熊長明, 王 曄, 田曉莉
(中國農(nóng)業(yè)大學(xué)作物化學(xué)控制研究中心, 植物生理學(xué)與生物化學(xué)國家重點實驗室,北京 100193)
土壤礦質(zhì)養(yǎng)分的時空波動廣泛存在,植物已進化出精細(xì)的局部和長距離調(diào)節(jié)系統(tǒng)對此做出響應(yīng),以維持體內(nèi)礦質(zhì)養(yǎng)分的穩(wěn)態(tài)。局部調(diào)節(jié)包括根毛和側(cè)根增生等根系形態(tài)結(jié)構(gòu)的變化[1-6]及一些養(yǎng)分運輸載體的誘導(dǎo)表達[7-9]。長距離調(diào)節(jié)則由根-冠調(diào)節(jié)和冠-根調(diào)節(jié)組成,根系感受到周圍介質(zhì)養(yǎng)分的波動后首先通過木質(zhì)部向地上部傳遞信號,并觸發(fā)一系列響應(yīng); 隨后地上部產(chǎn)生信號并由韌皮部向下運輸,對根系生長和養(yǎng)分吸收速率進行反饋調(diào)節(jié),使根系的吸收能力與地上部的養(yǎng)分需求得以匹配[10]。
嫁接和分根是研究礦質(zhì)養(yǎng)分長距離反饋調(diào)節(jié)的常用方法,養(yǎng)分感受和信號系統(tǒng)發(fā)生缺陷的突變體也為探明養(yǎng)分穩(wěn)態(tài)的反饋調(diào)節(jié)提供了手段。
盡管有少量相反的報道[23],但絕大多數(shù)研究證明礦質(zhì)養(yǎng)分吸收的長距離反饋調(diào)節(jié)現(xiàn)象是普遍存在的。
向部分根系供Pi,植株可能通過提高其養(yǎng)分吸收速率(與整根供Pi相比)部分或全部補償缺Pi部分根系的損失[26-27]。植株對Pi的需求通過供Pi部分根系得到滿足后,缺Pi部分根系Pi轉(zhuǎn)運蛋白的表達不再受低Pi誘導(dǎo)[28-30]。Mt4是蒺藜苜蓿根系的Pi-饑餓誘導(dǎo)基因(PSI),在分根試驗中部分根系供Pi后發(fā)生系統(tǒng)下調(diào)[31]。pho1突變體根系的木質(zhì)部Pi載入發(fā)生缺陷,地上部的Pi水平較低[31],導(dǎo)致其根系Mt4基因在充足供Pi時也不發(fā)生下調(diào)[32-33]。Grevilleacrithmifolia(銀樺)的排根起始和生長以及根系的Pi凈吸收速率也均受到系統(tǒng)反饋調(diào)節(jié)[34]。
分根試驗也廣泛用于研究缺Fe響應(yīng)的調(diào)節(jié)機制。車前草[40]、 黃瓜[41]、 擬南芥[42-43]、 番茄(Lycopersiconesculentum)[44]和木本植物小金海棠[45]等植物的部分根系處于缺Fe條件下時,可誘導(dǎo)另一部分供Fe根系的Fe(III)還原酶活性和/或質(zhì)子分泌增強。豌豆耐低鐵基因型(Santi)作為接穗可以誘導(dǎo)不耐低鐵基因型(Parafield)砧木的缺鐵響應(yīng),使其Fe(III)還原酶活性維持在較高水平[46]。擬南芥frd3突變體的木質(zhì)部Fe裝載(由Fe(III)檸檬酸鹽螯合物介導(dǎo))發(fā)生缺陷,在充足供Fe條件下葉片仍處于缺Fe狀態(tài)[47],此時根系中的缺鐵響應(yīng)也不能下調(diào)[48-50],提示來自于地上部的缺Fe信號在持續(xù)調(diào)節(jié)根系吸鐵基因的表達。
植株去頂或去葉后,發(fā)現(xiàn)根系的一些缺素響應(yīng)減弱或消失[3, 41, 51, 56], 說明根系的吸收能力依賴于地上部對缺素的響應(yīng),并受到冠-根信號的介導(dǎo)。
雖然已經(jīng)證明了地上部可以發(fā)送長距離冠-根信號調(diào)控根系的缺素響應(yīng),但地上部是在缺素條件下發(fā)出促進信號/需求信號、 還是在養(yǎng)分充足條件下發(fā)出抑制信號/供應(yīng)信號尚未得到一致的結(jié)論。
地上部控制根系缺Fe響應(yīng)的信號機制得到較多研究。Vert等(2003)曾提出擬南芥地上部調(diào)控根系Fe吸收機制的促進模型和抑制模型[43]。促進模型(the promotive model)是指在缺Fe條件下葉片產(chǎn)生促進信號傳遞至根系,誘導(dǎo)Fe吸收基因的表達,在Fe充足條件下則不產(chǎn)生信號; 抑制模型(the repressive model)是指在供Fe充足條件下地上部產(chǎn)生抑制信號,傳遞至根系后抑制Fe吸收響應(yīng),在缺Fe條件下則不產(chǎn)生信號。
