxford:Butterworth-Heinemann.

    猜你喜歡
    信心班集體主人
    從我們的班集體說起
    信心和山
    文苑(2020年10期)2020-11-22 03:28:43
    Study Of ShiJie Control Thought
    我愛我的班集體
    兒童大世界(2019年1期)2019-11-27 23:26:31
    恢復信心比給豬刷臉更重要
    主人有的我也有
    弓的主人
    主人
    KX5的耐心與信心
    汽車觀察(2016年3期)2016-02-28 13:16:38
    立足班集體建設,促進學生個性發(fā)展
    人間(2015年19期)2016-01-04 12:47:00
    免费久久久久久久精品成人欧美视频| av有码第一页| 久久久久久久大尺度免费视频| 成人精品一区二区免费| 精品久久久久久电影网| 香蕉国产在线看| 亚洲一码二码三码区别大吗| 午夜福利欧美成人| 热re99久久精品国产66热6| 人人澡人人妻人| 一级片'在线观看视频| 一区二区av电影网| 汤姆久久久久久久影院中文字幕| 天堂动漫精品| 天天影视国产精品| 嫩草影视91久久| 亚洲五月色婷婷综合| 国产精品亚洲一级av第二区| 欧美国产精品va在线观看不卡| 久久人人爽av亚洲精品天堂| 成人黄色视频免费在线看| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 国产成人精品久久二区二区免费| 国产成人免费无遮挡视频| 黄色怎么调成土黄色| 国产成人啪精品午夜网站| aaaaa片日本免费| 国产欧美日韩一区二区精品| 99国产综合亚洲精品| 中文字幕人妻丝袜制服| 国产在线免费精品| 露出奶头的视频| 国产一区二区激情短视频| 国产又爽黄色视频| 建设人人有责人人尽责人人享有的| a级毛片黄视频| 老司机福利观看| 国产成人欧美在线观看 | 久久精品国产a三级三级三级| 亚洲精品成人av观看孕妇| 免费日韩欧美在线观看| 天天躁日日躁夜夜躁夜夜| 国产成人免费无遮挡视频| 搡老乐熟女国产| 色尼玛亚洲综合影院| 欧美另类亚洲清纯唯美| 亚洲综合色网址| 自拍欧美九色日韩亚洲蝌蚪91| 国产区一区二久久| 18禁黄网站禁片午夜丰满| 日本av免费视频播放| 亚洲av第一区精品v没综合| 性色av乱码一区二区三区2| 亚洲久久久国产精品| 深夜精品福利| 午夜福利,免费看| 国产淫语在线视频| av线在线观看网站| 亚洲欧美日韩另类电影网站| 一区二区三区乱码不卡18| 国产日韩一区二区三区精品不卡| 大片电影免费在线观看免费| 大香蕉久久成人网| 国产av精品麻豆| www.999成人在线观看| 国产亚洲精品第一综合不卡| 999久久久国产精品视频| 国产精品亚洲一级av第二区| a级毛片黄视频| 一本综合久久免费| 免费一级毛片在线播放高清视频 | 日韩大片免费观看网站| 精品久久久久久电影网| 最黄视频免费看| 麻豆av在线久日| av网站免费在线观看视频| 国产免费福利视频在线观看| cao死你这个sao货| 狠狠婷婷综合久久久久久88av| 久久av网站| av欧美777| 久久狼人影院| 日本五十路高清| 黄色 视频免费看| 天天躁日日躁夜夜躁夜夜| 国产av国产精品国产| 久久ye,这里只有精品| 精品欧美一区二区三区在线| 亚洲免费av在线视频| 热99re8久久精品国产| 欧美精品一区二区免费开放| 大香蕉久久成人网| 国产色视频综合| 一区在线观看完整版| 两性夫妻黄色片| 欧美人与性动交α欧美精品济南到| 日韩人妻精品一区2区三区| 满18在线观看网站| 51午夜福利影视在线观看| 国产成人精品在线电影| 叶爱在线成人免费视频播放| 极品教师在线免费播放| 久久久久久久精品吃奶| av超薄肉色丝袜交足视频| 99riav亚洲国产免费| 国产欧美日韩综合在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 免费不卡黄色视频| 欧美成人免费av一区二区三区 | 性高湖久久久久久久久免费观看| 国产三级黄色录像| 一个人免费在线观看的高清视频| 肉色欧美久久久久久久蜜桃| 满18在线观看网站| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 一区二区av电影网| 桃花免费在线播放| 中文字幕最新亚洲高清| 亚洲精品av麻豆狂野| 国精品久久久久久国模美| 精品高清国产在线一区| 成人精品一区二区免费| 黑人操中国人逼视频| 午夜福利影视在线免费观看| 一区二区三区乱码不卡18| 久久精品亚洲精品国产色婷小说| 黄网站色视频无遮挡免费观看| 我要看黄色一级片免费的| 热re99久久国产66热| 国产成人av激情在线播放| 午夜福利视频精品| 国产精品98久久久久久宅男小说| 国产精品影院久久| 在线观看免费视频网站a站| 国产午夜精品久久久久久| 亚洲av欧美aⅴ国产| 男人操女人黄网站| 国产单亲对白刺激| 