• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds

    2014-04-12 06:40:12NataliaSevaneHubertLevzielGeoffreyNuteCarlosSaudoAlessioValentiniJohnWilliamsSusanaDunnerandtheGeMQualConsortium

    Natalia Sevane,Hubert Levéziel,Geoffrey R Nute,Carlos Sa?udo,Alessio Valentini,John Williams,Susana Dunnerand the GeMQual Consortium

    Background

    Cattle meat provides several nutrients necessary for a balanced diet and for health preservation,especially high value proteins,minerals,B-complex vitamins and essential fatty acids(FA),and also can have an important role as a dietary source of n-3 FA and conjugated linoleic acids(CLA)[1,2].A number of epidemiological studies have associated red meat consumption with increased disease risks[3-5],whereas other authors point out the beneficial effects of the moderate consumption of unprocessed red meat-lowers total cholesterol,LDL cholesterol and triglycerides(TG)[6,7],as well as blood pressure[8].However,the isolation of the effects of red meat alone is difficult to accomplish[2].Moreover,the level of intramuscular fat content and FA composition are among the main factors determining meat palatability and consumers satisfaction[9].Muscle lipid characteristics determine meat flavour and lipid oxidation,which contributes to beef colour,and can be responsible for abnormal odours,and influences the juiciness and tenderness of meat[10].However,meat quality traits are very complex,involve many genes and are greatly influenced by a variety of environmental factors,such as diet sex,season,age,etc.[11].Being difficult and expensive to measure[12],they are usually not included in selection programs based on phenotypic performance,and challenge application of traditional selection methods,as well as the state-of-the-art Genomic Selection(GS)[13].

    An alternative approach is to identify genes with an effect on fat composition and include these in selection objectives.Thanks to the genomic revolution of the past few years,more information and technology are available that can be used to improve meat quality.Many studies have identified QTL involved in meat quality related traits in beef cattle(e.g.[14,15]);however,the dissection of these QTL has not identified genetic variants explaining a large portion of phenotypic variance[16].More recently,single nucleotide polymorphisms(SNP)within candidate genes have been tested for predictive value for carcass traits,and some commercial tests to genotype animals based on SNP marker panels are being proposed to breeders(see the review in[17]).The significant progress made in characterizing changes in tissue FA composition to diet,feeding system and genotype,highlights the potential for further progress to be made through genomic or marker-assisted selection in livestock and the formulation of diets to exploit the genetic potential[18].Nevertheless,the full development of these technologies greatly depends on the precise identification of the genes and polymorphisms that have a measurable effect on muscle physiology and on meat quality,and the validation of their effects on different breeds.

    In this study,we merged phenotypic and genotypic information[19-21]to characterize the variation in lipid profile and sensory parameters of Longissimus thoracis muscle and to represent the diversity among 15 cattle populations,reared under comparable management conditions.Correlations between fat content,organoleptic characteristics and lipid profiles were also investigated.

    Methods

    Animals and feed system

    A total of 436 muscle samples from unrelated bulls belonging to 15 European cattle breeds were studied in the frame of the GeMQual(EC QLK5–CT2000-0147)European project and genotyped.The breeds included specialized beef breeds,dairy breeds,and local beef breeds.The whole sample included 31 Jersey(JER),27 South Devon(SD),30 Aberdeen Angus(AA),and 29 Highland(HIG)from United Kingdom;29 Holstein(HOL),29 Danish Red(DR),and 20 Simmental(SM),from Denmark;30 Asturiana de los Valles(AST),31 Asturiana de la Monta?a(CAS),30 Avile?a-Negra Ibérica(AVI),and 31 Pirenaica(PI)from Spain;30 Piedmontese(PIE),and 28 Marchigiana(MAR)from Italy;and 31 Limousin(LIM),and 30 Charolais(CHA)from France.

    Bulls were reared in each country in a unique location and under a uniform beef management system representative of those used in the European Union(EU)countries.Feed composition and management details are described in[22].The diet was designed to achieve the slaughter weight of 75%of mature weight for each breed within a window of 13 to 17 mon.Animals from each breed were slaughtered the same day in either commercial or experimental abattoirs,depending on the experimental facilities of each country.

    The part of this work involving live animal experimental intervention was reported by Albertí et al.[22]and followed the European standards on Care and Use of Animals(1999/575/EC).The present work was conducted on DNA and carcass samples and no Care and Use of Animals was needed.

    Sampling and phenotype measurements

    Carcass processing after slaughter was described by[22]and[23].For lipid measurements,Longissimus thoracis muscle was excised at 24 h postmortem from the left side of the carcass between the 6thand the 13thrib and a sample was taken immediately and frozen for chemical analysis including fat concentration.The remainder was stored at 2°C ± 1°C until 48 h post-mortem.Also,samples were taken from the 48 h post-mortem section to determine total lipid content.Samples for individual FA analysis were taken from the same position on Longissimus thoracis from all animals and vacuum packed,frozen and transported on dry ice to University of Bristol(United Kingdom)to determine total lipid content.

    Fatness score(FS)corresponds to the visual fatness cover estimated by UE standard(1=very low,5=very high),and fat percentage(FP)is the proportion of subcutaneous and intermuscular fat in the rib dissection.Fat was extracted by the method of[24]separated into neutral lipid and phospholipid,methylated,separated by gas-liquid chromatography(GLC)and the individual peaks identified and quantified as described in detail by[25].Total lipid content was taken as the sum of the neutral lipid(NL)and phospholipid(PL)fractions.Some additional phenotypes were set as are saturated FA(SFA),monounsaturated FA(MUFA),polyunsaturated FA(PUFA),n-6/n-3 ratios,polyunsaturated to saturated FA(P:S)ratios and antithrombotic potential(ATT),which is the ratio between the sum of the antithrombogenic FAs eicosatrienoic acid(20:3 n-6)and eicosapentaenoic acid(20:5 n-3),and the thrombogenic FA arachidonic acid(20:4 n-6)[(20:3 n-6+20:5 n-3)/20:4 n-6][26].Sensory panel tests assessed meat using an eight-point scale as described in[27].The criteria assessed were flavour,texture and juiciness-the higher scores corresponding to the characteristic flavour of beef,and very tender and juicy meat,respectively.See[21]for detailed phenotype values per breed.

