喬新榮 段鴻斌 葉兆偉
(信陽農(nóng)林學院,信陽 464000)
植物向光素受體與信號轉(zhuǎn)導機制研究進展
喬新榮 段鴻斌 葉兆偉
(信陽農(nóng)林學院,信陽 464000)
向光素(phototropin,PHOT)是繼光敏色素、隱花色素之后分離的植物藍光受體。PHOT介導藍光誘導的向光反應,葉綠體運動,氣孔開放、葉片伸展及葉片定位等生理反應。近年來關于PHOT受體介導這些生理反應的分子機制探討愈來愈受研究者的廣泛關注。主要從擬南芥PHOT結(jié)構(gòu)及信號轉(zhuǎn)導方面的研究進展進行綜述。
向光素 受體 信號轉(zhuǎn)導
光是自然界中影響植物生長發(fā)育的最重要的環(huán)境因素之一。藍光誘導植物向光反應、氣孔開放、葉綠體運動、葉片定位及伸展等生理反應[1],促進了弱光下植物的光合作用,降低了強光對光合器官的傷害,從而優(yōu)化了植物的生長發(fā)育。自從藍光受體向光素(phototropin,PHOT)分離鑒定后,人們對這些藍光反應分子機制的研究有了突破性的進展,并且成為當今植物生物學研究的熱點之一。本文就近年來對模式植物擬南芥PHOT蛋白結(jié)構(gòu)特點、下游信號轉(zhuǎn)導及PHOT與生長素信號、鈣信號互作的研究進展進行綜述。
擬南芥向光素受體有兩個,分別為PHOT1和PHOT2兩個受光調(diào)節(jié)的同源蛋白激酶。藍光刺激后PHOT發(fā)生自磷酸化作用,以光強依賴方式調(diào)節(jié)不同的生理反應[1]。PHOT蛋白分子由N端的光感受區(qū)和C端的Ser/Thr蛋白激酶區(qū)兩大保守結(jié)構(gòu)域組成。N端光感受區(qū)包含有兩個大約110個氨基酸的重復保守序列LOV(light、oxygen和voltage)1和LOV2[2,3]。LOV1和LOV2的結(jié)構(gòu)非常相似[4]。LOV區(qū)會發(fā)生一個可逆的光循環(huán)。黑暗條件下,LOV區(qū)保守的半胱氨酸(cysteine)39(即在每個LOV區(qū)的氨基酸的相對位置是39,命名為Cys39)以非共價形式結(jié)合一分子的黃素單核苷酸FMN(flavin mononucleotide),在447 nm處達最大光吸收峰[2,5,6]。藍光刺激下,F(xiàn)MN和Cys39形成共價加合物,在390 nm處達最大光吸收峰[5-7],誘導蛋白構(gòu)象變化[8,9],激活激酶區(qū)。轉(zhuǎn)至黑暗處,數(shù)秒至數(shù)分鐘內(nèi),光下的390 nm光譜發(fā)生可逆變化,使LOV區(qū)回到起始狀態(tài)447 nm 光譜[5,6]。盡管LOV1和LOV2區(qū)顯示上面所述的相同的光譜特點,但他們也有顯著不同的光化學特性。表現(xiàn)在藍光激發(fā)后,對Cys39與FMN加合物形成的速率(量子效率)以及轉(zhuǎn)入暗處加合物的衰減時間不同[2]。
由于LOV1和LOV2具有上述不同的光反應特點,使其對光的敏感性也不同。而且,PHOT1和PHOT2的LOV1和LOV2區(qū)的光感知特點存在差別,導致調(diào)節(jié)不同的生理反應。突變或敲除PHOT1的LOV1區(qū)后,沒有影響光感受和自磷酸化作用,黃化苗仍具有向光反應和葉片伸展反應[10,11],而PHOT1的LOV2區(qū)突變后不能夠恢復雙突變phot1 phot2的向光反應和葉片伸展[11]。但PHOT2的LOV1和LOV2區(qū)都參與調(diào)節(jié)向光反應[12]。進一步研究表明,PHOT1的C端激酶區(qū)與LOV2之間存在一個大約20個氨基酸的保守的Jα螺旋區(qū),LOV2經(jīng)Jα螺旋和激酶區(qū)的耦合是藍光誘導PHOT1發(fā)生自磷酸化作用所必須的條件[4]。PHOT2的LOV2和激酶區(qū)之間的第720位天冬氨酸(Asp)殘基突變?yōu)樘於0罚ˋsn)后,喪失了ATP結(jié)合活性,是光誘導LOV2構(gòu)象改變激活激酶區(qū)的重要位點[13]。將PHOT1和PHOT2的N端和C端互換后證實僅有PHOT1的N端和C端結(jié)合會抑制葉綠體回避反應[14]。
