• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite Element Modeling of Compressive Deformation of Super-long Vertically Aligned Carbon Nanotubes

    2014-04-14 06:34:58JosephandLu
    Computers Materials&Continua 2014年10期

    J.Joseph and Y.C.Lu

    1 Introduction

    Vertically aligned carbon nanotubes(VACNTs)have been generally synthesized with the aids of various templates.Terrones et al.have grown the first VACNTs by depositing the carbon sources in linear tracks in a silica template[Terrones et al.(1997)].de Heer et al.have made the carbon nanotubes through the use of an aluminum oxide micropore filter,a template used to align the nanotubes[de Heer et al.(1995)].Recently,template-free synthesis has been used to produce the VACNTs[Ishigami et al.(2008);Bajpai et al.(2004);Chen et al.(2010)].In a typical template-free synthesis,hydrocarbon vapor is passed through a high temperature reaction chamber in which a catalyst material has been introduced.Decomposition of hydrocarbon would take place,which leads to the formation/growth of nanotubes.Compared the template synthesis,the template-free synthesis is more effective in producing larger scale and taller nanotubes,so called super-long VACNTs(SL-VACNTs).SL-VACNTs can have the size as large as several square centimeters and the height as tall as several millimeters or centimeters,and have found a wide range of applications in areas such as the electrical interconnects[Kreupl et al.(2002)],thermal interfaces[Cola et al.(2009)],energy dissipation devices[Liu et al.(2008)],and microelectronic devices[Fan et al.(1999)].SL-VACNTs can also be grown on non-planar substrates,i.e.,the rounded carbon fibers.SL-VACNTs on carbon fibers have had significant potentials in aerospace and space applications.They have added multi-functionality to traditional composites[Baur and Silverman(2007);Ci et al.(2008);Zhang et al.(2009)],improved the fiber-matrix interface strength[Sager et al.(2009);Patton et al.(2009)],and used as flow or pressure sensors on micro air vehicles[Zhang et al.(2010)].

    Compared to the template grown VACNTs that exhibit discrete structures[Li et al.(1999);Joseph and Lu(2013)],the template-free grown SL-VACNTs are more continuum type materials(Figure 1).The mechanical properties and deformation behaviors of the super-long VACNTshave been investigated experimentally,mostly through the various nanomechanical tests[Mesarovic et al.(2007);McCarter et al.(2006);Pathak et al.(2009);Patton et al.(2009)].To measure the elastic response of the SL-VACNTs,an indenter of either three-face pyramidal shape(Berkovich indenter)or parabolic shape(spherical indenter)has been used to compress the specimen and then withdrawn from it.The indentation load-depth curves are obtained and then analyzed following the standard Oliver-Pharr method[Oliver and Pharr(1992)].The modulus and hardness of the SL-VACNTs have been obtained.In contrast with the extensive experimental work,little analytical or computational effort has been given towards the study of such SL-VACNTs,partially due to their complex microstructures.This paper presents the modeling of SL-VACNTs by using continuum mechanics approach.The SL-VACNTs were treated as foam-like materials and modeled using continuum solid finite elements.

    2 Procedures

    2.1 Experimental

    The present SL-VACNTs were synthesized by low pressure chemical vapor deposition of acetylene on planar SiO2/Si wafers.The catalyst coated wafers were placed inside the quartz tube furnace at 750°C.The pressure in the furnace chamber was maintained at 10 mTorr.The growths of the nanotube arrays were achieved by flowing a mixture gases of 48%Ar,28%H2,24%C2H2at 750°C for 10-20 min.The mechanical behaviors of the SL-VACNTs were characterized in compression mode,with an in-situ nanoindenter equipped inside the scanning electron microscope(SEM).The indenter used was a 100μm diameter flat-faced cylinder,with a polished contact face.The cylindrical indenter was attached to a strain-gage based load cell,which was connected in series to a piezoelectric actuator.The piezoelectric actuator provided displacement control with sub-nanometer resolution.Resultant forces were measured through the load cell.Load and displacement data were recorded and used to compute the stress and strain.During the test,high resolution SEM images were acquired between displacement intervals,which allowed for observing the deformation of the SL-VACNTs under compression.

    Figure 1:(Left)Template grown vertically aligned carbon nanotubes and(Right)template-free grown super-long vertically aligned carbon nanotubes.

    Finite element modeling

    The mechanical responses and deformation process of the SL-VACNTs were simulated using the finite element method,in which the SL-VACNTs were treated as continuum solids.The commercial nonlinear finite element(FE)code ABAQUS was used(ABAQUS,2012).The specimen was modeled with second order,8-node axisymmetric elements and the indenter modeled with rigid surface.The contact between specimen and indenter was treated as frictionless.The base of the specimen was completely constrained while the nodes along the center line constrained in the horizontal direction.A vertical described displacement was applied to the rigid surface through a reference node and the reactant force was calculated.