Grusak和Pezeshgi(1996)將豌豆突變體dgl(正常供鐵條件下根部缺鐵響應(yīng)機制仍然處于激活狀態(tài),導(dǎo)致植株體內(nèi)的Fe 超量積累)和野生型DGV共同嫁接在野生型砧木上,發(fā)現(xiàn)充足供Fe時野生型砧木的Fe(III)還原速率也能在dgl突變體接穗的誘導(dǎo)下得到提高,他們認(rèn)為這種現(xiàn)象是由dgl突變體向下傳遞的促進信號所致[55]。Enomoto等(2007)的去葉試驗也證明地上部在缺Fe條件下向根系傳遞促進信號,他們發(fā)現(xiàn)煙草根系編碼Fe運輸載體的基因NtIRT1和編碼Fe(III)還原酶的基因NtFRO1在缺Fe條件下被誘導(dǎo),但去掉葉片3 h后它們的表達快速下降,并逐漸降低到充足供Fe下的水平[56]。
擬南芥opt3-2突變體韌皮部中的肽-Fe螯合物運輸存在缺陷[57]。García等(2012)向處于缺Fe狀態(tài)的野生型植株葉面噴施FeSO4,發(fā)現(xiàn)根系的Fe(III)還原酶活性下降數(shù)倍,吸鐵基因的表達幾乎被阻斷; 但opt3-2突變體的Fe(III)還原酶活性和吸鐵基因表達仍然維持在與缺Fe處理相當(dāng)?shù)乃?。他們?jù)此推斷,葉面施Fe后產(chǎn)生了特異的抑制信號以阻止根系的缺Fe響應(yīng),而非減弱或阻斷了地上部的促進信號向根系傳遞[58]。
Lucena等(2006)對Fe吸收反饋調(diào)節(jié)的促進模型和抑制模型進行了整合,提出地上部既可向根系發(fā)出促進信號(乙烯或促進乙烯合成的物質(zhì),如生長素或乙烯前體ACC),也可發(fā)出抑制信號(與韌皮部中的Fe有關(guān)); 根系可將兩類信號進行整合,最終決定是誘導(dǎo)還是抑制吸鐵基因的表達[59]。
分根試驗表明,缺Pi側(cè)根系PSI基因的上調(diào)受到抑制,很可能由供Pi側(cè)運輸而來的Pi介導(dǎo)[28, 32, 70]。擬南芥PHO2基因編碼一個位于葉片韌皮部的Pi轉(zhuǎn)運蛋白,pho2突變體的Pi吸收能力和根-冠轉(zhuǎn)運能力提高,導(dǎo)致地上部的Pi過量積累,暗示Pi的負(fù)反饋調(diào)節(jié)功能缺失[71]。pho1突變體根系木質(zhì)部的Pi載入發(fā)生缺陷,地上部的Pi水平較低,其根系中PSI的下調(diào)同時受到破壞[32-33]。但Pi本身可能不負(fù)責(zé)這種系統(tǒng)下調(diào),因為在蒺藜苜蓿的分根系統(tǒng)中,缺Pi部分根系Mt4的下調(diào)早于Pi濃度的上升,而且Pi流量的減少不影響系統(tǒng)抑制[32]。當(dāng)然,也可能是根系和地上部之間Pi的動態(tài)循環(huán)(而不是Pi濃度自身)為反饋調(diào)節(jié)提供了信號[35]。
充足供Fe的蓖麻植株,其葉片F(xiàn)e濃度和韌皮部中Fe復(fù)合物的水平高于缺Fe植株; 葉面供應(yīng)Fe-EDTA可降低根系的缺Fe響應(yīng)(質(zhì)子泌出和Fe(III)還原酶活性提高)。因此,韌皮部中的Fe復(fù)合物可能控制植物根系對Fe有效性的響應(yīng)[72]。擬南芥opt3-2突變可能影響韌皮部中Fe-肽螯合物的運輸[73]; 番茄chln突變導(dǎo)致煙草胺(NA,氨基羧酸類Fe螯合劑)無法合成[74],而NA可以與Fe(II)形成穩(wěn)定的復(fù)合體在韌皮部運輸[75-77]; 豌豆dgl突變體在韌皮部中不形成野生型具有的Fe-肽螯合物[78-80]。上述這些突變體根系的缺Fe響應(yīng)在供Fe條件下均比較強,據(jù)此推測與肽或NA形成復(fù)合物的Fe可能作為韌皮部信號下調(diào)根系吸Fe基因的表達。最近的葉面57Fe標(biāo)記試驗表明,突變體opt3-2、chln和dgl根系中積累的57Fe與各自的野生型相似[58],說明韌皮部中的總Fe含量不是根系缺Fe響應(yīng)的抑制信號,為上述Fe復(fù)合物作為信號物質(zhì)的推測提供了旁證。
Pitman(1972)的遮光試驗表明,K+自根系向地上部的運轉(zhuǎn)量與根系中的糖濃度有關(guān),推測地上部可能通過向根系供應(yīng)能量來反饋調(diào)節(jié)K+向地上部的運輸[81]。
糖類物質(zhì)對Pi饑餓響應(yīng)的調(diào)節(jié)得到很多研究的肯定。根中糖濃度的增加早于磷脅迫響應(yīng)基因(PSR)的誘導(dǎo)[82]。在缺Pi條件下,采用黑暗或環(huán)割處理抑制蔗糖的生物合成和轉(zhuǎn)運,使根中PSI的表達降低[83]。pho3突變體的SUC2基因(編碼一個在韌皮部表達的蔗糖運輸載體)發(fā)生缺陷,在低Pi條件下其根系的酸性磷酸酶(ACP)活性和PSI基因表達減弱[84-85]。Lei等(2011)構(gòu)建了一個SUC2基因過表達的擬南芥突變體hps1,其在Pi吸收、 轉(zhuǎn)運和根系構(gòu)型等多方面表現(xiàn)出低Pi響應(yīng)[86]。缺Pi白羽扇豆排根中的幾個PSR以依賴光合作用的方式上調(diào)[82]。外源施用糖類物質(zhì)對根系形態(tài)和Pi運輸載體等PSR有放大作用[83-89]。