PHOT的C末端Ser/Thr蛋白激酶區(qū)屬于AGC蛋白激酶家族[15]。藍光誘導PHOT發(fā)生自磷酸化作用是引發(fā)生理反應的第一步。利用質(zhì)譜(LC-MS/MS)分析方法,已經(jīng)在PHOT1的N端、LOV1與LOV2之間的連接區(qū)、激酶區(qū)及C末端鑒定了多個磷酸化位點[10,16]。其中Ser-851(第851位絲氨酸)是PHOT1藍光下開啟自磷酸化作用的一個重要位點,也是其介導氣孔開放,向光性反應,葉綠體聚集運動及葉片伸展所必須的條件[16]。PHOT1和PHOT2都是質(zhì)膜結(jié)合蛋白,但藍光刺激條件下,部分PHOT1會迅速從質(zhì)膜釋放入胞質(zhì)及葉綠體外膜[17-19],部分PHOT2遷移至胞質(zhì)、高爾基體及葉綠體外膜[19-21]。若刪除PHOT2的C末端區(qū)域,既減弱了PHOT2在高爾基體和葉綠體外膜上的定位,又降低了葉綠體回避運動速率。而降低胞質(zhì)中PHOT2的表達量并不影響回避運動,表明PHOT2的C區(qū)在其定位至葉綠體膜及回避運動中起重要作用[19]。
自從Briggs團隊分離鑒定藍光受體PHOT1[22]和Kagawa等[23]克隆PHOT2以來,藍光誘導生理反應的分子機制得到了深入的研究。尤其是近年來,PHOT信號轉(zhuǎn)導途徑中相關突變體的分離。PHOT1和PHOT2以光強依賴的方式精細調(diào)節(jié)植物的許多生理反應。弱藍光下,PHOT1和PHOT2以功能冗余方式調(diào)節(jié)葉綠體聚集運動、氣孔開放、葉片伸展及定位[1]。PHOT1單獨介導抑制下胚軸伸長和強光強下的mRNA降解[24,25]。而PHOT2單獨介導強藍光誘導的葉綠體回避運動和黑暗中葉綠體的定位[26,27]。2.1 PHOT互作信號蛋白
眾所周知,藍光誘導PHOT自磷酸化作用導致胞內(nèi)信號級聯(lián),誘發(fā)相關的生理反應。PHOT介導的眾多生理反應決定了其信號轉(zhuǎn)導路徑的多樣性和復雜性。最近,鑒定了3個PHOT1激酶的底物。一個是生長素運輸載體蛋白ABCB19(ATP-binding cassette B19),其主要負責生長素從莖尖運輸至維管組織,維持生長素的長距離極性運輸[28]。在單側(cè)藍光誘導向光彎曲反應中,PHOT1通過抑制底物ABCB19靶蛋白活性,促進莖尖生長素的橫向運輸,引起向光彎曲生長[29]。另一個是PHOT1底物Ser/Thr蛋白激酶BLUS1(Blue Light Signaling 1)[30]。PHOT介導氣孔開放的基本信號轉(zhuǎn)導路徑是PHOT經(jīng)Ser/Thr蛋白磷酸酶PP1(protein phosphatase 1)激活質(zhì)膜H+-ATP酶,促進K+吸收,引起氣孔開放[31,32]。最新研究表明,PHOT1的C端的Ser-348位點磷酸化底物BLUS1是藍光誘導氣孔開放的關鍵步驟[30],從而更深層次地闡明了PHOT1如何激活質(zhì)膜H+-ATP酶。另外,小基因家族PKS(phytochrome kinase substrate)(PKS1-PKS4) 中 的PKS4也 被PHOT1磷酸化[33]。
除上述3個PHOT磷酸化底物外,也分離鑒定了與PHOT互作的下游信號蛋白。NPH3(nonphototropic hypocotyls 3)編碼一個745個氨基酸殘基組成的植物特有質(zhì)膜結(jié)合蛋白[34]。任何強度的單側(cè)光照射后,擬南芥nph3突變體下胚軸都不發(fā)生向光彎曲反應[35]。生化分析質(zhì)膜結(jié)合蛋白NPH3與PHOT1、PHOT2互作[36],作為PHOT共有信號介導下胚軸向光彎曲。進一步分析,NPH3依賴PHOT1發(fā)生去磷酸化作用調(diào)節(jié)向光反應[37]。此外,NPH3也參與調(diào)節(jié)葉片定位和葉片伸展[36]。與NPH3屬同一家族的RPT2(root phototropism 2)蛋白也定位在質(zhì)膜,RPT2的N端與PHOT1的LOV區(qū)、NPH3的N端互作[35]。通過rpt2單突變體及phot1rpt2、phot2rpt2雙突變體遺傳實驗分析表明,RPT2在PHOT1信號轉(zhuǎn)導路徑中介導向光反應[35]、葉片伸展及定位[38]。PKS家族最初研究是紅光受體光敏素PHY(phytochrome)的底物[39]。后來也發(fā)現(xiàn)PKS1和PHOT1、NPH3也發(fā)生互作,PKS的單突變、雙突變及三突變的下胚軸彎曲度都有不同程度的下降,多突變的彎曲度降低更明顯[40]。另外,PKS2與PHOT1、PHOT2互作,其作為PHOT的共有信號調(diào)節(jié)葉片伸展和定位,但主要作用于PHOT2信號路徑[36]。最近,Jaedicke等[41]研究發(fā)現(xiàn)過去一直認為定位于細胞核中的PHYA也和PHOT1在質(zhì)膜上互作,更直接的證明了PHY參與調(diào)節(jié)向光反應。RCN1是Ser/Thr蛋白磷酸酶2A(PP2A)的一個亞基。phot1-5rcn1-1雙突變株系中,PP2A活性降低,增強了藍光誘導的向光反應和氣孔開放。