• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Normal Stresses in an Ifnitite Elastic Body with a Locally Curved and Hollow Nano fiber

    2014-04-16 02:45:20Alan
    Computers Materials&Continua 2014年16期

    K.S.Alan

    1 Introduction

    As it had been noted in Tarnopolsky,Yu,Jigun and Polyakov(1987),Guz(1990),Kelly(1998),Akbarov and Guz(2000),Guz(2003),one of the basic reasons through which the strength of the unidirectional fibrous composites under loading along the fibers is determined principally,is the curvature of the fibers.According to the curving form,these curvatures can be classified as periodically or locally.The effective practical applications of the unidirectional fibrous composite materials,under service conditions,require intensive,systematic investigations to determine the stress deformed state in these materials,taking the curving of reinforcing fibers into account.For this purpose,in Akbarov and Guz(1985)within the framework of the piecewise homogeneous body model by the use of the three-dimensional exact equations of the theory of elasticity,the method for investigation of the mentioned stress state in the unidirectional composites was presented.This method is employed in a case where the curving of the fibers is periodic.The reviews of the results obtained by this method are detailed in Akbarov and Guz(2002).

    Note that the method used in Akbarov and Guz(1985)is presented for the case where the concentration of the fibers in the composite is small enough to neglect the interactions between them.In Kosker and Akbarov(2003),the method used in Akbarov and Guz(1985)has been developed for two neighbouring periodically curved fibers and some corresponding numerical results have also been presented.In Akbarov and Kosker(2003),the method in Akbarov and Guz(1985),Akbarov and Guz(2002),Kosker and Akbarov(2003)has been developed for the geometrical nonlinear statement and numerical results for one and two neighbouring periodically curved fibers have been given.

    That is all as far as the above mentioned periodical curving case is concerned.There are also few investigations,such as Djafarova(1992),Djafarova(1994),Djafarova(1995),which regard the local curving case.But these investigations have been carried out in the case where the concentration of the fibers is small enough to ignore any interaction between the fibers.Moreover,it is by the use of the linear theory of elasticity that these investigations have been carried out.According to the well-known mechanical considerations and to the results obtained in Akbarov and Kosker(2003)taking the geometrical nonlinearity into account influences significantly the values of the self-balanced stresses caused by fibers’curving.

    In Kosker and Simsek(2006),Kosker and Simsek(2007),the normal stresses are analysed.The Method in Akbarov,Kosker and Simsek(2005)has been developed in Kosker and Simsek(2006)in such way as to obtain normal stress values up to the second approximation in the fiber matrix interface.In Kosker and Simsek(2007),the method has been developed for the determination of the stress distribution in the unidirectional fibrous composites with locally curved fibers is used to investigate normal stresses acting along the fibers for the case where there exists the bond covering cylinder with constant thickness between fiber and matrix materials are considered.

    Alan and Akbarov(2010)developed the method for the determination of the stress distribution in the composites with unidirectional locally curved covered fibers is used for investigation of the shear stresses acting along the fibers.

    The changeover from the microlevel to the nanolevel in the science of materials broke new ground in the mechanics of materials and structures.This was preceded by important events in the physics and chemistry of nanoformations,which were partially described in Guz(2006)and in Guz,Rushchitsky,Guz(2007),a basic approach to study the mechanical properties of nanocomposite materials with polymer matrix was proposed and the deformation of nanocomposites and structural members made of them.In Alan and Akbarov(2011)the normal stresses acting along the nanofiber in the nanocomposites with unidirectional locally curved covered nano fibers are considered.

    Nano fibers are defined as fibers with diameters on the order of 100 nanometers.In this study,within the framework of the piecewise homogeneous body model,with the use of the three dimensional geometrically nonlinear exact equations of the theory of elasticity,the method developed for the determination of the stress distribution in the nanocomposites with unidirectional locally curved and hollow nanofibers is used for investigation of the normal stresses acting along the nanofibers.The case is considered where a single locally curved and hollow nanofiber of in finite length is located in an in finite elastic body with a low concentration of nanofibers.The interaction between the nanofibers is neglected.Futhermore,it is assumed that the body is loaded at infinity by uniformly distributed normal forces which act along the nanofibers and the crosssection of the nanofibers and normal to its axial line,is a circle of constant radius along the entire fiber length.The numerous numerical results related to stress distribution in considered body and influence of geometrical nonlinearty to this distrubition are obtained and interpreted.