国产精品一区二区在线不卡| 天天躁日日躁夜夜躁夜夜| 老司机亚洲免费影院| 麻豆乱淫一区二区| 日韩免费av在线播放| 十八禁高潮呻吟视频| 久久国产精品男人的天堂亚洲| 免费看a级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 少妇精品久久久久久久| 国产xxxxx性猛交| 日韩欧美三级三区| 露出奶头的视频| 欧美精品人与动牲交sv欧美| 视频在线观看一区二区三区| 亚洲精品中文字幕一二三四区 | 欧美成人免费av一区二区三区 | 在线av久久热| www.999成人在线观看| 成年人免费黄色播放视频| 精品人妻熟女毛片av久久网站| 久久久久精品人妻al黑| 亚洲精品国产精品久久久不卡| 女人久久www免费人成看片| 一个人免费在线观看的高清视频| 国产av精品麻豆| 天堂中文最新版在线下载| 中文字幕另类日韩欧美亚洲嫩草| 一夜夜www| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看| 亚洲av欧美aⅴ国产| 中亚洲国语对白在线视频| 视频在线观看一区二区三区| 国产精品偷伦视频观看了| 亚洲一卡2卡3卡4卡5卡精品中文| 久久香蕉激情| 亚洲伊人久久精品综合| 亚洲综合色网址| 久久久精品94久久精品| 制服人妻中文乱码| 脱女人内裤的视频| 大片免费播放器 马上看| 亚洲av片天天在线观看| 女性被躁到高潮视频| 久热爱精品视频在线9| 热re99久久精品国产66热6| 午夜精品国产一区二区电影| 久久久久久久大尺度免费视频| 自线自在国产av| 十八禁高潮呻吟视频| 99re在线观看精品视频| 欧美午夜高清在线| 日韩欧美三级三区| 国产精品九九99| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 超色免费av| 免费在线观看黄色视频的| 菩萨蛮人人尽说江南好唐韦庄| 一本色道久久久久久精品综合| 亚洲欧洲日产国产| 精品一区二区三区av网在线观看 | 国产精品久久久久久精品电影小说| 丰满饥渴人妻一区二区三| 日韩免费av在线播放| 美女午夜性视频免费| 少妇被粗大的猛进出69影院| 十八禁网站免费在线| 亚洲人成77777在线视频| 精品福利永久在线观看| 国产av又大| 国产精品亚洲av一区麻豆| 欧美中文综合在线视频| 人人澡人人妻人| 欧美日韩国产mv在线观看视频| 欧美精品亚洲一区二区| 少妇粗大呻吟视频| 在线观看一区二区三区激情| 欧美黑人精品巨大| 日本精品一区二区三区蜜桃| 天天添夜夜摸| 亚洲国产欧美一区二区综合| 一级片免费观看大全| 中文欧美无线码| 香蕉国产在线看| 亚洲国产av新网站| xxxhd国产人妻xxx| 老司机深夜福利视频在线观看| 亚洲精品成人av观看孕妇| 日本五十路高清| 黄片小视频在线播放| 精品国产一区二区三区久久久樱花| 中亚洲国语对白在线视频| 一进一出抽搐动态| 欧美另类亚洲清纯唯美| a级毛片黄视频| 午夜福利视频在线观看免费| 视频区欧美日本亚洲| 黄色片一级片一级黄色片| 美女扒开内裤让男人捅视频| 我的亚洲天堂| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 99在线人妻在线中文字幕 | 久久精品人人爽人人爽视色| 两性夫妻黄色片| 夫妻午夜视频| 啦啦啦在线免费观看视频4| 久久精品亚洲熟妇少妇任你| 久久婷婷成人综合色麻豆| 天天影视国产精品| av有码第一页| 久久亚洲真实| 亚洲伊人久久精品综合| 亚洲欧洲精品一区二区精品久久久| 美女福利国产在线| 老汉色∧v一级毛片| 日韩精品免费视频一区二区三区| 国产av精品麻豆| 丝袜喷水一区| 欧美黄色片欧美黄色片| 电影成人av| 国产区一区二久久| 日日夜夜操网爽| 亚洲三区欧美一区| av线在线观看网站| 国产不卡av网站在线观看| 叶爱在线成人免费视频播放| 高清毛片免费观看视频网站 | 亚洲免费av在线视频| 黄色a级毛片大全视频| 欧美日韩av久久| 国产又爽黄色视频| 成在线人永久免费视频| 国产熟女午夜一区二区三区| 91麻豆av在线| 国产av国产精品国产| 国产日韩欧美视频二区| 在线观看一区二区三区激情| 大香蕉久久网| 大香蕉久久成人网| www.精华液| 欧美日韩精品网址| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 亚洲九九香蕉| 日本vs欧美在线观看视频| 人人澡人人妻人| 女同久久另类99精品国产91| 精品一区二区三卡| 叶爱在线成人免费视频播放| 国产国语露脸激情在线看| xxxhd国产人妻xxx| 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 中文字幕人妻丝袜一区二区| 亚洲国产精品一区二区三区在线| 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 精品国产亚洲在线| 欧美黑人精品巨大| 欧美激情高清一区二区三区| 