    Marker selection

    The allele frequencies of 11 polymorphisms found to be associated with different lipid traits across breeds and causing increases in traits ranging between 3.3%and 19%for one homozygous genotype compared to the other homozygous genotype(Table 1)[19,20],were used for a principal components analysis(PCA)to represent the diversity among the 15 cattle populations:calpastatin(CAST)g.2959G<A[20];cofilin 1(CFL1)ss77831721[19];EP300 interacting inhibitor of differentiation 1(CRI1)ss778332128[19];myostatin(GDF8)ss77831865[20];insulin-like growth factor 2 receptor(IGF2R)ss77831885[19];lipoprotein lipase(LPL)ss65478732[20];matrix metalloproteinase 1(MMP1)ss77831916,ss77831924[19];myozenin 1(MYOZ1)ss77831945[20];phospholipid transfer protein(PLTP)ss77832104[19];peroxisome proliferator activated receptor γ(PPARG)ss62850198[20].The six SNPs from[19]were genotyped by Kbioscience using the proprietary Kaspar?methodology;the five SNPs from[20]were genotyped by SNP multiplex and Primer Extension amplification.

    Statistical analysis

    Spearman correlations were determined between fatness score,fat percentage,flavour,juiciness,texture,and different lipid profiles of Longissimus thoracis muscle in 15 European cattle breeds using the CORR procedure of SAS and considering the whole set of data on all animals.Allele frequency data were subjected to ANOVA,using the PROC GLM procedure of SAS and considering breed as independent variable.A PCA procedure was performed using the mean of phenotypic measurements by breed and allelic frequencies from 11 polymorphisms to determine the main traits and SNPs that explained most of the variation among the 15 cattle populations.The frequency of the allele showing a positive correlation with the trait was used(bold allele in Table 1).All these statistical analyses were carried out using the SAS statistical package v.9.1.3[28].

    Results

    Trait correlations

    Table 2 shows the main correlations between FS,FP,flavour,juiciness,texture,and different lipid profiles of Longissimus thoracis.FS correlated positively with FP(r=0.62,P<0.001),and both of them with absolute amounts of lipids in muscle,including total PL and NL,SFA,MUFA,PUFA,n-3 and n-6 content,as well as with flavour score.However,both of them displayed a negative correlation to P:S ratios explained by their higher correlations with SFA content(FS r=0.4,P<0.001;FP r=0.68,P<0.001)than to PUFA(FS r=0.17,P<0.001;FP r=0.44,P<0.001),and to n-6/n-3 ratios because of their lower correlations to n-6(FS r=0.13,P<0.01;FP r=0.37,P<0.001)compared to n-3(FS r=0.28,P<0.001;FP r=0.56,P<0.001).The correlation between total PL and FS(r=0.11,P<0.05)and FP(r=0.44,P<0.001)is lower than between total NL and these traits(FS r=0.44,P<0.001;FP r=0.78,P<0.001).Similar correlation coefficients were also observed between PL and total lipid(r=0.7,P<0.001)and SFA(r=0.66,P<0.001),compared to NL with both total lipid and SFA(r=0.99,P<0.001).The correlation between SFA and MUFA(r=0.99,P<0.001)was higher than between SFA and PUFA(r=0.7,P<0.001).The proportion of 18:2 n-6 declines in muscle as fat deposition increases(correlations with FP r=?0.77,P<0.001,total lipid r=?0.86,P<0.001,and SFA r=?0.88,P<0.001).

    Flavour correlated positively with the organoleptic characteristics juiciness(r=0.21,P<0.001)and texture(r=0.16,P<0.001).A higher positive correlation was found between juiciness and texture(r=0.57,P<0.001).Finally,beef juiciness showed a small negative correlation to the amount of PL(r=?0.13,P<0.01)and PUFA(r=?0.1,P<0.05),particularly to n-6 content(r=?0.13,P<0.01).

    Apart from results in Table 2,it is worth highlighting the positive correlation between 18:1 trans-vaccenic FA(t18:1)and CLA cis-9,trans-11(r=0.62,P<0.001).

    Phenotype and genotype variation among breeds

    ?

    Table 2 Correlations between fatness score,fat percentage,flavour,juiciness,texture,and different lipid profiles of Longissimus thoracis muscle in 15 European cattle breeds

    The plot of factor pattern of the 15 cattle breeds showing the correlations to lipid traits and genotypic data from 11 polymorphisms with the two principal components is shown in Figure 1.The first two dimensions(Factor 1,42.2%;Factor 2,16.6%)explained 58.8%of the variation among breeds(Figure 1).When considering the different lipid traits,the first dimension was mainly influenced by total lipid measurements and flavour score,whereas on the opposite side muscle percentages of PUFA and of n-6,as well as P:S1,P:S2 and 18:2/18:3 ratios are plotted.The second dimension was mainly influenced by the ATT index,n-3,%n-3,and juiciness.Therefore,AA,HIG,HOL,DR and JER breeds,which displayed higher fatness[21],appeared in the positive area of the first dimension and split into two groups by the influence of the higher n-3 muscle content and flavour scores of AA and HIG breeds,and by the higher n-6 and MUFA content of HOL and DR dairy breeds.In contrast,lean breeds with high proportion of PUFAs,and high P:S and n-6 to n-3 ratios,such as PIE and AST[21],appeared at the bottom of the plot(Figure 1).Finally,SD breed stands out because of its highest ATT ratio and percentage of n-3 in muscle(Figure 1).