    The SL-VACNTs were treated as open-cell,foam-like materials and modeled with the foam plasticity model developed by Deshpande and Fleck(Deshpande and Fleck,2000).This model has been implemented in ABAQUS as the crushable foam model,in which the yield functionφis defined by

    where the equivalent stressσis given by

    whereσMisesis von Mises effective stress and P is the pressure stress.αis the shape factor of the yield surface,which can be calibrated by using the experimental stress-strain responses of the SL-VACNTs.In the limitα=0 in Equation(1),σreduces toσMises,the conventional von Mises yield criterion.The symbol Y in Equation(1)refers to the uniaxial yield strength in tension or compression.

    The Arbitrary Lagrangian-Eulerian(ALE)adaptive meshing technique was used to deal with the severe distortion of elements which occurred in the large displacement indentation.The ALE method was used to allow the mesh to move independently of the underlying material during the simulated penetration,and thus prevent the analysis from terminating as a result of severe mesh distortion.These adaptive meshing procedures have been used for simulating the super plastic forming of metals as well as the explosive deformation of materials under blast loading,which involve large amount of noncoverable deformation[Gakwaya et al.(2011);Voyiadjis and Foroozesh(1991);Souli et al.(2012)].

    For comparative purpose,the indentation process of a dense solid was also modeled.The solid was treated as a power-law work-hardening,elastic-plastic solid,as described in detail elsewhere[Lu and Shinozaki(2008)].The constitutive behavior of the power-law work-hardening,elastic-plastic solid were modeled as a piecewise linear/power-law hardening relation

    where “σ”and “ε”were the applied stress and strain;“Y”and “εy”the material yield stress and strain; “E”the Young’s modulus;and “n”the strain hardening exponent describing the post-yield material behavior as a power law relation.The plasticity was modeled by a standard von Mises(J2)flow criterion.

    3 Results and discussion

    3.1 Stress-strain Responses of SL-VACNTs

    Figure 2 shows the stress-strain response of the super-long,vertically aligned carbon nanotubes through compression test and finite element simulation.The calculated stress-strain curve is similar to the one measured in the experiment.Results reveal that the material initially deforms elastically with the applied load on the compression platen(indenter),and yields at some point as the applied load is increased.The plateau region indicates the plastic collapses of carbon nanotubes beneath the indenter face.Such collapse allows the strain increase while the stress stays approximately constant.A series of“l(fā)oad-drop”in the plateau regions is observed,which corresponds to the folding of additional carbon nanotubes.

    The uniaxial yield strength,or the critical bucking stress,Y,is determined by extrapolating the stress-strain curve back to zero displacement(d=0).The magnitude of Y so obtained for the present SL-VACNTs is approximately 6.2 MPa.

    Figure 2:Compressive stress-strain response of the super-long SL-VACNTs(height≈1100μm)obtained from experiment and finite element simulation.

    3.2 Deformation of Super-long SL-VACNTs

    It is observed that the stress distribution of SL-VACNTSs under compression is distinctly different from that of solid polymers.For a dense,solid polymer,the distribution of the stress(σ1)under the flat indenter is in a hemi-spherical shape.The size(elastic-plastic boundary)of the stress field approximates the diameter of the indenter(2a),as illustrated by the cavity model described Johnson(1985).In contrast,the stress field(σ1)for the foam-like SL-VACNTSs under the flat indenter is much smaller.The stress is primarily concentrated right beneath the indenter face and does not get extended to far field.

    Figure 3:Contours of 1st principle stress under compression:(left)a super-long,vertically aligned carbon nanotubes and(right)a dense,solid material.

    Figure 4 shows the compressive deformation of the SL-VACNTs under a flat indenter.The simulation is in close agreement with the experimental observation.The early stage of penetration is dominated by the elastic deformation,as reveled by larger slope in the stress-strain curve(Figure 2).Larger slope indicate that the SL-VACNTs have greater stiffness initially.Further compression of the indenter results in the plastic collapse of the carbon nanotubes beneath the indenter head(Figure 4).The measured stiffness thus decreases with increasing depth of indentation.Observations show that the plastic collapse of the nanotube arrays is limited in extent to the zone directly underneath the indenter face where the principal stress is large(Figure 3).The size of this collapsing zone is much smaller as compared to the typical hemi-spherical shaped plastic zones occurred on dense,solid materials,such as polycarbonate[Wright et al.(1992)]and polyethylene[Lu and Shinozaki(1998)].The nanotubes outside the collapsing zone are seen to exhibit no fracture or tearing.