有研究表明,CK可抑制Pi饑餓響應(yīng)[102],但外源CK處理不能模擬恢復(fù)供Pi的抑制效應(yīng)[70],因而對CK作為Pi長距離信號的作用提出了質(zhì)疑。
擬南芥lpr1(抗低Pi)突變體的側(cè)根形成在Pi饑餓條件下減少,而該突變體是Auxin極性運輸所需要的BIG的等位基因系[104],表明自上而下運輸?shù)腁uxin可能也與根系的Pi饑餓響應(yīng)有關(guān)。應(yīng)用野生型和Auxin響應(yīng)突變體進行的研究發(fā)現(xiàn),根系中Auxin的重新分布激發(fā)了Pi饑餓誘導(dǎo)的根系發(fā)育[105]。但其他不依賴于Auxin的信號途徑也參與了這些響應(yīng)[104]。
大量應(yīng)用突變體、 去頂(去除Auxin產(chǎn)生的主要源器官)、 環(huán)割(阻斷Auxin的向基運輸)、 添加Auxin及其極性運輸抑制劑的研究為Auxin作為系統(tǒng)信號參與缺Fe響應(yīng)提供了證據(jù)。擬南芥突變體aux1-7的生長素極性運輸有缺陷,該突變體的轉(zhuǎn)錄因子FIT及其靶標(biāo)基因Fe(III)還原酶的表達不受缺Fe誘導(dǎo)[106]。大豆缺Fe植株去掉莖頂端、 或在初生葉下方的莖部施用IAA運輸抑制劑CFM,根系的Fe(III)還原酶活性降低,恢復(fù)到與供Fe處理相當(dāng)?shù)乃絒41]。缺Fe導(dǎo)致紅三葉草根系的IAA積累和Fe(III)還原酶活性的提高,而在莖部施用IAA運輸抑制劑TIBA后根系的IAA積累減少,還原酶活性也受到顯著抑制[107]。最近Wu等(2012)的系列試驗證明,IAA自上而下的長距離運輸確實介導(dǎo)了根系的缺Fe響應(yīng),如莖環(huán)割完全抑制了根系中的IAA積累,同時阻止了根系中質(zhì)子泌出和Fe(III)還原酶活性的上調(diào); 去掉莖尖抑制了根中的質(zhì)子泌出和Fe(III)還原酶活性的上調(diào),但向去頂植株的頂端補充NAA可以恢復(fù)這兩種生理響應(yīng)[108]。
Auxin作為長距離冠-根信號調(diào)控根系缺Fe響應(yīng)也受到一些質(zhì)疑。去頂和施用CFM不能降低黃瓜缺Fe植株根系的Fe(III)還原酶活性[41],煙草去頂不影響根系中NtIRT1和NtFRO1的表達[56]。Schmidt等(2000)應(yīng)用多種突變體的研究表明,主要植物激素(包括Auxin)均未參與擬南芥的缺Fe響應(yīng)[109]。Bacaicoa等(2011)則推測,IAA調(diào)節(jié)缺Fe響應(yīng)的作用可能是次級的,而且是非必需的[110]。
在韌皮部汁液中鑒定出MicroRNAs(miRNAs)的事實,提示這類物質(zhì)具有作為長距離信號分子的潛力[111-112]。目前,幾種主要礦質(zhì)養(yǎng)分缺乏時均發(fā)現(xiàn)韌皮部中有miRNAs上調(diào)現(xiàn)象。miR395、 miR398和miR399的表達分別在S、 Cu和Pi缺乏時上調(diào)[113-116]。最近在油菜(Brassicarapus)韌皮部汁液中檢測到了miR395、 miR398和miR399,而且它們的豐度在植物分別處于S、 Cu和Pi饑餓時增加[108]。油菜缺Fe時韌皮部中的miR158b上調(diào)[117],擬南芥中也發(fā)現(xiàn)同樣的現(xiàn)象[118]。借助谷氨酰合成酶抑制劑MSX,Gifford等(2008)鑒定出一個響應(yīng)有機N的miR167/ARF8調(diào)節(jié)模型,該模型調(diào)節(jié)側(cè)根起始和伸長,使根系與有機N進行匹配[66]。miR393/AFB3(生長素受體)模型則通過調(diào)節(jié)主根和側(cè)根的生長對N作出響應(yīng)[119]。但目前還沒有直接證據(jù)表明miR167或miR393可以從地上部運輸至根系。