體外實驗證明RCN1和PHOT2互作,RCN1活性的降低抑制了PHOT2的去磷酸化水平[42]。Knauer等[43]通過酵母三雜交方法,利用PHOT1/NPH3復合體作誘餌,篩選到一個可以與其結(jié)合的未知功能蛋白EHB1(enhanced bending1),根據(jù)單側(cè)藍光照射ehb1突變體下胚軸的彎曲度變化,推測EHB1抑制PHOT1介導的向光彎曲反應。此外,14-3-3蛋白與PHOT1特異結(jié)合調(diào)節(jié)氣孔開放[44]。磷脂酰肌醇代謝途關鍵酶5PTase13(Inositol polyphosphate 5-phosphatase 13) 和 PHOT1互作,負調(diào)節(jié)PHOT1介導的胞質(zhì)Ca2+升高[45]。2.2 向光素信號通路中的非互作蛋白
雖然還沒有直接證據(jù)證明紅光受體PHYB與PHOT互作,但由突變體表型推測,PHOT可能通過抑制phyB活性促進葉片伸展,且NPH3是phyB突變體中調(diào)節(jié)葉片伸展所必須的蛋白[46]。擬南芥CHUP1(chloroplast unusual positioning 1)基因編碼一個葉綠體外膜蛋白。chup1與phot2突變體表型相似,都喪失葉綠體回避反應[47,48]。進一步研究證明CHUP1與肌動蛋白G-actin、F-actin及profilin互作[49]。植物特有的KAC(kinesin-like protein for actin-based chloroplast movement)蛋白和F-actin體外互作,kac1kac2雙突變完全喪失葉綠體運動[50]。一個與哺乳動物中調(diào)節(jié)纖毛發(fā)育的GRXCR1同源的F-actin結(jié)合蛋白THRUMIN1,正調(diào)節(jié)PHOT介導的葉綠體運動反應[51]。蛋白磷酸酶PP2A(protein phosphatase 2A)催化亞基的一種同型物 PP2A-2能使肌動蛋白解聚因子ADF(Actin depolymerizing factor)去磷酸化。遺傳分析pp2a-2、adf1及adf3突變體都降低了強藍光誘導的葉綠體回避反應[52]。處于PHOT介導氣孔開放信號通路中的蛋白磷酸酶PP1由一個催化亞基PP1c和一個調(diào)節(jié)亞基PRSL1組成。PRSL1的突變抑制了保衛(wèi)細胞中氣孔的開放,且質(zhì)膜H+泵和H+-ATP酶的磷酸化作用活性降低[53]。因此,PP1在PHOT調(diào)節(jié)氣孔開放的信號通路中處于質(zhì)膜H+-ATP酶的上游[30]。進一步研究表明PRSL1刺激催化亞基PP1c定位于胞質(zhì)是其介導氣孔開放的前提條件[53]。雖然JAC1(J-domain protein required for chloroplast accumulation response 1)、WEB1(Weak chloroplast movement under blue light 1)和PMI2(Plastid movement impaired 2)參與調(diào)控葉綠體運動[54],但還沒有直接的證據(jù)證明它們處于PHOT信號轉(zhuǎn)導通路中。此外,隱花色素CRY1和光敏素PHYB參與調(diào)節(jié)光誘導PHOT1轉(zhuǎn)錄表達下降。而CRY和PHYA調(diào)節(jié)光誘導PHOT2轉(zhuǎn)錄表達增加[55]。
植物向光彎曲生長是由于其向光面與背陰面中生長素的不對稱引起的[56]。生長素的運輸受生長素外流載體蛋白、內(nèi)流載體蛋白及相關蛋白的調(diào)節(jié)。向光性反應由第一和第二兩種類型的正向光反應組成,第一正向光反應由短的脈沖光誘導,第二正向光反應由持續(xù)光誘導[56]。PHOT1是引發(fā)弱藍光誘導向光反應的基本光受體。強光下PHOT1和PHOT2共同介導向光反應。研究表明PHOT1和生長素信號有直接的互作,如前所述,藍光刺激下,在下胚軸頂端部位PHOT1磷酸化生長素外流載體ABCB19,抑制其活性。促進生長素在下胚軸中橫向分布,并和分布于伸長區(qū)的生長素外流載體PIN3協(xié)同,誘導下胚軸向光彎曲[29]。與PHOT互作的PKS改變了生長素調(diào)節(jié)基因的表達模式[57]。此外,有實