    ConcerningSNPsdistribution,theyplottedmainly according to their previous trait associations,although also influenced by their allele frequencies per breed(Table 1).

    Discussion

    All animals included in this project(GeMQual QLK5–CT2000-0147)were fed a similar diet and reared intensively under comparable management conditions between countries.The effects of all factors other than breed(country,diet,slaughter)were controlled to minimize differences and were confounded with the breed effect.Inevitably,some variations might have occurred but special emphasis has been put to respect the diet composition in the different countries.The higher absolute n-3 PUFA muscle content found in the UK breeds,especially in the Aberdeen Angus breed,cannot be due to a grass-based diet generally used in UK[29]inexistent in this study,but rather to a specific characteristic of this fat breed.

    Figure 1 Plot of factor pattern for factors 1 and 2 of 15 European breeds showing the correlations to lipid traits(in black)and genotypic data(in green)from 11 polymorphisms with the two principal components.Abbreviations:TL total lipids,NL neutral lipids,PL phospholipids,FP fatness percentage,FS fatness score,Fla flavour,Tex texture,Jui juiciness,JER Jersey,SD South Devon,AA Aberdeen Angus,HIG Highland,HOL Holstein,DR Danish Red,SM Simmental,LIM Limousin,CHA Charolais,PIE Piedmontese,MAR Marchigiana,AST Asturiana de los Valles,CAS Asturiana de la Monta?a,AVI Avile?a-Negra Ibérica,PI Pirenaica.

    Trait correlations

    The correlation coefficients between total muscle lipid measurements(FS,FP,total lipids,SFA),and absolute vs.proportional(%)amounts of PUFA,n-6 and n-3 FAs were in opposite directions[30,31].For example,the sum of n-3 FA showed a positive relation to FS(r=0.28),FP(r=0.56),total lipids(r=0.63)and SFA(r=0.62)for absolute amounts,but there were negative correlations between those traits and n-3 relative proportion(FS r=?0.24,FP r=?0.34,total lipids r=?0.62,SFA r=?0.62)(Table 2).In particular,the negative correlation obtained here between the percentage of 18:2 n-6 and fat measurements,as well as the weaker correlation between total PL and FS,FP,total lipid and SFA muscle content compared with NL(Table 2)[32],is in accordance with the expected proportions of PL vs.NL as animal fattens.Long chain PUFAs are mainly stored in muscle PL in cattle,which is an essential component of cell membranes and its amount remains fairly constant as the animal fattens,whereas NL increases in overall FA composition.SFA and MUFA are mainly stored in the NL fraction in triglycerides.This means increasing carcass fat leads to an increasing amount of FAs in triglycerides,but at the same time the relative amount of PUFAs is decreasing[32],which is in concordance with the negative correlation obtained here between the percentage of PUFA and fat measurements,as well as the weaker correlation between total PL and total lipid(r=0.7)muscle content compared with NL(r=0.99)(Table 2).

    In agreement also with previous studies[33,34],we found a positive correlation between t18:1 and CLA(r=0.62,P<0.001),explained by the metabolic relationships between both FA–in ruminants the SCD enzyme forms also CLA from t18:1 in adipose tissue[29,32].

    Although high levels of long chain n-3 PUFA have been described as having an impact on flavour to produce a ‘grass fed’taste[35,36],and[37]found no correlation between n-6 PUFA and flavour in two beef breeds,here there was only a negative correlation to the percentage of total PUFA,particularly to n-6 fraction,whereas the percentage of n-3 in muscle did not seem to influence meat flavour in cattle not fed with a grassbased diet.

    As expected,the correlation between juiciness and texture is higher than with flavour scores given that juiciness depends mainly on the meat water-binding capacity and plays a key role in meat texture[38-40],contributing to its variability[41],whereas flavour is mainly influenced by FA composition and marbling[42],as reflected by its positive correlations with all absolute fat content measurements obtained here(Table 2).Although texture and juiciness properties also are dependent on other characteristics of meat,including fat content[40],both of them showed few or no correlation with muscle fat content or FA profile(Table 2).

    Phenotype and genotype variation among breeds

    The distribution of breeds plotted by PCA analysis fell into three main groups(Figure 1):one group defined as having a high absolute fat content,which splits into two blocks–AA and HIG breeds on one hand,characterized by higher n-3 muscle content and flavour scores,and in the other hand HOL and DR dairy breeds,which displayed higher values of MUFA and n-6-;a second group with lower fat content and higher proportion of PUFAs,as well as PUFA vs.SFA ratios(healthier meat)PIE and AST;and a large group gathering the rest of breeds with intermediate fat content,among which it is worth highlighting SD because of its highest ATT ratio(index higher values better for health)and percentage of n-3 in muscle.

    Regarding SNPs distribution,most of them plotted according to their previous trait associations and also influenced by their allele frequencies per breed(Table 1,Figure 1):PPARG,which influences the amount of 22:5 n-3,20:5 n-3 and 22:6 n-3 in muscle[20],appeared near n-3 and ATT ratio-calculated as(20:3 n-6+20:5 n-3)/20:4 n-6-factor patterns,as well as almost equidistant to the three breeds with higher allele frequencies for the A allele–AA,CHA and SD-;CFL1,PLTP and MYOZ1,which were associated with n-6 to n-3 ratio[19],correlated with 18:2 n-6/18:3 n-3 and specially with n-6/n-3 ratio in Factor 1;IGF2R,previously linked to an increase in flavour[19],shared Factor 2 pattern with flavour and was placed almost equidistant to the three breeds with higher allele frequencies for the G allele–HIG,CHA and SD-;CAST was associated with an increase in FS and appeared closely related to the two breeds with higher allele frequencies for the A allele–AA and HIG,sharing also Factor 1 pattern with FS;LPL,associated with the increase of several neutral n-6[20],plotted in the same Factor 2 pattern than n-6 content,but closer to and almost equidistant from the three breeds with higher allele frequencies for the T allele–HOL,AVI and CAS;and,as expected,GDF8 SNP was placed near the trait FS[20].