miR399對Pi饑餓響應(yīng)的調(diào)節(jié)得到最系統(tǒng)和廣泛的研究。miR399在缺Pi組織中特異上調(diào)[114, 120-122],直接引起一種泛素結(jié)合E2酶基因PHO2 mRNA的裂解,從而促進Pi吸收和向地上部的運輸。過表達miR399的擬南芥和水稻在地上部過量積累Pi,在充足供Pi條件下出現(xiàn)Pi中毒現(xiàn)象[120, 124]。由于在油菜和南瓜的韌皮部汁液中也檢測到miR399[123, 126],因此推測長距離信號系統(tǒng)在不同植物種類中可能是保守的。采用嵌合基因(啟動子-報告基因)的分析表明,miR399和PHO2主要在維管組織中表達[121]。嫁接研究證明,野生型與過表達miR399的擬南芥或煙草互相嫁接,接穗中的miR399能通過嫁接位點向野生型砧木移動并抑制砧木中PHO2的表達,從而激活Pi的吸收和運輸[123, 127]。著生菌根的苜蓿植株,其葉片中成熟miR399及其前體含量均高于無菌根植株[125],并且部分成熟miR399可被轉(zhuǎn)運至菌根中組成miR399-PHO2 信號途徑。
由于miR399既可以在地上部表達、 也可以在根系表達,它在冠-根之間移動的生物學(xué)意義曾受到質(zhì)疑。但時間動態(tài)分析表明,Pi缺乏條件下miR399在地上部的表達早于根系,因此它的系統(tǒng)移動確實屬于Pi缺乏的早期響應(yīng)[127]。
地上部產(chǎn)生的系統(tǒng)反饋信號需要由根系感受器接收,然后引發(fā)一系列生理生化反應(yīng)乃至根系形態(tài)變化對養(yǎng)分缺乏作出響應(yīng)。但反饋信號的調(diào)控靶標(biāo)、 相關(guān)調(diào)控網(wǎng)絡(luò)的上、 下游組分研究總體上比較薄弱,目前僅有一些初步進展。
上文提到的PHO2被鑒定為miR399的下游靶標(biāo)[121-122]。Pi缺乏條件下,miR399的上調(diào)抑制了PHO2的表達,解除了PHO2對Pi吸收的抑制。pho2突變體的Pi吸收和運輸受到促進,導(dǎo)致地上部過量積累Pi出現(xiàn)Pi中毒現(xiàn)象[71, 121]。已知miR399 在Pi饑餓信號途徑中的上游元件可能為轉(zhuǎn)錄因子PHR1[122],同為反饋信號的蔗糖也位于miR399 的上游[128]。PHO2的下游分子元件尚不清楚,推測泛素介導(dǎo)的蛋白質(zhì)水解或功能修飾可能參與其中[13]。
至今,人們對養(yǎng)分長距離反饋調(diào)節(jié)機制的了解還很有限。已知的養(yǎng)分/代謝物信號是直接調(diào)控根系吸收能力還是通過激發(fā)其他次級信號發(fā)揮調(diào)節(jié)作用尚不可知。此外,筆者推測抑制信號和促進信號共存比較接近反饋調(diào)節(jié)的本質(zhì),但目前缺乏足夠的試驗證據(jù)。
因此,鑒定潛在的長距離信號物質(zhì)、 揭示其作用模式仍然是養(yǎng)分吸收反饋調(diào)節(jié)領(lǐng)域需要面對的長期挑戰(zhàn),應(yīng)用養(yǎng)分感受或信號傳導(dǎo)途徑發(fā)生缺陷的突變體有望加快這方面的進展。另外,反饋信號的產(chǎn)生部位、 運輸機制、 作用靶標(biāo)及此后的調(diào)控網(wǎng)絡(luò)都是該領(lǐng)域未來的研究重點。
參考文獻:
[1] Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley[J]. New Phytologist, 1975, 75(3): 479-490.
[2] Zhang H, Jennings A, Barlow P Wetal. Dual pathways for regulation of root branching by nitrate[J]. Proceedings of the National Academy of Science of the United States of America, 1999, 96(11): 6529-6534.
[3] Ruffel S, Krouk G, Ristova Detal. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand[J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(45): 18524-18529.
[4] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423-447.
[5] Lynch J P. Root phenes for enhanced soil exploration and phosphorus aiquisition: tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041-1049.