    Figure 4:Compressive deformation of SL-VACNTs under a flat indenter obtained from experiment and finite element simulation.

    Figure 5:Distributions of equivalent plastic strain(εeq)in SL-VACNTs under various compression depths.

    3.3 Effect of Areal Density of CNT arrays

    The effect of density on mechanical responses of the foam-like SL-VACNTs is investigated.The SL-VACNT were again treated as open-cell foam materials.According to Gibson and Ashby(1997),the relevant elastic modulus(E)and plastic yield strength(Y)scale with the density(ρ)for the open-cell foams:

    whereρ0is the reference density andαandβare scaling coefficients.

    In present study,the effect of density was examined by varying the elastic modulus and yield strength of the SL-VACNTs as:E/E0=1,0.8,0.6,0.4 and Y/Y0=1,0.8,0.6,0.4,where E0and Y0are the elastic modulus and yield strength of the original SL-VACNTs.The stress-strain responses of the SL-VACNTs at various density ratios are shown in Figure 6.As the density decreases,the SL-VACNTs become more compliance.

    Figure 6:Compressive stress-strain responses of the super-long SL-VACNTs with varying densities obtained from the finite element modeling.

    4 Conclusions

    The mechanical behaviors of the super-long,vertically aligned carbon nanotubes(SL-VACNTs)have been characterized using compression test and finite element modeling.Both experimental and FE results show that the SL-VACNTs exhibit a transient elastic deformation at small displacement and then steady sate plastic deformation at large displacement.Experiment results and finite element simulations have shown that the sizes of stress/strain zones under the compression platens are much smaller in foam-like SL-VACNTs,as opposed to much larger,hemispherical stress/strain zones observed in the dense solids.Under compression,the nanotube cells collapsed plastically immediately beneath the indenter,a region of the highest stress/strain.The stress-strain responses of the SL-VACNTs are sensitive to the densities of the materials.

    Acknowledgement:This work has been supported by the Kentucky NASA EPSCoR RIA program and the Kentucky Science and Engineering Foundation(KSEF)RDE program.

    ABAQUS(2012):ABAQUS Theory’Manual,Simulia Inc.,Pawtucket,RI.

    Bajpai,V.;Dai,L.;Ohashi,T.(2004):Large-scale synthesis of perpendicularly aligned helical carbon nanotubes.J Am Chem Soc,vol.126:pp.5070-1.

    Baur,J.;Silverman,E.(2007):Challenges and opportunities in multifunctional nanocomposite structures.MRS Bulletin,vol.32,pp.328-332.

    Chen,H.;Roy,A.;Baek,J.-B.;Zhu,L.;Qu,J.;Dai,L.(2010):Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications.Materials Science and Engineering:R:Reports,vol.70,no.3-6,pp.63-91.

    Ci,L.;Suhr,J.;Pushparaj,V.;Zhang,X.;Ajayan,P.M.(2008):Continuous carbon nanotube reinforced composites.Nano Lett,vol.8,no.9,pp.2762-2766.

    Cola,B.A.;Xu,J.;Fisher,T.S.(2009):Contact mechanics and thermal conductance of carbon nanotube array interfaces.International Journal of Heat and Mass Transfer,vol.52,no.15-16,pp.3490-3503.

    De Heer,W.A.;Bacsa,W.S.;Chatelain,A.;Gerfin,T.;Humphrey-Baker,R.;Forro,L.;Ugarte,D.(1995):Aligned Carbon Nanotube Films:Production and Optical and Electronic Properties.SCIENCE REPORTS,vol.268,no.12,pp.845-847.

    Deshpande,V.S.;Fleck,N.A.(2000):Isotropic Constitutive Model for Metallic Foams.Journal of the Mechanics and Physics of Solids,vol.48,pp.1253-1276.

    Fan,S.;Chapline,M.G.;Franklin,N.R.;Tombler,T.W.;Cassell,A.M.;Dai,H.(1999):Self-oriented regular arrays of carbon nanotubes and their field emission properties.Science,vol.283,pp.512.

    Gakwaya,A.;Sharif i,H.;Guillot,M.;Souli,M.;Erchiqui,F.(2011):ALE Formulation and Simulation Techniques in Integrated Computer Aided Design and Engineering System with Industrial Metal Forming Applications.Computer Modeling in Engineering&Sciences,vol.73,no.3,pp.209-266.

    Gibson,L.J.;Ashby,M.F.(1997):Cellular solids,structure and properties,2ndEd,Cambridge University Press,Cambridge,UK.

    Ishigami,N.;Ago,H.;Imamoto,K.;Tsuji,M.;Iakoubovskii,K.;Minami,N.(2008):Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire.Journal of American Chemistry Society,vol.130,no.30,pp.9918-0024.