    2 Formulation of The problem

    We consider an in finite body containing a single locally curved and hollow nanofiber with an initial local imperfection,which is illustrated schematically in Fig.1.The values related to the nanofiber are denoted by superscript(2)and those related to the matrix by superscript(1).With the middle line of the nanofiber,we associate Lagrangian rectilinearOx1x2x3and cylindricalOrθzsystem of coordinates(Fig.1).We assume that the material of the nanofiber and the matrix are homogeneous,isotropic and linear elastic.The body is compressed or stretched at infinity by uniformly distributed normal forces with intensity p acting along theOx3axis and the crosssection of the nanofiber normal to its axial line are formed by two circles of constant radius R1and R2along the entire length.Under this situation which has no motion,for the nanofiber and matrix,in the framework of the piecewise homojeneous body model with use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity of continium mechanics,we write the equilibrum equations;

    Figure 1:The geometry of material structure and chosen coordinates.

    The strain-displacement relations as follows:

    In Eqs.(1)and(2),the conventional tensor notation is used.denote the k.constant of the physical components of the stress tensors anddenotethe k.constant of the physical componenets of the strain tensors.For the detailed explanation and formulation of the equations(1),(2),and any undefined terminology and notation,we refer to Akbarov and Guz(2000).

    The constitutive equations(Hooke’s Law)are as follows:

    wherenjare the covariant components of the unit normal vector to the surfaces S1and S2.We assume that the matreials of the matrix and nanofiber are comparatively rigid and therefore the nonlinear terms can be neglected in the equations obtained for the zeroth approximation and the termcan be replaced by the Kronecer symbolin the first and subsequent approximatons.

    For the analyzed case,the conditions are also assumed.

    where(ij)=rr,θθ,zz,rθ,rz,zθ,(i)=r,θ,z.Hiare the Lamé coefficients,andnjare the covariant components of the unit normal to the surfaces S1and S2.σandεdenote the covariant and contravariant components of the stress tensor and the strain tensor in the sylindrical system,respectively.uianduiare the covariant and contravariant components of the displacement vector(u)in the sylindrical system.In(6)formulas are given the relationships between the physical componenets of the tensor and vectors.The physical components of this stress and strain tensor in the sylindirical system are expressed according to the covariant and contravariant components of this stress and the strain tensors.

    We de fine the initial imperfection form of the nanofiber by the equation of its axial line.

    Where A and L are geometrical parameter which are shown in Fig.1.εis small parameter that specie fies the curvature amplitude.Assuming that A is smalller than L,we intruduce a small parameterThe functionis the local curving form of the nanofiber.

    First,using Eq.(8)and the condition for the crosssection of the nanofiber,we derive the following equation of the interface S and the components of their normal vectors in the cylindrical system of coordinatesOrθz.

    wheret3is a parameter andt3∈(?∞,+∞).Using the well-known operations of differential geometry,the componentsnr,nθandnzof the unit normal vector n to the surfaces S1and S2are obtained as follows:

    3 Solution Method

    The considered problem is the boundary-value problem for the nonlinear partial differantial equations.For the analysis of the this problem,the boundary form perturbation method given in Akbarov and Guz(2000)are used.According to this method,the unknown values are presented as series in the small parameterε:

    We expand the expression(9)-(10)as series inε;the quantities r,z,nr,nθandnzare also presented in series forms:

    The expressions for the coefficients of theεkin(12)can be determined by employing some routine operations,whose details are left out here.

    Substituting the expression(11)in Eq.(2)and Eq.(3)and grouping terms with identical powers,we obtain a complete system of equations for each approximation.In this case,Eq.(1)and(2)hold for the zeroth approximation,and the equations derived for the first and subsequent approximations contain the values of the previous approximations.

    Now we consider the contact conditions for each approximation,which are derived from Eqs.(4).For this purpose,we substitute the expressions(11)and(12)into Eq.(4)and expand the quantitiesinvolved in eqs.(11)into Taylor series in vicinity of a point(R,θ,t3).

    Then,grouping the terms with identical powers of the parameterεand taking into account the foregoing assumptions,we derive the contact conditions for each approximation:for the zeroth approximation

    In Eqs.(13)and(14)the following notation is used:

    The zeroth approximation.Taking into accountnr=1,nθ=0 andnz=0 in the equations(1),(2)and(3),the contact condition(4)will be provided.Therefore,the equations and the contact conditions obtained for the zeroth approximation are nonlinear equations.The zeroth approximation is the boundary-value problem for the determination of stresses and strain in the curvature-free nanofiber in our model.To the determine the zeroth approximation,we obtain the equations(16)and the contact condition(17).

    In this case,an exact analytical solution is given in Akbarov and Guz(2000),Guz(2003),Akbarov and Guz(1985).According to wchich,atν(1)=ν(1),we have the following relations:

    E(1),E(2)in(18)represent the elasticity modules of the matrix,nanofiber material,respectively.