    Finally,there were no relationships between the two SNPs in the MMP1 gene and the SNP in CRI1 neither with their main trait associations–CLA,22:6 n-3 and 22:4 n-6,respectively[19],nor with breed allele frequencies,which may be caused by the other trait associations of this SNPs with lower or unknown effects[19].

    Conclusions

    The wide range of traits and breeds studied,along with the genotypic information on polymorphisms previously associated with different lipid traits,provide a broad characterization of the phenotypic and genotypic background underlying variations in FA composition and sensory parameters between breeds,which allows giving a better response to the variety of consumers’preferences.Also,the development and implementation of low-density SNP panels with predictive value for economically important traits,such as those summarized here,may be used to improve production efficiency and meat quality in the beef industry as a molecular signature of GTTdelGCA CCAA for CAST(g.2959G<A),CFL1(ss77831721),CRI1(ss77832128),GDF8(ss77831865),IGF2R(ss778 31885),LPL(ss65478732),MMP1(ss77831916,ss77831 924),MYOZ1(ss77831945),PLTP(ss77832104),and PPARG(ss62850198),respectively,which would correspond to the “most favourable”haplotype.

    Competing interests

    The authors declare that they have no competing interests.

    Authors’contributions

    NS carried out the molecular genetic studies,performed the statistical analysis and drafted the manuscript.SD,HL,GN,CS,AV and JLW conceived

    the study,and participated in its design and coordination.SD also helped to draft the manuscript.All authors read and approved the final manuscript.

    Acknowledgements

    This work was supported by an EC grant QLK5–CT2000-0147.

    GeMQual Consortium:Albertí P Centro de Investigación y Tecnología Agroalimentaria,Gobierno de Aragón,50080,Zaragoza,Spain;Amarger V.

    Delourme D.Levéziel H.INRA,UMR 1061,87000 Limoges,France and Université de Limoges,UMR 1061,87000 Limoges;Boitard S.Mangin B.INRA Chemin de Borde-Rouge-Auzeville,BP 52627,31326 Castanet-Tolosan cedex,France;Ca?ón J.Checa ML.Dunner S.García D.Miranda ME.Pérez R.Dpto de Producción Animal,Facultad de Veterinaria,28040 Madrid,Spain;Christensen M.Ertbjerg P.Department of Food Science,University of Copenhagen,1958 Frederiksberg C.,Denmark;Crisá A.Marchitelli C.Valentini A.Dipartimento di Produzioni Animali,Università della Tuscia,via De Lellis,01100 Viterbo,Italy;Failla S.Gigli S.CRA,Istituto Sperimentale per la Zootecnia,00016 Monterotondo,Italy;Hocquette JF.INRA,UR1213,Unité de Recherches sur les Herbivores,Centre de Clermont-Ferrand./Theix F-63122,France;Nute G.,Richardson I.Division of Farm Animal Science,University of Bristol,BS40 5DU,United Kingdom;Olleta JL.,Panea B.,Sa?udo C.Dept de Producción Animal y Ciencia de los Alimentos,Universidad de Zaragoza,50013,Zaragoza,Spain;Razzaq N.Roslin Institute,Roslin,Midlothian,Scotland.EH25 9PS,UK;Renand G.INRA,UR337,Station de Génétique Quantitative et Appliquée,78352 Jouy-en-Josas cedex,France;Williams.JL.Parco Tecnologico Padano,Via Einstein,Polo Universitario,26900 Lodi,Italy.

    Author details

    1Departamento de Producción Animal,Facultad de Veterinaria,Universidad Complutense de Madrid,Madrid,Spain.2INRA,UMR 1061,F-87000 Limoges,France.3Université de Limoges,UMR 1061,F-87000 Limoges,France.4Division of Farm Animal Science,University of Bristol,Bristol BS40 5DU,UK.5Departimento de Producción Animal y Ciencia de los Alimentos,Universidad de Zaragoza,50013 Zaragoza,Spain.6Dipartimento di Produzioni Animali,Università della Tuscia,via De Lellis,01100 Viterbo,Italy.7Parco Tecnologico Padano,Via Einstein,Polo Universitario,26900 Lodi,Italy.

    Published:15 April 2014

    1.Givens DI,Gibbs RA:Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them.P Nutr Soc2008,67:273–280.

    2.McAfee AJ,McSorley EM,Cuskelly GJ,Moss BW,Wallace JM,Bonham MP,Fearon AM:Red meat consumption:an overview of the risks and benefits.Meat Sci2010,84:1–13.

    3.Cross AJ,Leitzmann MF,Gail MH,Hollenbeck AR,Schatzkin A,Sinha R:A prospective study of red and processed meat intake in relation to cancer risk.PLos Med1973,2007:4.

    4.World Cancer Research Fund/American Institute for Cancer Research:Food,nutrition and the prevention of cancer:A global perspective.Washington DC:American Institute for Cancer Research;2007.

    5.Kontogianni MD,Panagiotakos DB,Pitsavos C,Chrysohoou C,Stefanadis C:Relationship between meat intake and the development of acute coronary syndromes:The CARDIO2000 case–control study.Eur J Clin Nutr2008,62:171–177.

    6.Beauchesne-Rondeau E,Gascon A,Bergeron J,Jacques H:Plasma lipids and lipoproteins in hypercholesterolaemic men fed a lipid-lowering diet containing lean beef,lean fish,or poultry.Am J Clin Nutr2003,77:587–593.

    7.Bradlee ML,Singer MR,Moore LL:Lean red meat consumption and lipid profiles in adolescent girls.J Hum Nutr Diet2013,2:292–300.

    8.Hodgson J,Burke V,Beilin LJ,Puddey IB:Partial substitution of carbohydrate intake with protein intake from lean red meat lowers blood pressure in hypertensive persons.Am J Clin Nutr2006,83:780–787.