    Johnson,K.L.(1985):Contact Mechanics,Cambridge University Press,Cambridge.

    Joseph,J.;Lu,Y.C.(2013):Design of Aligned Carbon Nanotubes Structures Using Structural Mechanics Modeling Part 2:Aligned Carbon Nanotubes Structure Modeling.CMC:Computers,Materials&Continua,vol.37,no.1,pp.59-75.

    Kreupl,F.;Graham,A.P.;Duesberg,G.S.;Steinh?gl,W.;Liebau,M.;Unger,E.;H?nlein,W.(2002):Carbon Nanotubes for Interconnect Applications.Microelectronic Engineering,vol.64,no.1-4,pp.399-408.

    Liu,Y.;Qian,W.Z.;Zhang,Q.;Cao,A.Y.;Li,Z.F.;Zhou,W.P.;Ma,Y.;Wei,F.(2008):Hierarchical agglomerates of carbon nanotubes as high-pressure cushions.Nano Letters,vol.8,pp.1323.

    Li,J.;Papadopoulos,C.;Xu,J.;Moskovits,M.(1999):Highly-ordered carbon nanotube arrays for electronics applications.Applied Physics Letters,vol.75,pp.367-369.

    Lu,Y.C.;Shinozaki,D.M.(1998):Deep penetration microindentation testing of high density polyethylene.Material Sciences and Engineering,A,vol.249,pp.134-144.

    Lu,Y.C.;Shinozaki,D.M.(2008):Characterization and modeling of large displacement micro-/nano-indentation of polymeric solids.ASME Journal of Engineering Materials and Technology,vol.130,pp.041001-1.

    McCarter,C.M.;Richards,R.F.;Mesarovic,S.Dj.;Richards,C.D.;Bahr,D.F.;McClain,D.;Jiao,J.(2006):Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf.Journal of Materials Science,vol.41,pp.7872-7878.

    Mesarovic,S.D.;McCarter,C.M.;Bahr,D.F.;Radhakrishnan,H.;Richards,R.F.;Richards,C.D.;McClain,D.;Jiao,J.(2007):Mechanical behavior of a carbon nanotube turf.Scripta Materialia,vol.56,pp.157-160.

    Mesarovic,S.D.;Fleck,N.A.(1987):Spherical indentation of elastic-plastic solids.Proceedings of Royal Society of London,vol.455,pp.2707-2728.

    Oliver,W.C.;Pharr,G.M.(1992):An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.Journal of Materials Research,vol.7,pp.1564.

    Pathak,S.;Cambaz,Z.G.;Kalidindi,S.R.;Swadener,J.G.;Gogotsi,Y.(2009):Viscoelasticity and high buckling stress of dense carbon nanotube brushes.Carbon,vol.47,no.8,pp.1969-1976.

    Patton,S.T.;Zhang,Q.;Qu,L.;Dai.L.;Voevodin,A.A.;Baur,J.(2009):Electromechanical characterization of carbon nanotube grown on carbon fibers.Journal of Applied Physics,vol.106,pp.104313.

    Sager,R.J.;Klein,P.J.;Lagoudas,D.C.;Zhang,Q.;Liu,J.;Dai,L.;Baur,J.W.(2009):Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix.Composites Science and Technology,vol.69,no.7-8,pp.898-904.

    Souli,M.;Bouamoul,A.;Nguyen-Dang,T.V.(2012):ALE Formulation with Explosive Mass Scaling for Blast Loading:Experimental and Numerical Investigation.Computer Modeling in Engineering&Sciences,vol.86,no.5,pp.469-486.

    Terrones,M.;Grobert,N.;Olivares,J.;Zhang,J.;Terrones,P.H.;Kordatos,K.;Hsu,W.K.;Hare,J.P.;Townsend,P.D.;Prassides,K.;Cheetham,A.K.;Kroto,H.W.;Walton,D.R.M.(1997):Controlled production of alignednanotube bundles.Nature,vol.388,no.3,pp.52-55.

    Voyiadjis,G.Z.;Foroozesh,M.(1991):A finite strain,total Lagrangian finite element solution for metal extrusion problems.Computer Methods in Applied Mechanics and Engineering,vol.86,no.3,pp.337-370.

    Wright,S.C.;Huang,Y.;Fleck,N.A.(1992):Deep Penetration of Polycarbonate by a Cylindrical Punch.Mechanics of Materials,vol.13,pp.277.

    Zhang,Q.;Liu,J.;Sager,R.;Dai,L.;Baur,J.(2009):Hierarchical composites of carbon nanotubes on carbon fiber:Influence of growth condition on fiber tensile properties.Composites Science and Technology,vol.69,no.5,pp.594-601.