    The First approximation.Taking into consideration the fact that the solution ob-tained for the zeroth approximations,we assume that the materials of the matrix and nanofiber are comparatively rijid,therefore,the nonlinear trems can be neglected in the equations obtained for the first approximation and the termcan be replaced within the first and subsequent approximations.For the first approximation,we obtain the equations(19),(20)and(21).

    The expressions of the physical components of the equations(19)and(20)are given in Kosker(2002).

    Taking into consideration the fact that the solution obtained for the zeroth approximation,other assumptions and the right-side function to be obtained for the second approximation would have values small enough to be neglected,governing equations for the first and second approximation can be de fined as follows in terms of the physical components of the tensors and vectors:

    These equations coincided with the 3-dimensional linearized elasticity equations.

    The mechanical and geometrical relations for the foregoing approximation are

    The contact conditions for the first approximation become

    To solve the problem(22),(23),and(24),we employ the representations in Guz(1999)

    The functions ofare determined from the equations

    Where,(k=1,2;i=1,2,3)given in the following equations:

    We apply the exponential Fourier transform with respect to z,i.e.

    to the Eqs.(22)-(26).In this case,we have the governing equations as follows:

    The strain are obtained as follows:

    The Constutive equations are given as follows:

    We have the expressions(25)as follows;

    The equations(26)are as follows;

    Considering the equations(28)and the contact condition(31),the equations(33)turns into the following equations

    whereIn(x)are Bessel functions of a purely imaginary argument andKn(x)are the Macdonald functions.The derivatives of this function are given as follows;

    The function(34)is employed in(32)and in(29)and substituted the contact condition(30);an 9x9 linear equation system is obtained which depends on the unknowns

    To solving this equation system,the unknowns

    Equation(4)shows that the functionδ(t3)is even,and therefore the expression(36)can be replaced with

    By similar manner we obtain the expressions to calculate the other sought values.Thus,by the above-described method we determine completely the values in the first approximation.Note that the values of the second and subsequent approximations can also be determined by this method.According to the investigations analyzed in Akbarov and Guz(2004)the main effect of the fiber curving on the distribution of stresses is manifested within the framework of the first approximation.The second and subsequent approximations give only some insignificant quantitative corrections to these results.However,to determine of the values of these approximations requires some very complicated and cumbersome mathematical procedures.Taking the above stated into account the investigations in the present paper are made only within the framework of the zeroth and first approximations.

    4 Numerical Results and Discussion

    First,we consider some remarks on the calculation of the improved integral(37).Note that under the calculation procedure these improved integrals are replaced by the corresponding de finite ones,i.e.we use the relationThe values of N andS?are determined from the convergence criterion of the improved integrals.Further,for the calculation of the integrals(.)dsthe Gauss integration algorithm is employed.All these procedures are made automatically in PC by using programmes written in FTN77.Thus,we consider numerical results regarding the normal stressσττ,which operate along the tangent vectorsτto surface S,which constitute the matrix and nanofiber intersection surfaces.In view of corresponding symmetry,we consider the distribution of these stresses only forIfε=0(i.e.if the curving is absent),the stressesσττcoincide withσzz.

    The graphs given in Figs.2 show the relationships betweenpoint of theS1surface in tension(a)and compression(b)for various values ofαatThe intermittently lines in these figures represent the lines obtained in the problem of the single locally curved nanofiber in an in finite body given in Kosker and Simsek(2006).Here,it can be concluded that when the thickness of nanofiber material is increased,it is possible to obtain the same result as those obtained in the case of the single locally curved nanofiber in an in finite body in the same parameter values.

    Figure 2:The relationships between σττ/|p|and h/L for values α at x3/L=1.0,and m=1(???)for a single locally curved nanofiber in an in finite body.

    Let us consider the graphs given in Figure 3,which illustrate the distribution ofwith respect toh/Lon the surfacesS2in tension(a)and compression(b)for various values ofαandmatIt follows from the graphs that as a result of the geometrical nonlinearity,the absolute values of the stressesin compression(tension)increase(decrease)monotonically with absolute values ofα.Note that under compression of the considered in finite body we assume that the selected values ofαare smaller than those of critical valuesαcr,which correspond to the micro-buckling of the fiber in the matrix in Guz(1990).

    The same figures show also the influence of the parameter m on the distribution of the normal stresses.According to the graphs in Figure 3,absolute maximal values of the normal stressesincrease monotonically with m.