驗證據(jù)表明PHOT1間接調(diào)控生長素外流載體PIN1、PNN3、PIN7蛋白[29,58]。Willige等[59]研究表明生長素運輸是PHOT1介導向光彎曲的前提,下胚軸向光彎曲反應依賴于D6PK(D6 protein kinase),PIN3,PIN4和PIN7的活性。而Haga和Sakai[60]研究表明pin1、pin3、pin7突變體只是減弱了第一正向光反應,并且多突變體表現(xiàn)疊加效應,而在光持續(xù)誘導的第二正向光反應中沒有變化,表明PIN調(diào)節(jié)的向光反應僅應用于瞬時脈沖刺激。此外,生長素轉(zhuǎn)錄因子NPH4/ARF7響應內(nèi)源生長素濃度的變化[61]。當缺乏NPH4/ARF7蛋白時,高親和性生長素內(nèi)流載體AUX1調(diào)節(jié)下胚軸向光反應[62]。轉(zhuǎn)錄因子PIF4(Phytochrome interacting factor 4)和PIF5與IAA19、IAA29基因的啟動子區(qū)G-box區(qū)結(jié)合,激活了其轉(zhuǎn)錄表達,而且IAA19和IAA29蛋白與ARF7生理互作,負調(diào)節(jié)生長素信號和PHOT1介導的向光反應[63],推測PIF4和PIF5是聯(lián)系藍光和生長素介導向光反應的重要信號成分。
Ca2+作為細胞內(nèi)重要第二信使,也受藍光調(diào)節(jié)。藍光誘導擬南芥黃化苗胞質(zhì)Ca2+的增加由PHOT1介導[25]。利用擬南芥突變體證明了PHOT1和PHOT2誘導葉肉細胞胞質(zhì)Ca2+濃度的增加[64,65]。最新研究發(fā)現(xiàn),磷酸肌醇PI(phosphoinositide)通過胞質(zhì)Ca2+調(diào)節(jié)PHOT2介導的葉綠體運動,利用磷脂酶C抑制劑neomycin和U73122抑制了PHOT2介導的葉綠體運動[66]。PMI1可能通過Ca2+誘導肌動蛋白運動,從而調(diào)節(jié)葉綠體運動反應[67]。在藍光誘導氣孔開放的過程中,Shimazaki 等[68]利用藥理學方法證明了Ca2+參與調(diào)控藍光依賴的質(zhì)子泵和表皮氣孔的開放。此外,PKS1與鈣調(diào)素CAM4/5/7直接互作參與強藍光誘導的向光反應[69],更進一步提供了Ca2+信號參與PHOT信號轉(zhuǎn)導路徑的證據(jù)。
近20年來,人們對PHOT的結(jié)構(gòu)、光化學特性及信號轉(zhuǎn)導等進行了較深入的研究,已分離鑒定了許多信號轉(zhuǎn)導成員。但由于PHOT1和PHOT2以光強依賴方式調(diào)節(jié)眾多生理反應,且存在功能冗余。因此,PHOT介導的信號網(wǎng)絡錯綜復雜。仍有很多問題需要解決:一是除PHOT外介導的向光反應、葉綠體運動、氣孔開放、葉片伸展及定位的其它共有信號成分還未發(fā)現(xiàn);二是PHOT1和PHOT2藍光激活后向胞質(zhì)遷移與調(diào)節(jié)的生理反應之間的關系還不清楚,推測PHOT介導不同的生理反應很可能由PHOT在不同組織器官的特異表達、亞細胞定位及底物蛋白產(chǎn)生,這一假設需相關實驗證明;三是盡管已鑒定了許多向光素互作蛋白及中間信號成分,仍然還有許多新的下游信號因子需進行分離鑒定,尤其是PHOT2底物及其信號轉(zhuǎn)導通路中的許多信號成份還未知;四是向光素與鈣信號互作調(diào)控某一特定生理反應還需要實驗進一步證明。
[1] Christie JM. Phototropin blue-light receptors[J]. Annu Rev Plant Biol, 2007, 58(6):21-45.
[2] Christie JM, Salomon M, Nozue K, et al. LOV(light, oxygen, or voltage)domains of the blue-light photoreceptor phototropin(nph1):binding sites for the chromophore flavin mononucleotide[J]. Proc Natl Acad Sci USA, 1999, 96(15):8779-8783.
[3] Christie JM, Swartz TE, Bogomolni RA, et al. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function[J]. Plant J, 2002, 32(2):205-219.
[4] Kaiserli E, Sullivan S, Jones MA, et al. Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light[J]. Plant Cell, 2009, 21(10):3226-3244.