[6] Peret B, Clement M, Nussaume Letal. Root developmental adaptation to phosphate starvation: better safe than sorry[J]. Trends in Plant Science, 2011, 16(8): 442-450.
[7] Zhuo D, Okamoto M, Vidmar J Jetal. Regulation of a putative high-affinity nitrate transporter (Nrt2; 1At) in roots ofArabidopsisthaliana[J]. Plant Journal, 1999, 17(5): 563-568.
[9] Rouached H, Wirtz M, Alary Retal. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis[J]. Plant Physiology, 2008, 147(2): 897-911.
[10] Lough T J, Lucas W J. Integrative plant biology: Role of phloem long-distance macromolecular trafficking[J]. Annual Review of Plant Biology, 2006, 57: 203-232.
[11] Girin T, EI-Kafafi E S, Widiez Tetal. Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant[J]. Plant Physiology, 2010, 153(3): 1250-1260.
[12] Ho C H, Lin S H, Hu H Cetal. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138: 1184-1194.
[13] Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62: 185-206.
[14] Liu L L, Ren H M, Chen L Qetal. A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis[J]. Plant Physiology, 2013, 161(1): 266-277.
[15] Remans T, Nacry P, Pervent Metal. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Science of the United States of America, 2006, 103(50): 19206-19211.
[16] Gojon A, Krouk G, Perrine-Walker Fetal. Nitrate transceptor(s) in plants[J]. Journal of Experimental Botany, 2011, 62(7): 2299-2308.
[17] Krouk G, Lacombe B, Bielach Aetal. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Developmental Cell, 2010, 18(6): 927-937.
[18] Schmidt W. Iron solutions: acquisition strategies and signaling pathways in plants[J]. Trends in Plant Science, 2003, 8(4): 188-193.
[19] Desnos T. Root branching responses to phosphate and nitrate[J]. Current Opinion in Plant Biology, 2008, 11(1): 82-87.
[20] Hermans C, Hammond J P, White P Jetal. How do plants respond to nutrient shortage by biomass allocation[J]. Trends in Plant Science, 2006, 11(12): 610-617.
[21] Gojon A, Nacry P, Davidian J C. Root uptake regulation: A central process for NPS homeostasis in plants[J]. Current Opinion in Plant Biology, 2009, 12(3): 328-338.
[22] Liu T Y, Chang C Y, Lin T J. The long-distance signaling of mineral macro-nutrients[J]. Current Opinion in Plant Biology, 2009, 12(3): 312-319.
[23] Martinez-Cordero M A, Martinez V, Rubio F. High-affinity K+uptake in pepper plants[J]. Journal of Experimental Botany, 2005, 56(416): 1553-1562.
[24] Ruffel S, Freixes S, Balzergue Setal. Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source inMedicagotruncatula[J]. Plant Physiology, 2008, 146(4): 2020-2035.
[26] Drew M C, Saker L R. Nutrient supply and the growth of the seminal root system in barley. II. Compensatory increases in growth of lateral roots and in tates of phosphate uptake in response to a localized supply of phosphate[J]. Journal of Experimental Botany, 1978, 29(2): 435-451.
[27] Lefebvre D D, Glass A D M. Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction of influx with provision of orthophosphate[J]. Physiologia Plantarum, 1982, 54(2): 199-206.
[28] Liu C, Muchhal U S, Uthappa Metal. Tomato phosphate transporter gene are differentially regulated in plant tissues by phosphorus[J]. Plant Physiology, 1998, 116(1): 91-99.
[29] Chiou T-J, Liu H, Harrison M J. The spatial expression patterns of a phosphate transporter (MtPT1) fromMedicagotruncatulaindicate a role in phosphate transport at the root/soil interface[J]. Plant Journal, 2001, 25(3): 281-293.
[30] Smith F W, Mudge S R, Rae A Letal. Phosphate transport in plants[J]. Plant and Soil, 2003, 248(1-2): 71-83.
[31] Poirier Y, Thoma S, Somerville Cetal. A mutant of Arabidopsis deficient in xylem loading of phosphate[J]. Plant Physiology, 1991, 97(3): 1087-1093.
[32] Burleigh S H, Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots[J]. Plant Physiology, 1999, 119(1): 241-248.
[33] Martin A C, del Pozo J, Iglesias Jetal. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant Journal, 2000, 24(5): 559-567.
[34] Shane M W, Lambers H. Systemic suppression of cluster-root formation and net P-uptake rates inGrevilleacrithmifoliaat elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’[J]. Journal of Experimental Botany, 2006, 57(2): 413-423.
[35] Drew M C, Saker L R. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation[J]. Planta, 1984, 160(6): 500-507.
[36] Drew M C, Webb J, Saker L R. Regulation of K+uptake and transport to the xylem in barley roots: K+distribution determined by probe X-ray microanalysis of frozen-hydrated cells[J]. Journal of Experimental Botany, 1990, 41(7): 815-825.
[37] Engels C, Marschner H. Root to shoot translocation of macronutrient in relation to shoot demand in maize (ZeamaysL.) grown at different root zone temperatures[J]. Journal of Plant Nutrition and Soil Science, 1992, 155(2): 121-128.