    In.Fig.4 and 5,relationships betweenand x3/L on the surfacesS1and surfacesS2in tension(a)and compression(b)are shown for various values ofαat h/L=0.5 value.It follows from the graphs that as a result of the geometrical nonlinearity the absolute values of the stressesincrease(decrease)monotonically with absolute values ofαunder compression(tension).Note that under compression of the considered in finite body we assume that the selected values ofαare smaller than those ofαcr.which correspond to the micro-buckling of the fiber in the matrix in Guz(1990).

    Table 1 shows the values offor variousm andα.In this case the values ofare calculated underκ=0.25,=1.0 form=0,1 and 3 respectively.The table shows thatnormal stresses increase withand m.We assume thatαis smaller than its critical valuesαcrcorresponding to microbukling of the fiber in the matrix in Guz(1990).

    ?

    5 Conclusion

    Figure 3:Distribution of the with respect to h/L for various where E(2)/E(1)=300,ε=0.07 and κ =0.3,under m=0;m=1;m=3.

    Figure 4:Distribution of the with respect to x3/L for variouswhere E(2)/E(1)=300,ε=0.07 and κ =0.3,under m=0;m=1;m=3.

    Figure 5:Distribution of the with respect to for variouswhere E(2)/E(1)=300,ε=0.07 and κ =0.3,under m=0;m=1;m=3.

    In the present paper in the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity,the method is developed for the determination of the stress-strain state in the nanocomposites with unidirectional locally curved and hollow nanofibers is used for investigation of the normal stresses acting along the nanofibers.The case is considered where a locally curved and hollow nanofiber of in finite length is located in an in finite elastic body with a low concentration of nanofibers.The interaction between the nanofibers is neglected.

    The numerical results related normal stresses,which act on the interface,are given.From the analyses of the numerical results are derived the following conclusions:

    1.when the thickness between the hollow and nanofiber goes to 0 as a limit,it was obtained the same normal stresses values in the locally curved nanofiber in an nanocomposite material in same parameter values.

    2.As a result of the geometrical nonlinearity the absolute values of normal stresses,increase(decrease)in compression(tension)with|α|.

    3.The absolute maximum values of the considered stresses increase with

    monotically with m.

    4.An increase inresults in an increase in the absolute values of the normal stresses on the Hollow and nanofiber interface.

    The locally curvature of nanofiber is one of characteristics of nanocomposites as noted in Guz,Rushchitsky and Guz(2007),Guz and Chekhov(2007),Xiao,Zhang,Zarudi(2007).These results are also important for estimating the adhesion stress between the nanofibers and a polymer matrix.In this case,it is necessary to take into account the restrictions noted in Guz,Rushchitsky and Guz(2007).

    The numerical results obtained agree with well-known mechanical consideration and,in some particular cases,coincide with known results.

    Akbarov,S.D.;Guz,A.N.(1985):Method of Solving Problems in the Mechanics of Fiber Composites With Curved Structures.Soviet Applied Mechanics,pp.777-785.

    Akbarov,S.D.;Guz,A.N.(2000):Mechanics of Curved Composites.Kluwer Academic Publishers,Dordrecht,The Netherlands,464p.

    Akbarov,S.D.;Guz,A.N.(2002):Mechanics of curved composites(piecewise homogenous body model).Int.Appl.Mech.,vol.38,no.12,pp.1415-1439.

    Akbarov,S.D.;Kosker,R.(2003):On a stress analysis in the in finite elastic body with two neighbouring curved fibers.Composites Part B:Engineering,vol.34 no.2,pp.143-150.

    Akbarov,S.D.;Kosker,R.;Simsek,K.(2005):Stress distribution in an in finite elastic body with a locally curved fiber in a geometrically nonlinear statement.Mechanics of Composite Materials,vol.41,no.4,pp.291-302.

    Alan,K.S.;Akbarov,S.D.(2010):The Self-Balanced Shear Stresses in The Elastic Body with a Locally Curved Covered Fiber.Adv.Mec.Eng.,vol.2010,pp.1-14.

    Alan,K.S.;Akbarov,S.D.(2011):Stress Analyses in an In finite Elastic Body with a Locally Curved Covered Nano fiber.Mechanics of Composite Materials.Issue 3,vol.47,pp.343–358.

    Djafarova,E.K.(1992):On the solution method of the stress-strain state problems in the fibrous composites with locally curving structures.Tr.Nauch.Konf.Molod.Uchyon.In-ta Mekhan.AN Ukr.,Kiew,Part I,pp.39-44.

    Djafarova,E.K.(1994):Distribution of self-equilibrated stresses in fibrous composite materials with local curving in the structures.Dep.In VINIT.,N 2166-B94–34p.