男女下面插进去视频免费观看| 日本wwww免费看| 亚洲成人手机| 亚洲伊人色综图| 啦啦啦 在线观看视频| 亚洲国产欧美一区二区综合| 大片电影免费在线观看免费| 国产在视频线精品| 91字幕亚洲| 女人久久www免费人成看片| 视频区图区小说| 91精品国产国语对白视频| 三上悠亚av全集在线观看| 一进一出好大好爽视频| 最近最新免费中文字幕在线| 国产亚洲午夜精品一区二区久久| 五月天丁香电影| 国产真人三级小视频在线观看| 男女免费视频国产| 欧美一级毛片孕妇| 男女高潮啪啪啪动态图| 99久久99久久久精品蜜桃| 欧美日韩黄片免| 亚洲av美国av| 丝袜人妻中文字幕| 91大片在线观看| 又紧又爽又黄一区二区| kizo精华| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 中文字幕制服av| 精品视频人人做人人爽| 欧美日韩视频精品一区| 亚洲色图综合在线观看| 波多野结衣av一区二区av| 电影成人av| 91老司机精品| 蜜桃国产av成人99| 亚洲欧美一区二区三区黑人| 亚洲av国产av综合av卡| 久久人人爽av亚洲精品天堂| 丁香六月天网| av超薄肉色丝袜交足视频| 午夜免费鲁丝| 亚洲五月色婷婷综合| 亚洲,欧美精品.| 一区二区三区精品91| av一本久久久久| 在线观看免费视频日本深夜| 18禁国产床啪视频网站| 亚洲人成电影观看| 久久久久精品国产欧美久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产看品久久| 国产免费福利视频在线观看| 精品久久蜜臀av无| 五月天丁香电影| 亚洲第一av免费看| 免费观看人在逋| 最新在线观看一区二区三区| 亚洲色图av天堂| 国产精品免费一区二区三区在线 | 国产精品亚洲一级av第二区| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 777米奇影视久久| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 久久久国产一区二区| 一级黄色大片毛片| 日韩欧美一区二区三区在线观看 | 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 亚洲avbb在线观看| 亚洲天堂av无毛| 亚洲精品自拍成人| 日韩人妻精品一区2区三区| 色精品久久人妻99蜜桃| 久久人妻熟女aⅴ| 国产成人精品无人区| 满18在线观看网站| 亚洲av日韩在线播放| 夜夜爽天天搞| 99热网站在线观看| 欧美成人免费av一区二区三区 | 精品一区二区三区视频在线观看免费 | 热re99久久国产66热| 一本大道久久a久久精品| 亚洲欧美精品综合一区二区三区| 欧美日韩成人在线一区二区| 69av精品久久久久久 | 欧美成人免费av一区二区三区 | www.自偷自拍.com| 日韩欧美一区视频在线观看| 国产欧美亚洲国产| 大陆偷拍与自拍| 欧美在线一区亚洲| 午夜老司机福利片| 欧美精品av麻豆av| 热re99久久国产66热| 手机成人av网站| 日本黄色视频三级网站网址 | 怎么达到女性高潮| 精品高清国产在线一区| 免费在线观看日本一区| 丰满少妇做爰视频| 欧美日韩黄片免| 国产真人三级小视频在线观看| 1024香蕉在线观看| 国产在线视频一区二区| 狠狠婷婷综合久久久久久88av| 大香蕉久久成人网| 久久这里只有精品19| 丰满人妻熟妇乱又伦精品不卡| 久久青草综合色| 99国产精品一区二区三区| 一边摸一边做爽爽视频免费| 老汉色∧v一级毛片| 97在线人人人人妻| 久热这里只有精品99| 99国产精品免费福利视频| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 亚洲国产欧美网| 成年人午夜在线观看视频| 亚洲精品在线美女| 亚洲专区中文字幕在线| 少妇精品久久久久久久| 久久精品熟女亚洲av麻豆精品| 欧美日本中文国产一区发布| 免费高清在线观看日韩| 电影成人av| 国产熟女午夜一区二区三区| 亚洲成国产人片在线观看| xxxhd国产人妻xxx| 无限看片的www在线观看| 又紧又爽又黄一区二区| 免费少妇av软件| 国产欧美日韩一区二区三| 国产男女超爽视频在线观看| a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看 | 国产免费视频播放在线视频| 一级黄色大片毛片| 性色av乱码一区二区三区2| 日日摸夜夜添夜夜添小说| 欧美激情 高清一区二区三区| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费 | 99香蕉大伊视频| 黄色成人免费大全| 黑丝袜美女国产一区| 一级,二级,三级黄色视频| 久久九九热精品免费| 女性被躁到高潮视频| 国产精品.