[38] Li B, Wang Y, Zhang Z Yetal. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency[J]. Journal of Plant Physiology, 2012, 169(4): 327-335.
[39] 王曄, 田曉莉. 棉花幼苗鉀吸收的系統(tǒng)反饋調(diào)節(jié)初步研究[J]. 作物學(xué)報, 2013, 39(10): 1843-1848.
Wang Y, Tian X L. Systematic feedback regulation of K+uptake in cotton at seedling stage[J]. Acta Agronomica Sinica, 2013, 39(10): 1843-1848.
[40] Schmidt W, Boomgaarden B, Ahrens V. Reduction of root iron inPlantagolanceolataduring recovery from Fe deficiency[J]. Physiologia Plantarum, 1996, 98(3): 587-593.
[41] Li C, Zhu X, Zhang F. Role of shoot in regulation of iron deficiency responses in cucumber and bean plants[J]. Journal of Plant Nutrition, 2000, 23(11-12): 1809-1818.
[42] Schikora A, Schmidt W. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability[J]. Plant Physiology, 2001, 125(4): 1679-1687.
[43] Vert G A, Briat J F, Curie C. Dual regulation of theArabidopsishigh-affinity root iron uptake system by local and long-distance signals[J]. Plant Physiology, 2003, 132(2): 796-804.
[44] Schmidt W, Michalke W, Schikora A. Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in thizodermal cells[J]. Plant Cell and Environment, 2003, 26(3): 361-370.
[45] Wu T, Zhang H, Wang Yetal. Induction of root Fe (Ⅲ) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malusxiaojinensis[J]. Journal of Experimental Botany, 2012, 63(2): 859-870.
[46] Kabir A H, Paltridge N G, Roessner Uetal. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots ofPisumsativum[J]. Physiologia Plantarum, 2012, 147(3): 381-395.
[47] Durrett T P, Gassmann W, Rogers E E. The FRD3-mediated efflux of citrate into the root vasculature is neessary for efficient iron translocation[J]. Plant Physiology, 2007, l44(1): 197-205.
[48] Delhaize E. A metal-accumulator mutant ofArabidopsisthaliana[J]. Plant Physiology, 1996, 111(3): 849-855.
[49] Yi Y, Guerinot M L. Genetic evidence that induction of root Fe (Ⅲ) chelate raductase activity is necessary for iron uptake under iron deficiency[J]. Plant Journal, 1996, 10(5): 835-844.
[50] Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. Plant Cell, 2002, 14(8): 1787-1799.
[51] Landsberg E C. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species[J]. Journal of Plant Nutrition, 198l, 3(1-4): 579-591.
[52] Lappartient A G, Vidmar J J, Leustek Tetal. Touraine B. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. Plant Journal, 1999, 18(1): 89-95.
[53] Jeudy C, Ruffel S, Freixes Setal. Adaptation ofMedicagotruncatulato nitrogen limitation is modulated via local and systemic nodle developmental responses[J]. New Phytologist, 2010, 185(3): 817-828.
[54] Miller A J, Fan X, Shen Qetal. Amino acids and nitrate as signals for the regulation of nitrogen acquisition[J]. Journal of Experimental Botany, 2008, 59(1): 111-119.
[55] Grusak M A, Pezeshgi S. Shoot-to-root signal transmission regulates root Fe (Ⅲ) reductaseactivity in thedglmutant of pea[J]. Plant Physiology, 1996, 110(1): 329-334.
[56] Enomoto Y, Hodoshima H, Shimada Hetal. Long-distance signals positively regulate the expression of iron uptake genes in tobacco roots[J]. Planta, 2007, 227(1): 81-89.
[57] Stacey M G, Patel A, McClain W Eetal. TheArabidopsisAtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds[J]. Plant Physiology, 2008, 146(2): 589-601.
[58] Garcia M J, Romera F J, Stacey M Getal. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants[J]. Planta, 2012, 237(1): 65-75.
[59] Lucena C, Waters B M, Romera F Jetal. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affectingFER(orFER-like) gene activity[J]. Journal of Experimental Botany, 2006, 57(15): 4145-4154.
[60] Cooper H D, Clarkson D T. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals? Possible mechanism integrating shoot and root in the regulation of nutrient uptake[J]. Journal of Experimental Botany, 1989, 40(7): 753-762.
[61] Imsande J, Touraine B. N demand and the regulation of nitrate uptake[J]. Plant Physiology, 1994, 105(1): 3-7.
[62] Miller A J, Fan X, Orsel Metal. Nitrate transport and signaling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.
[64] Forde B G. Nitrate transporters in plants: structure, function and regulation[J]. Biochimica et Biophysica Acta-Biomembranes, 2000, 1465(1-2): 219-235.
[65] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signaling[J]. Journal of Experimental Botany, 2007, 58(9): 2339-2358.
[66] Gifford M L, Dean A, Gutierrez R Aetal. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proceedings of the National Academy of Science of the United States of America, 2008, 105(2): 803-808.