    Djafarova,E.K.(1995):Stress state in composite materials with local curving fibers.Dissertation for the degree of Candidate of Physico-Mathematical Sciences.Institude of Mathematics and Mechanics of National Academy of Science of Azerbaijan,Baku.

    Guz,A.N.(1990):Failure mechanics of composite materials in compression.Kiev:Naukova Dumka Russia,630p.

    Guz,A.N.(1999):Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies.Springer.Newyork,NY.

    Guz,A.N.(2003):On one two-level model in the mesomechanics of compression fracture of Cracked Composites.Int.Appl.Mech.,vol.39,no.3,pp.274-285.

    Guz,A.N.(2006):The Three-Dimensional Theory of Stability of a CarbonNanotube.Int.Appl.Mech.,vol.42,no.1,pp.19-31.

    Guz,A.N.;Rushchitsky,J.J.;Guz,I.N.(2007):Establishing fundamentals of the Mechanics of Nanocomposites.Int.Appl.Mech.,vol.43,no.3,pp.247-269.

    Guz,A.N.;Chekhov,V.N.(2007):Problems of folding in the earth.Int.Appl.Mech.,vol.43,no.2.

    Kelly,A.(1998):Composite Materials:impediments do wider use and some suggestions to overcome these.In Proceeding Book(ECCM-8),Napoles-Italy,vol.I,pp.15-18.

    Kosker,R.(2002):Some Problems abaut internal stability loss and stress distribution in an elastic and viscoelastic unidirected fibrous composites.The Phd.Thesis,pp.138.

    Kosker,R.;Akbarov,S.D.(2003):In fluence of the interaction between two neighbouring periodically curved fibers on the stress distribution in a composite material.Mechanics of Composite Materials,vol.39,no.2,pp.165-176.

    Kosker,R.;Simsek,K.(2006):On the normal stresses in the elastic body with a locally curved fiber under geometric nonlinear statement.Sigma,Journal of Engineering and Natural Sciences,vol.3,pp.97-98.

    Kosker,R.;Simsek,K.(2007):Normal Stresses in the elastic body with a locally curved covered fiber.Sigma,Journal of Engineering and Natural Sciences,vol.3,pp.223-235.

    Tarnopolsky,Yu.M.;Jigun I.G.;Polyakov,V.A.(1987):Spatially-reinforced composite materials.Handbook,Mashinostroyenia,Moscow,Russia.

    Xiao,K.Q.;Zhang,L.C.;Zarudi,I.(2007):Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites.Compos.Sci.,Technol.,vol.67,no.2,pp.177-182.