[5] Salomon M, Christie JM, Kneib E, et al. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin[J]. Biochemistry, 2000, 39(31):9401-9410.
[6] Swartz TE, Corchnoy SB, Christie JM, et al. The photocycle of a flavin-binding domain of the blue-light photoreceptor phototropin[J]. J Biol Chem, 2001, 276(39):36493-36500.
[7] Kasahara M, Swartz TE, Olney MA, et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii[J]. Plant Physiol, 2002, 129(2):762-773.
[8] Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch[J]. Science, 2003, 301(5639):1541-1544.
[9] Corchnoy SB, Swartz TE, Lewism JW, et al. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1[J]. J Biol Chem, 2003, 278(2):724-731.
[10] Sullivan S, Thomson CE, Lamont DJ, et al. In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototopin 1[J]. Mol Plant, 2008, 1(1):178-194.
[11] Cho HY, Tseng TS, Kaiserli E, et al. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis[J]. Plant Physiol, 2007, 143(1):517-529.
[12] Suetsugu N, Kong SG, Kasahara M, et al. Both LOVI and LOV2 domains of phototropin 2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana(Brassicaceae)[J]. Am J Bot, 2013, 100(1):60-69.
[13] Takayama Y, Nakasako M, Okajima K, et al. Light-induced movement of the LOV2 domain in an Asp720Asn mutant LOV2-kinase fragment of Arabidopsis phototropin 2[J]. Biochem, 2011, 50(7):1174-1183.
[14] Aihara Y, Tabata R, Suzuki T, et al. Molecular basis of the functional specificities of phototropin 1 and 2[J]. Plant J, 2008, 56(3):364-375.
[15] B?gre L, Okrész L, Henriques R, et al. Growth signalling pathways in Arabidopsis and the AGC protein kinases[J]. Trends Plant Sci, 2003, 8(9):424-431.
[16] Inoue S, Kinoshita T, Matsumoto M, et al. Blue light-induced autophosphorylation of phototropin is a primary step for signaling[J]. Proc Natl Acad Sci USA, 2008a, 105(14):5626-5631.
[17] Sakamoto K, Briggs WR. Cellular and subcellular localization of phototropin 1[J]. Plant Cell, 2002, 14(8):1723-1735.
[18] Wan YL, Eisinger W, Ehrhardt D, et al. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana[J]. Mol Plant, 2008, 1(1):103-117.