    Zhang,Q.;Lu,Y.C.;Du,F.;Dai,L.;Baur,J.;Foster,D.C.(2010):Viscoelastic creep of vertically aligned carbon nanotubes.Journal of Physics,D:Applied Physics,vol.43,315401.

    日本午夜av视频| 日本vs欧美在线观看视频| 精品国产一区二区三区四区第35| 国产黄色视频一区二区在线观看| av一本久久久久| 操出白浆在线播放| av在线老鸭窝| 晚上一个人看的免费电影| 亚洲人成电影观看| 久久久国产精品麻豆| 老司机靠b影院| 在线 av 中文字幕| 久久女婷五月综合色啪小说| 亚洲美女搞黄在线观看| 久久久久网色| 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 人体艺术视频欧美日本| www日本在线高清视频| 激情视频va一区二区三区| 男的添女的下面高潮视频| 国产日韩欧美在线精品| 999精品在线视频| av卡一久久| 精品人妻熟女毛片av久久网站| 精品卡一卡二卡四卡免费| 亚洲国产av影院在线观看| 黑丝袜美女国产一区| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲熟妇少妇任你| 日本wwww免费看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产av在线观看| 亚洲三区欧美一区| 欧美少妇被猛烈插入视频| bbb黄色大片| 最新的欧美精品一区二区| 亚洲第一av免费看| 久久精品亚洲熟妇少妇任你| 日韩成人av中文字幕在线观看| 中文欧美无线码| 欧美激情高清一区二区三区 | 欧美黑人欧美精品刺激| 纯流量卡能插随身wifi吗| 亚洲综合精品二区| 国产激情久久老熟女| 日本午夜av视频| 午夜精品国产一区二区电影| a级毛片黄视频| 91精品国产国语对白视频| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣一区麻豆| 最近中文字幕2019免费版| 19禁男女啪啪无遮挡网站| 精品人妻在线不人妻| 日韩中文字幕欧美一区二区 | 如日韩欧美国产精品一区二区三区| 亚洲中文av在线| 精品亚洲乱码少妇综合久久| 中文字幕精品免费在线观看视频| av卡一久久| 午夜免费鲁丝| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美成人综合另类久久久| 国产成人精品久久二区二区91 | a级片在线免费高清观看视频| 国产成人欧美| av电影中文网址| 卡戴珊不雅视频在线播放| 精品久久久久久电影网| 男人爽女人下面视频在线观看| 成人亚洲欧美一区二区av| 99re6热这里在线精品视频| 80岁老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 高清在线视频一区二区三区| 97在线人人人人妻| 久久久久久人妻| 久久久久精品性色| 人妻人人澡人人爽人人| 99久久综合免费| 久久久久人妻精品一区果冻| 日韩中文字幕视频在线看片| 亚洲精品日韩在线中文字幕| 日韩人妻精品一区2区三区| 亚洲国产精品一区二区三区在线| 人妻 亚洲 视频| 9热在线视频观看99| av天堂久久9| 亚洲色图 男人天堂 中文字幕| 电影成人av| 一级,二级,三级黄色视频| 亚洲av国产av综合av卡| 亚洲成人av在线免费| 久久精品国产亚洲av涩爱| 黄片小视频在线播放| 国产av一区二区精品久久| 亚洲国产毛片av蜜桃av| 国产成人欧美| 国产精品免费视频内射| 久久免费观看电影| 久久精品久久久久久久性| 欧美人与性动交α欧美软件| 久久青草综合色| 欧美另类一区| 各种免费的搞黄视频| 婷婷色综合大香蕉| 中文字幕人妻丝袜一区二区 | 人妻 亚洲 视频| 国产亚洲精品第一综合不卡| 国产无遮挡羞羞视频在线观看| 老汉色∧v一级毛片| 男女午夜视频在线观看| 国产av一区二区精品久久| 久久鲁丝午夜福利片| 亚洲精品美女久久av网站| 天天影视国产精品| 国产日韩欧美在线精品| 亚洲精品自拍成人| 国产伦人伦偷精品视频| 国产成人精品无人区| 久久精品人人爽人人爽视色| 国产又色又爽无遮挡免| 日韩一区二区视频免费看| 亚洲国产看品久久| 丁香六月天网| 美女午夜性视频免费| 秋霞伦理黄片| 免费黄频网站在线观看国产| 久久精品熟女亚洲av麻豆精品| 国产深夜福利视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲少妇的诱惑av| 天天影视国产精品| 久久久久国产精品人妻一区二区| 国产日韩欧美视频二区| 久久久久精品性色| 99久久综合免费| 青青草视频在线视频观看| 欧美久久黑人一区二区| 国产极品天堂在线| 亚洲激情五月婷婷啪啪| 欧美在线一区亚洲| 日韩人妻精品一区2区三区| 