    免费观看人在逋| 欧美+日韩+精品| 午夜福利在线观看免费完整高清在 | 国产毛片a区久久久久| 九九在线视频观看精品| 美女cb高潮喷水在线观看| 久久综合国产亚洲精品| 我要看日韩黄色一级片| 久久久久久大精品| 国产精品爽爽va在线观看网站| 九色成人免费人妻av| 亚洲av成人av| 91麻豆精品激情在线观看国产| 国产精品一及| 十八禁网站免费在线| 有码 亚洲区| a级毛片a级免费在线| 综合色av麻豆| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 麻豆精品久久久久久蜜桃| 人妻丰满熟妇av一区二区三区| 在线a可以看的网站| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久| 美女 人体艺术 gogo| 一级毛片aaaaaa免费看小| av在线蜜桃| 我的女老师完整版在线观看| 男插女下体视频免费在线播放| 老司机福利观看| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 高清毛片免费看| 国产精品一区二区三区四区免费观看 | 色综合站精品国产| a级毛色黄片| 国产亚洲精品综合一区在线观看| 此物有八面人人有两片| 男女之事视频高清在线观看| 久久精品国产亚洲av天美| 美女黄网站色视频| 乱人视频在线观看| 欧美日本亚洲视频在线播放| 亚洲美女黄片视频| 一级毛片电影观看 | 欧美另类亚洲清纯唯美| 美女被艹到高潮喷水动态| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 99热只有精品国产| 69人妻影院| 国产片特级美女逼逼视频| 国产乱人偷精品视频| 天天一区二区日本电影三级| 亚洲真实伦在线观看| 成年女人永久免费观看视频| 久久韩国三级中文字幕| 春色校园在线视频观看| 日韩 亚洲 欧美在线| 欧美色欧美亚洲另类二区| 一级av片app| 级片在线观看| 日日摸夜夜添夜夜添小说| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 身体一侧抽搐| 亚洲激情五月婷婷啪啪| 成人国产麻豆网| 美女黄网站色视频| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| 日韩强制内射视频| 老司机福利观看| 三级经典国产精品| 九九久久精品国产亚洲av麻豆| 美女内射精品一级片tv| 成人综合一区亚洲| 亚洲精品一区av在线观看| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 菩萨蛮人人尽说江南好唐韦庄 | 久久久成人免费电影| 在线观看午夜福利视频| 成人欧美大片| 91av网一区二区| 欧美在线一区亚洲| 久久久a久久爽久久v久久| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品久久久久久一区二区三区 | 桃色一区二区三区在线观看| 波野结衣二区三区在线| 精品久久国产蜜桃| 性欧美人与动物交配| 国产成人freesex在线 | 午夜免费男女啪啪视频观看 | 亚洲天堂国产精品一区在线| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 日本黄色片子视频| 久久久久国产网址| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 精品久久久久久久久亚洲| av卡一久久| 国产又黄又爽又无遮挡在线| 又粗又爽又猛毛片免费看| 久久综合国产亚洲精品| 国产综合懂色| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 欧美zozozo另类| 51国产日韩欧美| 国产日本99.免费观看| 天堂√8在线中文| 亚洲av免费在线观看| 久久久久久久午夜电影| 国产成人a∨麻豆精品| 国产人妻一区二区三区在| 久久久国产成人精品二区| 成人美女网站在线观看视频| 国产伦在线观看视频一区| 国产乱人视频| 国产高清激情床上av| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 国产精品伦人一区二区| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 日韩三级伦理在线观看| 性欧美人与动物交配| 婷婷精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区精品| 伊人久久精品亚洲午夜| 亚洲av成人av| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 丰满乱子伦码专区| 在线播放国产精品三级| 午夜福利高清视频| 嫩草影院入口| 在线国产一区二区在线| 亚洲av.av天堂| 精品人妻熟女av久视频| 欧美绝顶高潮抽搐喷水| 国产亚洲91精品色在线| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 欧美性感艳星| 亚洲在线自拍视频| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频| 赤兔流量卡办理| 色噜噜av男人的天堂激情| 亚洲四区av| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 搞女人的毛片| 99久久中文字幕三级久久日本| 可以在线观看的亚洲视频| 国产精品亚洲美女久久久| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久国产网址| 变态另类丝袜制服| 高清毛片免费看| 91久久精品电影网| 嫩草影院入口| av在线亚洲专区| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 国产视频一区二区在线看| 色综合站精品国产| 久久久a久久爽久久v久久| 日日啪夜夜撸| 久久午夜亚洲精品久久| 国产精品一区二区三区四区免费观看 | 我要看日韩黄色一级片| 99热全是精品| 夜夜看夜夜爽夜夜摸| 男女下面进入的视频免费午夜| 六月丁香七月| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 免费黄网站久久成人精品| 麻豆久久精品国产亚洲av| 久久综合国产亚洲精品| 国产在线精品亚洲第一网站| 婷婷色综合大香蕉| 秋霞在线观看毛片| 欧美区成人在线视频| 欧美性猛交黑人性爽| 欧美高清性xxxxhd