[19] Kong SG, Suetsugu N, Kikuchi S, et al. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity[J]. Plant Cell Physiol, 2013, 54(1):80-92.
[20] Kong SG, Suzuki T, Tamura K, et al. Blue light-induced association of phototropin 2 with the Golgi apparatus[J]. Plant J, 2006, 45(6):994-1005.
[21] Kong SG, Kinoshita T, Shimazaki KI, et al. The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses[J]. Plant J, 2007, 51(5):862-873.
[22] Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli[J]. Plant Cell, 1995, 7(4):473-485.
[23] Kagawa T, Sakai T, Suetsugu N, et al. Arabidopsis NPL1:A phototropin homolog controlling the chloroplast high-light avoidance response[J]. Science, 2001, 291(5511):2138-2141.
[24] Folta KM, Kaufman LS. Phototropin 1 is required for high-fluence blue-light-mediated mRNA Destabilization[J]. Plant Mol Biol, 2003, 51(4):609-618.
[25] Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue lightmediated hypocotyl growth inhibition[J]. Plant J, 2001, 26(5):471-478.
[26] Sakai T, Kagawa T, Kasahara M, et al. Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation[J]. Proc Natl Acad Sci USA, 2001, 98(12):6969-6974.
[27] Tsuboi H, Suetsugu N, Kawai TH, et al. Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris[J]. Plant Cell Physiol, 2007, 48(6):892-896.
[28] Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, et al. ABCB19/PGP19 stabilizes PIN1 in membrane microdomains in Arabidopsis[J]. Plant J, 2009, 57(1):27-44.
[29] Christie JM, Yang H, Richter GL, et al. Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism[J]. PLoS Biology, 2011, 9(6):e1001076.
[30] Takemiya A, Sugiyama N, Fujimoto H, et al. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening[J].Nature, 2013, 4:2094.
[31] Kinoshita T, Doi M, Suetsugu N, et al. Phot1 and phot2 mediate blue light regulation of stomatal opening[J]. Nature, 2001, 414(6864):656-660.
[32] Shimazaki K, Doi M, Assmann SM, et al. Light regulation of stomatal movement[J]. Annu Rev Plant Biol, 2007, 58:219-247.
[33] Demarsy E, Schepens I, Okajima K, et al. Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor[J]. EMBO J, 2012, 31(16):3457-3467.
[34] Motchoulski A, Liscum E. Arabidopsis NPH3:A NPH1 Photoreceptor-interacting protein essential for phototropism[J]. Science, 1999, 286(5441):961-964.
[35] Inada S, Ohgishi M, Mayama T, et al. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):887-896.
[36] Carbonnel MD, Davis P, Roelfsema MRG, et al. The Arabidopsis PHYTOCHROME INASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning[J]. Plant Physiol, 2010, 152(3):1391-1405.
[37] Pedmale UV, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3[J]. J Biol Chem, 2007, 282(27):19992-20001.
[38] Harada A, Takemiya A, Inoue S, et al. Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1[J]. Plant Cell Physiol, 2013, 54(1):36-47.
[39] Lariguet P, Boccalandro HE, Alonso JM, et al. A growth regulatory loop that provides homeostasis to phytochrome A signaling[J]. Plant Cell, 2003, 15(12):2966-2978.
[40] Lariguet P, Schepens I, Hodgson D, et al. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism[J]. Proc Natl Acad Sci USA, 2006, 103(26):10134-10139.
[41] Jaedicke K, Lichtenth?ler AL, Meyberg R, et al. A phytochromephototropin light signaling complex at the plasma membrane[J]. Proc Natl Acad Sci USA, 2012, 109(30):12231-12236.
[42] Tseng TS, Briggs WR. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses[J]. Plant Cell, 2010, 22(2):392-402.
[43] Knauer T, Dümmer M, Landgraf F, et al. A negative effector of blue light-induced and gravitropic bending in Arabidopsis thaliana[J]. Plant Physiol, 2011, 156(1):439-447.
[44] Sullivan S, Thomson CE, Kaiserli E, et al. Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases[J]. FEBS Lett, 2009, 583(13):2187-2193.
[45] Chen X, Lin WH, Wang Y, et al. An inositol polyphosphate 5-Phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+[J]. Plant Cell, 2008, 20(2):353-366.
[46] Kozuka T, Suetsugu N, Wada M, et al. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana[J]. Plant Cell Physiol, 2013, 54(1):69-79.