[67] Beuve N, Rispail N, Laine Petal. Putative role of r-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake inBrassicanapusL[J]. Plant Cell and Environment, 2004, 27: 1035-1046.
[68] Kinnersley A M, Lin F. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants[J]. Plant Growth Regulation, 2000, 32(1): 65-76.
[69] Forde B G. Local and long-range signaling pathways regulating plant responses to nitrate[J]. Annual Review of Plant Biology, 2002, 53: 203-224
[70] Franco-Zorrilla J M, Martin A C, Leyva Aetal. Interaction between phosphate-starvation, sugar and cytokinin signaling in Arabidopsis and the role of cytokinin receptors CRE1/AHK4 and AHK3[J]. Plant Physiology, 2005, 138(2): 847-857.
[71] Delhaize E, Randall P. Characterization of a phosphate-accumulator mutant ofArabidopsisthaliana[J]. Plant Physiology, 1995, 107(1): 207-213.
[72] Maas F M, van de Wetering D A, van Beusichem M Letal. Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions[J]. Plant Physiology, 1988, 87(1): 167-171.
[73] Stacey M G, Patel A, McClain W Eetal. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds[J]. Plant Physiology, 2008, 146(2): 589-601.
[74] Ling H Q, Koch G, Baumleiin Hetal. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase[J]. Proceedings of the National Academy of Science of the United States of America, 1999, 96(12): 7098-7103.
[75] von Wiren N, Klair S, Bansal Setal. Nicotianamine chelates both Fe (Ⅲ) and Fe (Ⅱ). Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3): 1107-1114.
[76] Pich A, Manteuffel R, Hillmer Setal. Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration[J]. Planta, 2001, 213(6): 967-976.
[77] Koike S, Inoue H, Mizuno Detal. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. Plant Journal, 2004, 39(3): 415-424.
[78] Gottschalk W G. Improvement of the selection value of genedglthrough recombination[J]. Pisum Newslett, 1987, 19: 9-11.
[79] Marentes E, Stephens B W, Grusak M A. Characterization of a phloem mobile chelator involved in the phloem transport of iron from vegetative tissues to developing seeds of pea[C]. Iron Nutrition and Interactions in Plants Symposium, 1997.
[80] Marentes E, Grusak M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (PisumsstivumL.)[J]. Seed Science Research, 1998, 8(3): 367-375.
[81] Pitman M G. Uptake and transport of ions in barley seedlings. Ⅲ.Correlation between transport to the shoot and relactive growth rate[J]. Australian Journal of Biological Sciences, 1972, 25(5): 905-920.
[82] Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation[J]. Journal of Experimental Botany, 2008, 59(1): 93-109.
[83] Liu J, Samac D A, Bucciarelli Betal. Signaling of phosphorus dificiency-induced gene expression in white lupin requires sugar and phloem transport[J]. Plant Journal, 2005, 41(2): 257-268.
[84] Zakhleniuk O V, Raines C A, Lioyd J C. Pho3: a phosphorus deficient mutant ofArabidopsisthaliana(L.) Heynh[J]. Planta, 2001, 212(4): 529-534.
[85] Lioyd J C, Zakhleniuk O V. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of theArabidopsismutant,pho3[J]. Journal of Experimental Botany, 2004, 55(400): 1221-1230.
[86] Lei M, Liu Y, Zhang Betal. Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis[J]. Plant Physiology, 2011, 156(3): 1116-1130.
[87] Muller R, Morant M, Jarmer Hetal. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism[J]. Plant Physiology, 2007, 143(1): 156-171.
[88] Zhou K, Yamagishi M, Osaki Metal. Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin[J]. Journal of Experimental Botany, 2008, 59(10): 2749-2756.
[89] Zinn K E, Liu J, Allan D Letal. White lupin (Lupinusalbus) response to phosphorus stress: evidence for complex regulation of LaSAP1[J]. Plant and Soil, 2009, 322(1-2): 1-15.
[90] Lejay L, Gansel X, Cerezo Metal. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase[J]. Plant Cell, 2003, 15(9): 2218-2232.
[91] Lejay L, Wirth J, Pervent Metal. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis[J]. Plant Physiology, 2008, 146(4): 2036-2053.
[92] Takei K, Sakakibara H, Taniguchi Metal. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant and Cell Physiology, 2001, 42(1): 85-93.
[94] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development[J]. Trends in Plant Science, 2006, 11(9): 440-448.
[95] Kiba T, Kudo T, Kojima Metal. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2011, 62(4): 1399-1409.
[96] Rubio V, Bustos R, Irigoyen M Letal. Plant hormones and nutrient signaling[J]. Plant Molecular Biology, 2009, 69(4): 361-373.
[97] Krouk G, Ruffel S, Gutierrez R Aetal. A framework integrating plant growth with hormones and nutrients[J]. Trends in Plant Science, 2011, 16(4): 178-182.
[98] Werner T, Motyka V, Laucou Vetal. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant and Cell, 2003, 15(11): 2532-2550.