男女下面插进去视频免费观看| avwww免费| 极品少妇高潮喷水抽搐| 在线观看免费视频网站a站| 欧美日韩亚洲综合一区二区三区_| 国产精品成人在线| 最黄视频免费看| 激情五月婷婷亚洲| 99久久综合免费| 2021少妇久久久久久久久久久| 国产野战对白在线观看| 免费少妇av软件| 赤兔流量卡办理| 国产精品二区激情视频| 国产伦理片在线播放av一区| h视频一区二区三区| 一区福利在线观看| 男女无遮挡免费网站观看| 热99久久久久精品小说推荐| 黄片小视频在线播放| 国产精品一区二区在线观看99| 国产成人精品无人区| 伦理电影大哥的女人| 女性生殖器流出的白浆| 丰满少妇做爰视频| 91精品国产国语对白视频| 黄色毛片三级朝国网站| 国产1区2区3区精品| av卡一久久| 看免费av毛片| 成人影院久久| 天美传媒精品一区二区| 一边亲一边摸免费视频| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 免费看av在线观看网站| 国产亚洲精品第一综合不卡| 国产探花极品一区二区| 欧美精品人与动牲交sv欧美| 如日韩欧美国产精品一区二区三区| 国产精品三级大全| 亚洲国产欧美在线一区| 亚洲 欧美一区二区三区| 在线观看免费高清a一片| 我要看黄色一级片免费的| 韩国av在线不卡| 晚上一个人看的免费电影| 在线观看人妻少妇| 欧美97在线视频| 国产欧美亚洲国产| 亚洲av综合色区一区| 久久人人97超碰香蕉20202| 高清av免费在线| 成人18禁高潮啪啪吃奶动态图| 久久久国产一区二区| 国产精品三级大全| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦在线观看免费高清www| 成人三级做爰电影| 爱豆传媒免费全集在线观看| 国产97色在线日韩免费| 香蕉丝袜av| 中文字幕另类日韩欧美亚洲嫩草| 大陆偷拍与自拍| 久久av网站| 亚洲成人国产一区在线观看 | 人妻人人澡人人爽人人| 亚洲av日韩在线播放| 香蕉丝袜av| 在线看a的网站| 国产免费现黄频在线看| 国产黄色视频一区二区在线观看| 啦啦啦视频在线资源免费观看| 亚洲色图综合在线观看| 国产一区二区 视频在线| 青青草视频在线视频观看| xxxhd国产人妻xxx| 啦啦啦在线观看免费高清www| 色精品久久人妻99蜜桃| 中文天堂在线官网| 成年人免费黄色播放视频| 少妇被粗大的猛进出69影院| 欧美精品高潮呻吟av久久| 老熟女久久久| 精品少妇一区二区三区视频日本电影 | 美女中出高潮动态图| 国语对白做爰xxxⅹ性视频网站| 狂野欧美激情性xxxx| 一级毛片 在线播放| 999久久久国产精品视频| 毛片一级片免费看久久久久| 热99国产精品久久久久久7| 日韩一区二区三区影片| 欧美少妇被猛烈插入视频| 国产亚洲午夜精品一区二区久久| 久久亚洲国产成人精品v| 亚洲美女搞黄在线观看| 无遮挡黄片免费观看| 国产精品久久久av美女十八| 日韩欧美精品免费久久| 久久国产亚洲av麻豆专区| 99久久99久久久精品蜜桃| 七月丁香在线播放| 亚洲成色77777| 看免费成人av毛片| 欧美日本中文国产一区发布| 高清在线视频一区二区三区| 看免费成人av毛片| 精品视频人人做人人爽| tube8黄色片| 校园人妻丝袜中文字幕| 99热国产这里只有精品6| 久久精品久久久久久噜噜老黄| 亚洲美女黄色视频免费看| 免费人妻精品一区二区三区视频| 电影成人av| 在线观看免费日韩欧美大片| 婷婷色麻豆天堂久久| 91成人精品电影| 天天躁夜夜躁狠狠躁躁| 新久久久久国产一级毛片| 国产亚洲av片在线观看秒播厂| 欧美成人精品欧美一级黄| 国产成人系列免费观看| 久久精品熟女亚洲av麻豆精品| 日日摸夜夜添夜夜爱| 青春草亚洲视频在线观看| 人人澡人人妻人| 国产精品欧美亚洲77777| 国产精品亚洲av一区麻豆 | 国产精品成人在线| 免费高清在线观看视频在线观看| 亚洲熟女精品中文字幕| 精品福利永久在线观看| 国产黄频视频在线观看| 久久久久精品久久久久真实原创| 中文字幕色久视频| www.精华液| 午夜免费鲁丝| 亚洲国产最新在线播放| av不卡在线播放| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 午夜福利视频在线观看免费| 亚洲国产看品久久| 久热这里只有精品99| 黄色视频不卡| 夫妻性生交免费视频一级片| 亚洲国产看品久久| 美女高潮到喷水免费观看| 久久久久久人人人人人| 美女午夜性视频免费| 久久天堂一区二区三区四区| 久久久久久久久久久免费av| 欧美精品人与动牲交sv欧美| 亚洲精品,欧美精品| 99精品久久久久人妻精品| av一本久久久久| 亚洲欧洲日产国产| 91老司机精品| 热re99久久国产66热| 亚洲一区中文字幕在线| 啦啦啦啦在线视频资源| av在线app专区| 国产一区有黄有色的免费视频| 亚洲国产欧美网| 国产高清国产精品国产三级| 伦理电影免费视频| 