    9.Lee SH,Park EW,Cho YM,Kim SK,Lee JH,Jeon JT,Lee CS,Im SK,Oh SJ,Thompson JM,Yoon D:Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers.J Biochem Mol Biol2007,40:757–764.

    10.Bernard C,Cassar-Malek I,Le Cunff M,Dubroeucq H,Renand G,Hocquette JF:New indicators of beef sensory quality revealed by expression of specific genes.J Agr Food Chem2007,55:5229–5237.

    11.Hocquette JF,Botreau R,Picard B,Jacquet A,Pethick DW,Scollan ND:Opportunities for predicting and manipulating beef quality.Meat Sci2012,92:197–209.

    12.Simm G,Lambe N,Bünger L,Navajas E,Roehe R:Use of meat quality information in breeding programmes.InImproving the sensory and nutritional quality of fresh meat.Edited by Kerry JP,Ledward D.UK:Woodhead Publishing Ltd;2009:680.

    13.Luan T,Woolliams JA,Lien S,Kent M,Svendsen M,Meuwissen TH:The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.Genetics2009,183:1119–1126.

    14.Casas E,Shackelford SD,Keele JW,Stone RT,Kappes SM,Koohmaraie M:QTL affecting growth and carcass composition of cattle segregating alternate forms of myostatin.J Anim Sci2000,78:560–569.

    15.Casas E,Shackelford SD,Keele JW,Koohmaraie M,Smith TPL,Stone RT:Detection of quantitative trait loci for growth and carcass composition in cattle.J Anim Sci2003,81:2976–2983.

    16.Van Eenennaam AL,Li J,Thallman RM,Quaas RL,Dikeman ME,Gill CA,Franke DE,Thomas MG:Validation of commercial DNA tests for quantitative beef quality traits.J Anim Sci2007,85:891–900.

    17.Ibeagha-Awemu EM,Kgwatalala P,Zhao X:A critical analysis of production-associated DNA polymorphisms in the genes of cattle,goat,sheep,and pig.Mamm Genome2008,19:591–617.

    18.Shingfield KJ,Bonnet M,Scollan ND:Recent developments in altering the fatty acid composition of ruminant-derived foods.Animal2013,7:132–162.

    19.Dunner S,Sevane N,García D,Levéziel H,Williams JL,Mangin B,Valentini A,GeMQual Consortium:Genes involved in muscle lipid composition in 15 European Bos taurus breeds.Anim Genet2013,44:493–501.

    20.Sevane N,Armstrong E,Cortés O,Wiener P,Pong Wong R,Dunner S,GeMQual Consortium:Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks.Meat Sci2013,94:328–335.

    21.Sevane N,Ca?ón J,Dunner S:GemQual Consortium:Muscle lipid composition in bulls from fifteen European breeds.Livestock Sci2014,160:1–11.

    22.Albertí P,Panea B,Sa?udo C,Olleta JL,Ripoll G,Ertbjerg P,Christensen M,Gigli S,Failla S,Concetti S,Hocquette JF,Jailler R,Rudel S,Renand G,Nute GR,Richardson RI,Williams JL:Live weight,body size and carcass characteristics of young bulls of fifteen European breeds.Livest Sci2008,114:19–30.

    23.Christensen M,Ertbjerg P,Failla S,Sa?udo C,Richardson RI,Nute GR,Olleta JL,Panea B,Albertí P,Juárez M,Hocquette JF,Williams JL:Relationship between collagen characteristics,lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds.Meat Sci2011,87:61–65.

    24.Folch J,Lees M,Stanley GHS:A simple method for the isolation and purification of lipids from animal tissues.J Biol Chem1957,226:497–509.

    25.Scollan ND,Choi NJ,Kurt E,Fisher AV,Enser M,Wood JD:Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle.Br J Nutr2001,85:115–124.

    26.Ulbricht TLV,Southgate DAT:Coronary heart disease:seven dietary factors.Lancet1991,338:985–992.

    27.Wood JD,Nute GR,Fursey GAJ,Cuthbertson A:The effect of cooking conditions on the eating quality of pork.Meat Sci1995,40:127–135.

    28.SAS Institute Inc:Statistical Analysis with SAS/STAT?Software V9.1.3.Cary,NC,USA:SAS Institute Inc;2009.

    29.Scollan ND,Hocquette JF,Nuernberg K,Dannenberger D,Richardson RI,Maloney A:Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality.Meat Sci2006,74:17–33.

    30.Dinh TTN:Lipid and Cholesterol Composition of the Longissimus Muscle from Angus,Brahman,and Romosinuano.InMaster of Science Thesis in Animal and Food Science.Graduate Faculty of Texas Tech University:Dinh TTN;2007.

    31.Hoehne A,Nuernberg G,Kuehn C,Nuernberg K:Relationships between intramuscular fat content,selected carcass traits,and fatty acid profile in bulls using a F2-population.Meat Sci2012,90:629–635.

    32.Wood JD,Enser M,Fisher AV,Nute GR,Sheard PR,Richardson RI,Hughes SI,Whittington FM:Fat deposition,fatty acid composition and meat quality:A review.Meat Sci2008,78:343–358.

    33.Enser M,Scollan N,Choi N,Kurt E,Hallett K,Wood J:Effect of dietary lipid on the content of CLA in beef cattle.Anim Sci1999,69:143–146.

    34.Lawless F,Stanton C,L’Escop P,Devery R,Dillon P,Murphy JJ:Influence of breed on bovine milk cis-9,trans-11-conjugated linoleic acid.Livest Prod Sci1999,62:43–49.

    35.Wood JD,Richardson RI,Nute GR,Fisher AV,Campo MM,Kasapidou E,Sheard PR,Enser M:Effects of fatty acids on meat quality:a review.Meat Sci2004,66:21–32.

    36.Warren HE,Scollan ND,Nute GR,Hughes SI,Wood JD,Richardson RI:Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages.II:Meat stability and flavour.Meat Sci2008,78:270–278.

