李 楠 張 為
(1.內(nèi)蒙古科技大學包頭師范學院物理科學與技術(shù)學院,內(nèi)蒙古 包頭 014030;2.內(nèi)蒙古科技大學包頭師范學院信息學院,內(nèi)蒙古 包頭 014030)
基于奇異值分解的非均勻采樣系統(tǒng)最小二乘辨識
李楠1張為2
(1.內(nèi)蒙古科技大學包頭師范學院物理科學與技術(shù)學院,內(nèi)蒙古包頭014030;2.內(nèi)蒙古科技大學包頭師范學院信息學院,內(nèi)蒙古包頭014030)
摘要:針對非均勻周期多采樣率系統(tǒng),在狀態(tài)估計為已知的情況下,提出了基于奇異值分解的模型參數(shù)的最小二乘辨識方法.首先,根據(jù)系統(tǒng)的連續(xù)時間狀態(tài)空間模型,在滿足因果關(guān)系基礎(chǔ)上,推導了含有提升變量的離散狀態(tài)空間模型.然后,為了克服辨識誤差積累和傳遞,采用基于奇異值分解的遞推最小二乘方法確定模型參數(shù).最后,仿真結(jié)果表明提出方法的有效性.
關(guān)鍵詞:狀態(tài)空間模型;奇異值分;多采樣率系統(tǒng);非均勻采樣
參考文獻:
[1]倪博溢,蕭德云.多采樣率系統(tǒng)的辨識問題綜述[J].控制理論與應(yīng)用,2009,27(1).
[2]L.XIE,Y.J.LIU,H.Z.YANG,F(xiàn).DING.Modelling and identification for non-uniformly periodically sampled-data systems[J].IET Control Theory and Applications.2010,4(5).
[3]吳瑤,羅雄麟.化工多采樣率數(shù)字控制技術(shù)研究進展[J].化工進展,2008,27(9).
[4]FENG DING,LI QIU,TONG-WEN CHEN.Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems[J].Automatica.2009,45(2).
[5]丁鋒,陳通文,蕭德云.非均勻周期采樣多率系統(tǒng)的一種辨識方法[J].電子學報,2004,32(9).
[6]劉艷君,謝莉,丁鋒.非均勻采樣數(shù)據(jù)系統(tǒng)的AM-RLS辨識方法及仿真研究[J].系統(tǒng)仿真學報.2009,21(19).
[7]蔣紅霞,丁鋒.一類非均勻采樣數(shù)據(jù)系統(tǒng)的狀態(tài)估計[J].科學技術(shù)與工程.2008,8(2).
[8]Sheng J,Chen T,Shah S L.Generalized predictive control for non-uniformly sampled systems[J].Journal of Process Control.2002,12(8).
[9]蔣紅霞,王金海.非均勻多率系統(tǒng)濾波的研究[A].2007年系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)會議論文集[C].中國科學技術(shù)大學出版社,2007.
[10]Wang W,Ding F,Dai J Y.Maximum likelihood least squares identification for systems with autoregressive moving average noise[J].Applied Mathematical Modelling,2012,36(5).
[11]Sheng J,Chen T,Shah S L.Generalized predictive control for non-uniformly sampled systems[J].Journal of Process Control.2002,12(8).
中圖分類號:TP15
文獻標識碼:A
文章編號:2095-3771(2014)01-0093-07
收稿日期:2014-01-21
作者簡介:李楠(1976—),女,漢族,河北省定縣人,內(nèi)蒙古科技大學包頭師范學院物理科學與技術(shù)學院講師,碩士。
基金項目:國家自然科學基金“用顯卡通用計算方法設(shè)計超導/鐵磁異質(zhì)結(jié)構(gòu)的磁通量子器件”(項目編號:11064008)。
The Identification of Least Squares in Non-Uniform Sampling System via Singular Values Decomposition
LI Nan1ZHANG Wei2
(1.Physics Science and Technology Department of Baotou Teachers’College,Inner Mongolia University of Science and Technology,Baotou 014030 Inner Mongolia;(2.Information Department of Baotou Teachers’College,Inner Mongolia University of Science and Technology,Baotou 014030,Inner Mongolia)
Abstract:The least-squares method is proposed via the model parameter of singular value decomposition(SVD)specific to the non-uniformly sampling system under the assumption that the state estimates are known.Firstly,the discrete state-space model with the lifting variables is derived from the continuous state-space model on the basis of realizing the causality constraints.Secondly,to overcome the accumulation and the transmission of the identification errors,the recursive least-squares method based on singular values decomposition is developed to determine the parameter of the identified model.Finally,the simulation results show the effectiveness of the proposed method.
Key words:state-space model;singular value decomposition;multi-rate sampled systems;nonuniform sampling