[99] Higuchi M, Pischke M S, Mahonen A Petal. In planta functions of theArabidopsiscytokinin receptor family[J]. Proceedings of the National Academy of Science of the United States of America, 2004, 101(23): 8821-8826.
[100] Miyawaki K, Tarkowski P, Matsumoto-Kitano Metal. Roles of Arabidopsis ATP/ADP isopentenyltransperases and tRNA isopentenyltransferases in cytokinin biosynthesis[J]. Proceedings of the National Academy of Science of the United States of America, 2006, 103(44): 16598-16603.
[101] Laplaze L, Benkova E, Casimiro Ietal. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J]. Plant Cell, 2007, 19(12): 3889-3900.
[102] Wang X, Yi K, Tao Yetal. Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level[J]. Plant Cell and Environment, 2006, 29(10): 1924-1935.
[103] Walch-Liu P, Ivanov I I, Filleur Setal. Nitrogen regulation of root branching[J]. Annals of Botany, 2006, 97(5): 875-881.
[104] Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon Letal. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation[J]. Plant Physiology, 2005, 137(2): 681-691.
[105] Nacry P, Canivenc G, Muller Betal. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis[J]. Plant Physiology, 2005, 138(4): 2061-2074.
[106] Chen W W, Yang J L, Qin Cetal. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis[J]. Plant Physiology, 2010, 154(2): 810-819.
[107] Jin C W, He X X, Zheng S J. The iron-deficiency induced phenolics accumulation may involve in regulation of Fe (Ⅲ) chelate reductase in red clover[J]. Plant Signaling and Behavior, 2007, 2(5): 327-332.
[108] Wu T, Zhang H, Wang Yetal. Induction of root Fe (Ⅲ) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling inMalusxiaojinensis[J]. Journal of Experimental Botany, 2012, 63(2): 859-870.
[109] Schmidt W, Tittel J, Schikira A. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots[J]. Plant Physiology, 2000, 122(4): 1109-1118.
[110] Bacaicoa E, Mora V, Zamarreno A Metal. Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants[J]. Plant Physiology and Biochemistry, 2011, 49(5): 545-556.
[111] Buhtz A, Springer F, Chappell Letal. Identification and characterization of small RNAs from the phloem ofBrassicanapus[J]. Plant Journal, 2008, 53(5): 739-749.
[112] Kehr J, Buhtz A. Long distance transport and movement of RNA through the phloem[J]. Journal of Experimental Botany, 2008, 59(1): 85-92.
[113] Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-99.
[114] Chiou T J, Aung K, Lin S Ietal. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 18(2): 412-421.
[115] Chiou T J. The role of microRNAs in sensing nutrient stress[J]. Plant Cell and Environment, 2007, 30(3): 323-332.
[116] Yamasaki H, Abdel-Ghany S E, Cohu C Metal. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(22): 16369-16378.
[117] Buhtz A. Pieritz J, Springer Fetal. Phloem small RNAs, nutrient stress responses, and systemic mobility[J]. BMC Plant Biology, 2010, 10(1): 1-13.
[118] Kong W W, Yang Z M. Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis[J]. Plant Physiology and Biochemistry, 2010, 48(2-3): 153-159.
[119] Vidal E A, Araus V, Lu Cetal. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture inArabidopsisthaliana[J]. Proceedings of the National Academy of Science of the United States of America, 2010, 107(9): 4477-4482.
[120] Fujii H, Chiou T J, Lin S Ietal. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Current Biology, 2005, 15(22): 2038-2043.
[121] Aung K, Lin S I, Wu C Cetal.Pho2, a phosphate overaccumlator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology, 2006, 141(3): 1000-1011.
[122] Bari R, Pant B D, Stitt Metal. PHO2, MicroRNA399,and PHR1define a phosphate signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988-999.
[123] Pant B D, Buhtz A, Kehr Jetal. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant Journal, 2008, 53(5): 731-738.
[124] Wang X, Wang Y, Tian Jetal.Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J]. Plant Physiology, 2009, 151(1): 233-240.
[125] Branscheid A, Sieh D, Pant B Detal. Expression pattern suggests a role of miRNA399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis[J]. Molecular Plant Microbe Interactions, 2010, 23(7): 915-926.
[126] Buhtz A, Springer F, Chappell Letal. Identification and characterization of small RNAs from the phloem ofBrassicanapus[J]. Plant Journal, 2008, 53(5): 739-749
[127] Lin S I, Chiang S F, Lin W Yetal. Regulatory network of microRNA399 andPHO2 by systemic signaling[J]. Plant Physiology, 2008, 147(2): 732-746.
[128] Liu J Q, Allan D L, Vance C P. Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399[J]. Molecular Plant, 2010, 3(2): 428-437.
[129] Li W, Wang Y, Okamoto Metal. Dissection of theAtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143(1): 425-433.
[130] Girin T, Lejay L, Wirth Jetal. Identification of a 150 bpcis-acting element of theAtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant[J]. Plant Cell and Environment, 2007, 30(11): 1366-1380.