人人妻人人添人人爽欧美一区卜| netflix在线观看网站| 啦啦啦中文免费视频观看日本| 操美女的视频在线观看| 亚洲伊人久久精品综合| 久久久精品94久久精品| 亚洲欧洲日产国产| 伦理电影免费视频| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 成人漫画全彩无遮挡| 女性被躁到高潮视频| 九九爱精品视频在线观看| 如何舔出高潮| 久久精品国产a三级三级三级| 免费看av在线观看网站| 免费看不卡的av| 欧美精品一区二区大全| 亚洲熟女精品中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 性色av一级| 亚洲成人免费av在线播放| 成人毛片60女人毛片免费| 成人国产av品久久久| 激情视频va一区二区三区| 国产在视频线精品| 国产成人免费无遮挡视频| av女优亚洲男人天堂| 三上悠亚av全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 人妻一区二区av| 777久久人妻少妇嫩草av网站| 国产亚洲一区二区精品| 国产成人系列免费观看| 国产成人一区二区在线| 亚洲男人天堂网一区| 51午夜福利影视在线观看| 少妇被粗大猛烈的视频| 自拍欧美九色日韩亚洲蝌蚪91| 观看美女的网站| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 欧美日本中文国产一区发布| 婷婷色麻豆天堂久久| 精品午夜福利在线看| 亚洲精品乱久久久久久| 国产成人a∨麻豆精品| 国产精品久久久久久精品古装| a 毛片基地| 又黄又粗又硬又大视频| 亚洲欧美中文字幕日韩二区| 男女午夜视频在线观看| 51午夜福利影视在线观看| 国产亚洲av高清不卡| 黄网站色视频无遮挡免费观看| 久久人人97超碰香蕉20202| 少妇被粗大的猛进出69影院| 尾随美女入室| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美精品济南到| 99精品久久久久人妻精品| 国产高清国产精品国产三级| 人人澡人人妻人| 曰老女人黄片| 侵犯人妻中文字幕一二三四区| 午夜精品国产一区二区电影| 精品亚洲成国产av| 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 国产1区2区3区精品| 国产免费视频播放在线视频| 久久青草综合色| 下体分泌物呈黄色| 欧美黑人精品巨大| 久久精品熟女亚洲av麻豆精品| 熟女av电影| 亚洲欧美成人综合另类久久久| 国产精品 欧美亚洲| 丰满少妇做爰视频| 国产精品99久久99久久久不卡 | 精品午夜福利在线看| 成人漫画全彩无遮挡| 高清av免费在线| 中国三级夫妇交换| 自拍欧美九色日韩亚洲蝌蚪91| 嫩草影院入口| 777久久人妻少妇嫩草av网站| 夜夜骑夜夜射夜夜干| 国产深夜福利视频在线观看| 美国免费a级毛片| 日本欧美国产在线视频| a 毛片基地| 成年av动漫网址| 久久狼人影院| 性高湖久久久久久久久免费观看| 两性夫妻黄色片| 午夜久久久在线观看| a级毛片黄视频| 999久久久国产精品视频| 午夜福利视频在线观看免费| 99国产精品免费福利视频| 街头女战士在线观看网站| 你懂的网址亚洲精品在线观看| 久久免费观看电影| 在线看a的网站| 青草久久国产| 99久久综合免费| 中文字幕亚洲精品专区| 热99久久久久精品小说推荐| 国产欧美亚洲国产| 国产av精品麻豆| bbb黄色大片| 高清av免费在线| 超碰成人久久| 国产精品麻豆人妻色哟哟久久| 免费女性裸体啪啪无遮挡网站| 久久精品久久久久久噜噜老黄| 亚洲伊人久久精品综合| 成人影院久久| 亚洲一区中文字幕在线| 啦啦啦中文免费视频观看日本| 丁香六月欧美| xxxhd国产人妻xxx| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 观看av在线不卡| 亚洲av国产av综合av卡| 成人国产av品久久久| av在线观看视频网站免费| 国产成人91sexporn| 精品午夜福利在线看| av不卡在线播放| 国产精品麻豆人妻色哟哟久久| 久久99一区二区三区| 国产黄色免费在线视频| 性高湖久久久久久久久免费观看| 日本色播在线视频| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 韩国av在线不卡| 国产片特级美女逼逼视频| 日本欧美视频一区| 人体艺术视频欧美日本| 久久精品久久久久久噜噜老黄| 啦啦啦视频在线资源免费观看| 少妇人妻精品综合一区二区| 国产色婷婷99| 亚洲精品久久久久久婷婷小说| 欧美日韩亚洲国产一区二区在线观看 | 黑丝袜美女国产一区| 国产男女超爽视频在线观看| 国产熟女午夜一区二区三区| av天堂久久9| 男男h啪啪无遮挡| 国产 精品1| 国产亚洲av片在线观看秒播厂| 人成视频在线观看免费观看| svipshipincom国产片| 中文字幕亚洲精品专区| 亚洲在久久综合| 岛国毛片在线播放| 亚洲人成电影观看| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 大香蕉久久网| 亚洲成国产人片在线观看| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品自产自拍| www.