    37.Costa P,Lemos JP,Lopes PA,Alfaia CM,Costa AS,Bessa RJ,Prates JA:Effect of low-and high-forage diets on meat quality and fatty acid composition of Alentejana and Barros? beef breeds.Animal2012,6:1187–1197.

    38.Harries JM,Rhodes DN,Chrystall BB:Meat texture:I.Subjective assessment of the texture of cooked beef.J Texture Stud1972,3:101–114.

    39.Dransfield E,Francombe MA,Whelehan OP:Relationships between sensory attributes in cooked meat.J Texture Stud1984,15:33–48.

    40.Dransfield E,Nute G,Roberts T,Boccard R,Touraille C,Buchter L,Casteels M,Cosentino E,Hood D,Joseph R:Beef quality assessed at European research centres.Meat Sci1984,10:1–20.

    41.Juarez M,Aldai N,Lopez-Campos O,Dugan MER,Uttaro B,Aalhus JL:Beef Texture and Juiciness.InHandbook of Meat and Meat Processing.Edited by Hui YH.Boca Raton:CRC press;2011:177–206.

    42.Melton SL,Amiri M,Davis GW,Backus WR:Flavor and chemical characteristics of ground beef from grass-,forage-,grain-and grain-finished steers.J Anim Sci1982,55:77–87.