久久久| svipshipincom国产片| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色成人免费大全| 黄频高清免费视频| 国产成人av激情在线播放| 亚洲国产看品久久| 久久这里只有精品19| 国产精品久久久久久精品古装| 满18在线观看网站| 亚洲午夜理论影院| 十八禁网站免费在线| 伦理电影免费视频| 免费少妇av软件| 精品久久久久久电影网| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频| 一区二区三区国产精品乱码| 日本精品一区二区三区蜜桃| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 精品国产亚洲在线| 久久亚洲真实| 咕卡用的链子| 久久久水蜜桃国产精品网| 午夜成年电影在线免费观看| 国产真人三级小视频在线观看| 精品国产乱码久久久久久小说| 午夜两性在线视频| 69av精品久久久久久 | 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 热99re8久久精品国产| 国产精品免费一区二区三区在线 | 久久九九热精品免费| 女同久久另类99精品国产91| 交换朋友夫妻互换小说| 老司机亚洲免费影院| 国产精品自产拍在线观看55亚洲 | 精品少妇内射三级| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 国产在线观看jvid| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 国产亚洲av高清不卡| 欧美精品一区二区大全| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 亚洲av日韩精品久久久久久密| 搡老乐熟女国产| 久久久精品免费免费高清| 少妇的丰满在线观看| 免费看a级黄色片| 三级毛片av免费| 欧美 日韩 精品 国产| tocl精华| 天堂俺去俺来也www色官网| a级毛片在线看网站| 色婷婷久久久亚洲欧美| 露出奶头的视频| 久久国产亚洲av麻豆专区| 天堂动漫精品| 最近最新中文字幕大全电影3 | 别揉我奶头~嗯~啊~动态视频| 老司机在亚洲福利影院| 亚洲av欧美aⅴ国产| 女性被躁到高潮视频| 亚洲av第一区精品v没综合| www日本在线高清视频| 男女之事视频高清在线观看| 色播在线永久视频| 国产一区二区三区综合在线观看| 久久人妻av系列| 欧美激情 高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 午夜福利一区二区在线看| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 麻豆av在线久日| 午夜激情av网站| 99精国产麻豆久久婷婷| 精品少妇内射三级| 99精国产麻豆久久婷婷| 黑人操中国人逼视频| 亚洲av电影在线进入| 精品久久久精品久久久| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看| 精品国产乱码久久久久久男人| 91九色精品人成在线观看| 黑丝袜美女国产一区| 91九色精品人成在线观看| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 99九九在线精品视频| 黑丝袜美女国产一区| 一本久久精品| 国产精品av久久久久免费| 欧美性长视频在线观看| 高清黄色对白视频在线免费看| 欧美激情久久久久久爽电影 | 欧美日韩亚洲国产一区二区在线观看 | av一本久久久久| 国产精品二区激情视频| 国产精品电影一区二区三区 | 久久久久久久精品吃奶| 精品福利观看| 久久精品亚洲av国产电影网| 国产高清视频在线播放一区| 色婷婷av一区二区三区视频| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 国产精品欧美亚洲77777| 久久中文看片网| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 在线观看免费日韩欧美大片| 999久久久国产精品视频| 最新在线观看一区二区三区| 午夜福利乱码中文字幕| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品美女特级片免费视频播放器 | 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 黄网站色视频无遮挡免费观看| 国产精品美女特级片免费视频播放器 | 在线观看免费高清a一片| 肉色欧美久久久久久久蜜桃| 久热爱精品视频在线9| av福利片在线| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| 国产91精品成人一区二区三区 | 99国产精品免费福利视频| 黑人操中国人逼视频| 男女下面插进去视频免费观看| 动漫黄色视频在线观看| 操美女的视频在线观看| 在线观看免费视频网站a站| 青青草视频在线视频观看| 久久国产精品大桥未久av|