video| 22中文网久久字幕| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区久久| 成年av动漫网址| 日韩av不卡免费在线播放| 69av精品久久久久久| 日韩大尺度精品在线看网址| 精品人妻视频免费看| 亚洲四区av| 亚洲国产精品合色在线| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 97碰自拍视频| 午夜精品在线福利| 亚洲欧美日韩东京热| 哪里可以看免费的av片| 久久久久久久久久久丰满| 日韩精品青青久久久久久| 久久天躁狠狠躁夜夜2o2o| 18+在线观看网站| 丰满的人妻完整版| 特大巨黑吊av在线直播| 蜜臀久久99精品久久宅男| 一本久久中文字幕| 精品少妇黑人巨大在线播放 | 99久久精品热视频| 国产v大片淫在线免费观看| 不卡一级毛片| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 精品久久国产蜜桃| 又爽又黄a免费视频| 亚洲乱码一区二区免费版| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 午夜福利在线观看吧| 免费av观看视频| 亚洲精品色激情综合| 亚洲av不卡在线观看| 日本免费一区二区三区高清不卡| 春色校园在线视频观看| 在线观看66精品国产| 我要看日韩黄色一级片| 日韩大尺度精品在线看网址| 亚洲一级一片aⅴ在线观看| 亚洲欧美精品综合久久99| 悠悠久久av| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件| 少妇的逼水好多| 日韩欧美三级三区| 级片在线观看| 99久久精品热视频| 国产精品久久久久久久久免| 99国产极品粉嫩在线观看| 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 日韩在线高清观看一区二区三区| 亚洲国产欧美人成| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 日韩强制内射视频| 成年av动漫网址| 99视频精品全部免费 在线| 久久久久久久久大av| 插阴视频在线观看视频| 国产色婷婷99| 国产极品精品免费视频能看的| 日本精品一区二区三区蜜桃| 亚洲国产色片| 赤兔流量卡办理| 国产精品无大码| 18禁在线无遮挡免费观看视频 | 欧美激情久久久久久爽电影| 男人舔女人下体高潮全视频| 国产成人影院久久av| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 亚洲精品456在线播放app| 在线观看66精品国产| 国产黄a三级三级三级人| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 久99久视频精品免费| 久久精品91蜜桃| 国产精品久久久久久av不卡| 国产黄片美女视频| 欧美zozozo另类| 国产午夜精品论理片| 亚洲无线在线观看| 国产在线男女| 国产av不卡久久| 国产 一区 欧美 日韩| 欧美bdsm另类| 午夜精品国产一区二区电影 | 亚洲av美国av| 久久久久久久久久久丰满| 欧美日韩精品成人综合77777| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 国模一区二区三区四区视频| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 久久亚洲国产成人精品v| 亚洲国产欧美人成| 亚洲三级黄色毛片| 精品久久久久久久久av| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 亚洲图色成人| 搡女人真爽免费视频火全软件 | 亚洲av中文av极速乱| 别揉我奶头~嗯~啊~动态视频| 国产极品精品免费视频能看的| 97热精品久久久久久| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 免费看光身美女| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 俄罗斯特黄特色一大片| 国产成人一区二区在线| 国产黄色小视频在线观看| 色5月婷婷丁香| a级毛片a级免费在线| 午夜视频国产福利| 激情 狠狠 欧美| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区久久| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 精品人妻一区二区三区麻豆 | 最新在线观看一区二区三区| 亚洲自拍偷在线| 日本黄色片子视频| 91av网一区二区| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 久久久国产成人精品二区| 日本与韩国留学比较| 少妇熟女欧美另类| 2021天堂中文幕一二区在线观| 99热全是精品| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 99久国产av精品| 国产一区二区三区av在线 | 看免费成人av毛片| 毛片一级片免费看久久久久| 国产精品亚洲一级av第二区| 久久午夜亚洲精品久久| 午夜福利高清视频| a级毛色黄片| 欧美日本亚洲视频在线播放| 99久国产av精品| 精品久久久久久久久亚洲| 人妻久久中文字幕网| 国产不卡一卡二| 国产精品久久电影中文字幕| 香蕉av资源在线| 精品人妻一区二区三区麻豆 | 精品久久久久久成人av| www.