    乱人视频在线观看| 日本免费a在线| 最后的刺客免费高清国语| 国产精品一及| 少妇裸体淫交视频免费看高清| 亚洲人成电影免费在线| av专区在线播放| 亚洲色图av天堂| 精品人妻1区二区| 色吧在线观看| 国产精华一区二区三区| 高清在线国产一区| 女同久久另类99精品国产91| www日本黄色视频网| or卡值多少钱| 99热6这里只有精品| 日韩大尺度精品在线看网址| 国产高潮美女av| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 欧美午夜高清在线| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 少妇的逼水好多| 亚洲成人久久性| 亚洲av免费在线观看| 午夜福利在线观看吧| 成熟少妇高潮喷水视频| 少妇高潮的动态图| 99久久精品热视频| 国模一区二区三区四区视频| 丰满人妻熟妇乱又伦精品不卡| 国内精品一区二区在线观看| 午夜a级毛片| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 国产三级中文精品| 国产精品女同一区二区软件 | 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 18禁黄网站禁片免费观看直播| 舔av片在线| 精品欧美国产一区二区三| 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 99riav亚洲国产免费| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 午夜影院日韩av| 国产一区二区三区在线臀色熟女| 亚洲成a人片在线一区二区| 亚洲中文日韩欧美视频| 嫩草影视91久久| 亚洲18禁久久av| 国产精华一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲一区二区三区色噜噜| 99热只有精品国产| 可以在线观看的亚洲视频| 窝窝影院91人妻| 两个人的视频大全免费| 色综合站精品国产| 欧美xxxx性猛交bbbb| a级一级毛片免费在线观看| 每晚都被弄得嗷嗷叫到高潮| or卡值多少钱| 精品久久久久久成人av| 熟女电影av网| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 免费一级毛片在线播放高清视频| av天堂在线播放| a级毛片a级免费在线| 在现免费观看毛片| av女优亚洲男人天堂| 狂野欧美白嫩少妇大欣赏| 99精品久久久久人妻精品| aaaaa片日本免费| 午夜激情福利司机影院| 97超级碰碰碰精品色视频在线观看| 亚洲人成伊人成综合网2020| а√天堂www在线а√下载| 亚洲av免费在线观看| 亚洲美女视频黄频| 男女下面进入的视频免费午夜| 中文字幕人成人乱码亚洲影| 一进一出好大好爽视频| 国产精品一区二区三区四区久久| 99国产综合亚洲精品| 欧美日韩乱码在线| 男人和女人高潮做爰伦理| 国产精品久久久久久人妻精品电影| 男女之事视频高清在线观看| 制服丝袜大香蕉在线| 性色avwww在线观看| 日韩有码中文字幕| 国产精品久久久久久久久免 | 日韩精品中文字幕看吧| 亚洲成人久久性| 久久精品夜夜夜夜夜久久蜜豆| 哪里可以看免费的av片| а√天堂www在线а√下载| 久久午夜亚洲精品久久| 国产亚洲欧美98| 亚洲三级黄色毛片| 日韩精品中文字幕看吧| 亚洲av成人av| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添av毛片 | 少妇裸体淫交视频免费看高清| 首页视频小说图片口味搜索| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 久久久色成人| 观看免费一级毛片| 午夜两性在线视频| 综合色av麻豆| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 亚洲精品粉嫩美女一区| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 久久精品久久久久久噜噜老黄 | 蜜桃久久精品国产亚洲av| 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 亚洲最大成人手机在线| 99国产精品一区二区三区| 日本 av在线| 最后的刺客免费高清国语| 免费观看精品视频网站| 国产野战对白在线观看| www.www免费av| 中文字幕久久专区| 色在线成人网| 一本一本综合久久| 久久精品国产亚洲av涩爱 | 午夜久久久久精精品| 一区二区三区激情视频| 观看美女的网站| 蜜桃久久精品国产亚洲av| 国产极品精品免费视频能看的| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 床上黄色一级片| 久久久国产成人免费| 99久久精品国产亚洲精品| 欧美性猛交黑人性爽| 国产精品精品国产色婷婷| 午夜亚洲福利在线播放| 午夜精品在线福利| 日本三级黄在线观看| 久久香蕉精品热| 在线观看一区二区三区| 天美传媒精品一区二区| 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 午夜免费男女啪啪视频观看 | 国产精品美女特级片免费视频播放器| 真实男女啪啪啪动态图| 日韩中文字幕欧美一区二区| 在线观看一区二区三区| 国产精品女同一区二区软件 | 啦啦啦观看免费观看视频高清| 又粗又爽又猛毛片免费看| 亚洲精品粉嫩美女一区| 成人av在线播放网站| 国产精品野战在线观看| 国内少妇人妻偷人精品xxx网站| 床上黄色一级片| 日本一二三区视频观看| 夜夜躁狠狠躁天天躁| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| а√天堂www在线а√下载| 精品日产1卡2卡| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 日本撒尿小便嘘嘘汇集6| 人人妻人人看人人澡| 五月伊人婷婷丁香| 国产探花极品一区二区| 国产精品影院久久| 国产精品自产拍在线观看55亚洲| 国产视频内射| 国产伦在线观看视频一区| 精品人妻1区二区| 老女人水多毛片| 一个人观看的视频www高清免费观看| 最近最新免费中文字幕在线| 日本免费一区二区三区高清不卡| 午夜免费成人在线视频| 国产高清视频在线观看网站| 亚洲七黄色美女视频| x7x7x7水蜜桃| av专区在线播放| 亚洲国产高清在线一区二区三| 国产高清激情床上av| 亚洲av一区综合| 国产精品美女特级片免费视频播放器| 国产高清三级在线| 精品一区二区三区视频在线观看免费| 国产91精品成人一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播| 日本黄大片高清| 99国产综合亚洲精品| 亚洲精品乱码久久久v下载方式| 国产欧美日韩精品一区二区| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久久人妻蜜臀av| 亚洲美女黄片视频| 免费搜索国产男女视频| 国产综合懂色| 身体一侧抽搐| 免费电影在线观看免费观看| 久久久色成人| 中文字幕高清在线视频| 村上凉子中文字幕在线| 国产伦人伦偷精品视频| 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 亚洲国产精品999在线| 欧美性猛交黑人性爽| 久久久色成人| 国产在线精品亚洲第一网站| 亚洲成人免费电影在线观看| 婷婷六月久久综合丁香| 久久久久国内视频| 国产色婷婷99| 日本黄大片高清| 欧美一区二区国产精品久久精品| 一级黄片播放器| 麻豆一二三区av精品| 国产免费一级a男人的天堂| 亚洲av美国av| 性色avwww在线观看| 日韩欧美国产在线观看| 在线a可以看的网站| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 国产精品亚洲美女久久久| avwww免费| 一边摸一边抽搐一进一小说| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 亚洲内射少妇av| 国产视频内射| 精品福利观看| 宅男免费午夜| 亚洲精品久久国产高清桃花| 高清在线国产一区| 身体一侧抽搐| 黄色视频,在线免费观看| 亚洲男人的天堂狠狠| 亚洲va日本ⅴa欧美va伊人久久| 久久精品夜夜夜夜夜久久蜜豆| 变态另类丝袜制服| 国产麻豆成人av免费视频| 天堂网av新在线| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 非洲黑人性xxxx精品又粗又长| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久亚洲 | 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 级片在线观看| 国产精品一区二区性色av| 淫秽高清视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 在线观看一区二区三区| 91在线精品国自产拍蜜月| 99久国产av精品| 亚洲欧美日韩东京热| avwww免费| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 久久欧美精品欧美久久欧美| 嫩草影院新地址| 级片在线观看| 国产精品综合久久久久久久免费| 国内毛片毛片毛片毛片毛片| 日本三级黄在线观看| 国内精品美女久久久久久| 日韩强制内射视频| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 日本猛色少妇xxxxx猛交久久| 春色校园在线视频观看| 免费av不卡在线播放| 一级毛片久久久久久久久女| 国产又色又爽无遮挡免| 亚洲精品国产成人久久av| 精品一区二区三卡| 欧美精品国产亚洲| tube8黄色片| 