[47] Oikawa K, Kasahara M, Kiyosue T, et al. CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning[J]. Plant Cell, 2003, 15(12):2805-2815.
[48] Oikawa K, Yamasato A, Kong SG, et al. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement[J]. Plant Physiol, 2008, 148(2):829-842.
[49] Schmidt von Braun S, Schleiff E. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin[J]. Planta, 2008, 227(5):1151-1159.
[50] Suetsugu N, Yamada N, Kagawa T, et al. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2010, 107(19):8860-8865.
[51] Whippo CW, Khurana P, Davis PA, et al. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility[J]. Curr Biol, 2011, 21(1):59-64.
[52] Wen F, Wang J, Xing D. A Protein Phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(8):1366-1379.
[53] Takemiya A, Yamauchi S, Yano T, et al. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening[J]. Plant Cell Physiol, 2013, 54(1):24-35.
[54] Kodama Y, Suetsugu N, Kong SG, et al. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(45):19591-19596.
[55] ?abuz J, Sztatelman O, Bana? AK, et al. The expression of phototropins in Arabidopsis leaves:developmental and light regulation[J]. J Exp Bot, 2012, 63(4):1763-1771.
[56] Whippo CW, Hangarter RP. Phototropism:bending towards enlightenment[J]. Plant Cell, 2006, 18(5):1110-1119.
[57] Kami C, Allenbach L, Zourelidou M, et al. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expressionor reduced lateral auxin transport[J]. Plant J, 2014, 77(3):393-403.
[58] Blakeslee JJ, Bandyopadhyay A, Peer WA, et al. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses[J]. Plant Physiol, 2004, 134(1):28-31.
[59] Willige BC, Ahlers S, Zourelidou M, et al. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis[J]. Plant Cell, 2013, 25(5):1674-1688.
[60] Haga K, Sakai T. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis[J]. Plant Physiol, 2012, 160(2):763-776.
[61] Harper RM, Stowe EL, Luesse DR, et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue[J]. Plant Cell, 2000, 12(5):757-770.
[62] Stone BB, Stowe EL, Harper RM, et al. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis[J]. Mol Plant, 2008, 1(1):129-144.
[63] Sun J, Qi L, Li Y, et al. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis[J]. Plant Cell, 2013, 25(6):2102-2114.
[64] Harada A, Sakai T, Okada K. Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+differently in Arabidopsis leaves[J]. Proc Natl Acad Sci USA, 2003, 100(14):8583-8588.
[65] Harada A, Shimazaki KI. Phototropins and blue light-dependent calcium signaling in higher plants[J]. Photochem Photobiol, 2007, 83(1):102-111.
[66] Aggarwal C, ?abuz J, Gabry? H. Phosphoinositides play differential roles in regulating phototropin1-and phototropin2-mediated chloroplast movements in Arabidopsis[J]. PloS One, 2013, 8(2):e55393.
[67] DeBlasio SL, Luesse DL, Hangarter RP. A plant specific protein essential for blue-light-induced chloroplast movements[J]. Plant Physiol, 2005, 139(1):101-114.
[68] Shimazaki K, Goh CH, Kinoshita T. Involvement of intracellular Ca2+in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba[J]. Physiol Plant, 1999, 105(3):554-561.
[69] Zhao X, Wang YL, Qiao XR, et al. Phototropins function in highintensity-blue-light-induced hypocotyls phototropism in Arabidopsis by altering cytosolic calcium[J]. Plant Physiol, 2013, 162(3):1539-1551.
(責任編輯 狄艷紅)
Research Advances on Phototropin Receptor and Phototropin Signaling Mechanism in Plant
Qiao Xinrong Duan Hongbin Ye Zhaowei
(Xinyang College of Agriculture and Forestry,Xinyang 464000)
Phototropin(PHOT)is blue-light receptors found following the phytochrome and cryptochrome in plant. PHOT mediate phototropism,chloroplast movement,stomatal opening,leaf expansion and leaf positioning induced by blue-light in higher plants. Research on molecular mechanism of physiological response mediated by PHOT were highly focused in recent years. This paper reviewed research advances of structure characteristics of light sensitivity and signaling mechanism of Arabidopsis phototropin.
Phototropin Receptor Signaling
2013-10-18
喬新榮,女,博士,講師,研究方向:光生理生態(tài)及分子生物學;E-mail:xinrong806@163.com