色视频.com| 99久久成人亚洲精品观看| 亚洲av.av天堂| av在线老鸭窝| 色哟哟·www| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 色5月婷婷丁香| 一个人免费在线观看电影| 国产精品乱码一区二三区的特点| 男女视频在线观看网站免费| 你懂的网址亚洲精品在线观看 | 成人无遮挡网站| 国产精品久久久久久久电影| 99久久精品国产国产毛片| 免费观看在线日韩| 一进一出抽搐动态| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 看非洲黑人一级黄片| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产大屁股一区二区在线视频| 黑人高潮一二区| 精品国内亚洲2022精品成人| a级毛片a级免费在线| 91狼人影院| 欧美日韩乱码在线| 亚洲经典国产精华液单| 午夜精品在线福利| 国产精品久久久久久亚洲av鲁大| 如何舔出高潮| 精品一区二区免费观看| 亚洲三级黄色毛片| 中国国产av一级| 成人永久免费在线观看视频| 最近中文字幕高清免费大全6| 欧美激情久久久久久爽电影| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站| 秋霞在线观看毛片| www日本黄色视频网| 内地一区二区视频在线| 亚洲18禁久久av| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 亚洲av二区三区四区| 久久久久国内视频| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 一级a爱片免费观看的视频| 99热这里只有精品一区| 国产成年人精品一区二区| 免费一级毛片在线播放高清视频| 综合色丁香网| 欧美日韩综合久久久久久| 国内精品宾馆在线| 人人妻,人人澡人人爽秒播| 又爽又黄无遮挡网站| 亚洲欧美成人综合另类久久久 | 色av中文字幕| 色吧在线观看| 午夜免费男女啪啪视频观看 | 精品一区二区三区视频在线观看免费| 人妻少妇偷人精品九色| 成人三级黄色视频| 国产91av在线免费观看| eeuss影院久久| 一本久久中文字幕| 久久久国产成人精品二区| 91午夜精品亚洲一区二区三区| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 六月丁香七月| 亚洲最大成人中文| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 国产亚洲91精品色在线| 久久草成人影院| 男人舔奶头视频| 禁无遮挡网站| 大香蕉久久网| 激情 狠狠 欧美| 99热精品在线国产| 久久这里只有精品中国| 色av中文字幕| 悠悠久久av| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 亚洲av熟女| 中国美白少妇内射xxxbb| 床上黄色一级片| 精品久久久久久久久久免费视频| 一进一出好大好爽视频| 精品99又大又爽又粗少妇毛片| 美女免费视频网站| 亚洲一区高清亚洲精品| 蜜臀久久99精品久久宅男| 国产麻豆成人av免费视频| ponron亚洲| 在现免费观看毛片| av.在线天堂| 最近手机中文字幕大全| 九九在线视频观看精品| videossex国产| 国产精品1区2区在线观看.| av视频在线观看入口| 亚洲最大成人中文| 两个人视频免费观看高清| 内射极品少妇av片p| 午夜亚洲福利在线播放| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 欧美最新免费一区二区三区| 成人av在线播放网站| 村上凉子中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 九色成人免费人妻av| 一个人看视频在线观看www免费| 99riav亚洲国产免费| 国产三级中文精品| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 黄色配什么色好看| 在线免费十八禁| 精华霜和精华液先用哪个| 国产成人a区在线观看| av在线天堂中文字幕| 成人亚洲欧美一区二区av| 国产麻豆成人av免费视频| 一区福利在线观看| 欧美最黄视频在线播放免费| 最近中文字幕高清免费大全6| 欧美三级亚洲精品| 久久久国产成人精品二区| 丰满人妻一区二区三区视频av| 亚洲成av人片在线播放无| 亚洲精品影视一区二区三区av| 国产精品综合久久久久久久免费| 欧美成人免费av一区二区三区| 亚洲熟妇中文字幕五十中出| 国产探花极品一区二区| 日韩亚洲欧美综合| eeuss影院久久| 99热精品在线国产| 亚洲国产精品成人综合色| 91久久精品电影网| 九九爱精品视频在线观看| 成年女人永久免费观看视频| 白带黄色成豆腐渣| 人妻少妇偷人精品九色| 精品国产三级普通话版| 成人精品一区二区免费| 一区二区三区免费毛片| 久久欧美精品欧美久久欧美| 尤物成人国产欧美一区二区三区| 激情 狠狠 欧美| 在线观看免费视频日本深夜| 麻豆精品久久久久久蜜桃| 香蕉av资源在线| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品 | 亚洲欧美中文字幕日韩二区| av国产免费在线观看| 免费观看精品视频网站| 丝袜美腿在线中文| 午夜福利高清视频| 国产精品永久免费网站| 亚洲性夜色夜夜综合| 插逼视频在线观看| 麻豆av噜噜一区二区三区| 亚州av有码| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线| 少妇丰满av| 久久久久久久久中文| 日韩高清综合在线| 国产真实伦视频高清在线观看| 黄色欧美视频在线观看| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 亚洲天堂国产精品一区在线| 综合色丁香网| 国产高潮美女av| 欧美国产日韩亚洲一区| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在 | 亚洲av电影不卡..在线观看| 97在线视频观看| 免费av不卡在线播放| 久久99热6这里只有精品| 深夜精品福利| 老熟妇乱子伦视频在线观看| 精品无人区乱码1区二区| 美女黄网站色视频| 少妇熟女aⅴ在线视频| 能在线免费观看的黄片| 一进一出好大好爽视频| 国产精品99久久久久久久久| 别揉我奶头~嗯~啊~动态视频| 草草在线视频免费看| 日韩成人伦理影院| 麻豆国产av国片精品| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看| 99久久精品国产国产毛片| eeuss影院久久| 中文字幕av在线有码专区| 俺也久久电影网| 精品久久久久久久久亚洲| 国产在线男女| 毛片女人毛片| 久久亚洲精品不卡| 91狼人影院| 成人av在线播放网站| 99热网站在线观看| 免费看光身美女| 美女 人体艺术 gogo| 亚洲av美国av| 看十八女毛片水多多多| 成年免费大片在线观看| 九色成人免费人妻av| 精品不卡国产一区二区三区| 国产精品伦人一区二区| 色综合站精品国产| 免费观看在线日韩| 亚洲美女搞黄在线观看 | 九九在线视频观看精品| 欧美成人免费av一区二区三区| a级毛片a级免费在线| 亚洲欧美精品自产自拍| 亚洲国产精品久久男人天堂| 在线观看美女被高潮喷水网站| 老熟妇仑乱视频hdxx| 最近最新中文字幕大全电影3| 欧美激情在线99|