一区二区av电影网| 高清毛片免费看| av播播在线观看一区| 国产人妻一区二区三区在| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 久久久久精品性色| 久久6这里有精品| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| av一本久久久久| 真实男女啪啪啪动态图| 亚洲av日韩在线播放| 免费观看性生交大片5| 国产欧美日韩精品一区二区| 国产成人91sexporn| 亚洲精品第二区| 久久久久国产网址| 亚洲av免费在线观看| 国产黄色视频一区二区在线观看| 成人亚洲精品一区在线观看 | 三级男女做爰猛烈吃奶摸视频| 欧美国产精品一级二级三级 | 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区| 纵有疾风起免费观看全集完整版| 久久ye,这里只有精品| 成年av动漫网址| av在线蜜桃| 18禁在线播放成人免费| 97在线人人人人妻| 国产爱豆传媒在线观看| 69人妻影院| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 国产精品女同一区二区软件| 国产色婷婷99| 大码成人一级视频| 日本一本二区三区精品| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 亚州av有码| 国产日韩欧美亚洲二区| 国产欧美另类精品又又久久亚洲欧美| 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频| 成人美女网站在线观看视频| 亚洲国产欧美在线一区| 日韩视频在线欧美| 欧美另类一区| 另类亚洲欧美激情| 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 汤姆久久久久久久影院中文字幕| 青春草国产在线视频| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 国产 一区 欧美 日韩| 欧美潮喷喷水| 白带黄色成豆腐渣| xxx大片免费视频| 国产中年淑女户外野战色| 内地一区二区视频在线| 亚洲av欧美aⅴ国产| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 午夜免费鲁丝| 新久久久久国产一级毛片| 亚洲精品日韩在线中文字幕| 一区二区三区免费毛片| 少妇的逼水好多| 亚州av有码| 欧美极品一区二区三区四区| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放| 99久久精品一区二区三区| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 九九在线视频观看精品| 久久人人爽av亚洲精品天堂 | 丝瓜视频免费看黄片| 成人亚洲精品一区在线观看 | 黄色视频在线播放观看不卡| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 日本wwww免费看| videos熟女内射| 七月丁香在线播放| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 午夜视频国产福利| 一级二级三级毛片免费看| 亚洲国产精品999| 亚洲精品久久午夜乱码| av天堂中文字幕网| 禁无遮挡网站| 亚洲av日韩在线播放| 亚洲成人久久爱视频| 久久精品人妻少妇| 一级av片app| 视频区图区小说| videos熟女内射| 777米奇影视久久| 日韩电影二区| 欧美一区二区亚洲| 网址你懂的国产日韩在线| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 精品人妻熟女av久视频| 亚洲自拍偷在线| 久久久久久久国产电影| 各种免费的搞黄视频| 午夜精品一区二区三区免费看| 久久久久久国产a免费观看| 熟女av电影| 日韩成人av中文字幕在线观看| 国产精品.久久久| 一本久久精品| 男女啪啪激烈高潮av片| 女人被狂操c到高潮| eeuss影院久久| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 欧美变态另类bdsm刘玥| 视频中文字幕在线观看| 国产黄片美女视频| 国产老妇伦熟女老妇高清| 午夜福利高清视频| 欧美丝袜亚洲另类| av免费观看日本| 亚洲国产精品国产精品| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 国产免费视频播放在线视频| 亚洲欧美精品自产自拍| 建设人人有责人人尽责人人享有的 | 中文字幕亚洲精品专区| 国产精品一及| 小蜜桃在线观看免费完整版高清| 久久97久久精品| 久久女婷五月综合色啪小说 | 欧美最新免费一区二区三区| 热99国产精品久久久久久7| 22中文网久久字幕| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 国产精品爽爽va在线观看网站| 国产成人freesex在线| 97热精品久久久久久| 国产免费一级a男人的天堂| 国产乱来视频区| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 激情 狠狠 欧美| 五月开心婷婷网| 18禁裸乳无遮挡免费网站照片| 欧美精品人与动牲交sv欧美| 极品教师在线视频| 一级毛片 在线播放| 久久精品熟女亚洲av麻豆精品| 久久ye,这里只有精品| 国产精品一区二区三区四区免费观看| 国产在视频线精品| 日韩av不卡免费在线播放| 三级国产精品片| 国产精品福利在线免费观看| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 国产精品久久久久久av不卡| 亚洲av欧美aⅴ国产| 一级av片app| 丰满人妻一区二区三区视频av| 欧美潮喷喷水| 亚洲,一卡二卡三卡| 精品国产露脸久久av麻豆| 国产人妻一区二区三区在| 久久国产乱子免费精品| 亚洲人成网站高清观看| 久久综合国产亚洲精品| 全区人妻精品视频| 久久99热6这里只有精品| 一区二区av电影网| 亚洲av中文字字幕乱码综合| 少妇猛男粗大的猛烈进出视频 | 成人鲁丝片一二三区免费| 99热网站在线观看| 亚洲精品一二三| 18禁在线无遮挡免费观看视频| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线 | 熟女电影av网| 国产精品国产三级国产专区5o| 亚洲av成人精品一二三区| 联通29元200g的流量卡| 亚洲色图综合在线观看| 日本-黄色视频高清免费观看| 建设人人有责人人尽责人人享有的 | 午夜福利在线在线| 伊人久久国产一区二区| 噜噜噜噜噜久久久久久91| 少妇高潮的动态图| 国产精品一区www在线观看| 国产真实伦视频高清在线观看| 老女人水多毛片| 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 国产人妻一区二区三区在| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| 亚洲电影在线观看av| 国产69精品久久久久777片| 最近最新中文字幕免费大全7| 日韩成人伦理影院| 能在线免费看毛片的网站| 午夜福利在线在线| 国产大屁股一区二区在线视频| 高清av免费在线| 少妇高潮的动态图| 国产黄色视频一区二区在线观看| 日本wwww免费看| 国产午夜精品一二区理论片| 久久午夜福利片| 日韩av不卡免费在线播放| 亚洲图色成人| 舔av片在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人av观看孕妇| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 欧美日韩国产mv在线观看视频 | 天美传媒精品一区二区| 我的老师免费观看完整版| 国产欧美日韩一区二区三区在线 | 黄色配什么色好看| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 成人欧美大片| 六月丁香七月| 亚洲一区二区三区欧美精品 | 亚洲精品色激情综合| 国产成人一区二区在线| 日本一二三区视频观看| av免费观看日本| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 久久久亚洲精品成人影院| 高清在线视频一区二区三区| 久久ye,这里只有精品| 高清午夜精品一区二区三区| 一级av片app| 国产男女内射视频| av天堂中文字幕网| 性色av一级| 黑人高潮一二区| 国产精品99久久久久久久久| 热99国产精品久久久久久7| 久久精品国产自在天天线| 午夜视频国产福利| 国产在视频线精品| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| 在线观看免费高清a一片| 婷婷色麻豆天堂久久| 真实男女啪啪啪动态图| 一区二区三区四区激情视频| 日韩av在线免费看完整版不卡| 亚洲图色成人| 久久人人爽av亚洲精品天堂 | 男女边吃奶边做爰视频| 大陆偷拍与自拍| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 精品国产一区二区三区久久久樱花 | av女优亚洲男人天堂| 亚洲国产av新网站| 麻豆成人av视频| 在线免费十八禁| 草草在线视频免费看| 国产毛片在线视频| 久久久久精品性色| 七月丁香在线播放| 久久鲁丝午夜福利片| 乱系列少妇在线播放| 一级毛片 在线播放| 久久鲁丝午夜福利片| 国产中年淑女户外野战色| 亚洲精品色激情综合| 成年版毛片免费区| 99热全是精品| 自拍欧美九色日韩亚洲蝌蚪91 | 伦精品一区二区三区| 日韩亚洲欧美综合| 菩萨蛮人人尽说江南好唐韦庄| 国产伦理片在线播放av一区| 国产淫片久久久久久久久| 国产精品av视频在线免费观看| 日韩在线高清观看一区二区三区| 日韩亚洲欧美综合| 久久久成人免费电影|