熟女人妻精品国产| 99久国产av精品国产电影| 美女中出高潮动态图| 婷婷色综合大香蕉| 激情视频va一区二区三区| 欧美激情高清一区二区三区 | 777米奇影视久久| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 国产福利在线免费观看视频| 欧美久久黑人一区二区| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 可以免费在线观看a视频的电影网站 | 亚洲专区中文字幕在线 | 亚洲七黄色美女视频| xxx大片免费视频| 久久精品亚洲熟妇少妇任你| 欧美黑人精品巨大| 亚洲成人一二三区av| 久热爱精品视频在线9| 人妻一区二区av| 国产欧美日韩综合在线一区二区| 国产精品人妻久久久影院| av电影中文网址| 韩国精品一区二区三区| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 欧美精品av麻豆av| 免费日韩欧美在线观看| 一本久久精品| 亚洲第一av免费看| 亚洲欧洲国产日韩| 日韩一区二区三区影片| 亚洲成色77777| 欧美精品av麻豆av| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 国产在视频线精品| 老汉色av国产亚洲站长工具| 免费高清在线观看视频在线观看| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 99热网站在线观看| 亚洲精品在线美女| 国产免费福利视频在线观看| 亚洲精品国产一区二区精华液| 亚洲精品成人av观看孕妇| 水蜜桃什么品种好| 99国产综合亚洲精品| 国产亚洲午夜精品一区二区久久| 2021少妇久久久久久久久久久| 欧美黑人欧美精品刺激| 日本av免费视频播放| 99九九在线精品视频| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 精品一区在线观看国产| 亚洲第一av免费看| 亚洲精品视频女| 国产免费一区二区三区四区乱码| 国精品久久久久久国模美| 午夜影院在线不卡| 亚洲,欧美精品.| 男女之事视频高清在线观看 | 高清在线视频一区二区三区| 国产成人精品久久久久久| av在线播放精品| 巨乳人妻的诱惑在线观看| 国产成人一区二区在线| 欧美在线黄色| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 99久久99久久久精品蜜桃| 不卡av一区二区三区| 国产色婷婷99| 久久久久久久久久久久大奶| 制服人妻中文乱码| 久久狼人影院| 日韩av不卡免费在线播放| 无限看片的www在线观看| 男女之事视频高清在线观看 | 亚洲欧美色中文字幕在线| 黄色视频在线播放观看不卡| 91成人精品电影| 街头女战士在线观看网站| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| av福利片在线| 最近手机中文字幕大全| 亚洲成色77777| 青青草视频在线视频观看| 在线观看免费视频网站a站| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 亚洲七黄色美女视频| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 午夜久久久在线观看| 新久久久久国产一级毛片| 99香蕉大伊视频| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 久久影院123| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 亚洲欧美激情在线| 日本色播在线视频| 欧美成人精品欧美一级黄| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| av.在线天堂| 午夜激情av网站| 天天添夜夜摸| 久久 成人 亚洲| 亚洲精品美女久久av网站| 在线观看国产h片| 国产野战对白在线观看| 大香蕉久久成人网| 丝袜在线中文字幕| 日韩大码丰满熟妇| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲四区av| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 人妻 亚洲 视频| 观看美女的网站| 国产伦理片在线播放av一区|