• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer’s disease mice

    2014-04-06 11:31:02JingLiuYuxinMaSuminTianLiZhangMengmengZhaoYaqiongZhangDachuanXu

    Jing Liu, Yuxin Ma, Sumin Tian, Li Zhang, Mengmeng Zhao, Yaqiong Zhang, Dachuan Xu

    1 Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China

    2 Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China

    T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer’s disease mice

    Jing Liu1,2, Yuxin Ma2, Sumin Tian2, Li Zhang2, Mengmeng Zhao2, Yaqiong Zhang2, Dachuan Xu1

    1 Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China

    2 Department of Human Anatomy, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China

    Alzheimer’s disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunode fi ciency to establish an animal model of Alzheimer’s disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was signi fi cantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-γ) and hippocampal microglia-related cytokines (interleukin-1β, tumor necrosis factor-α) correlated with the number of regenerated neural progenitor cells in the hippocampus.ese results indicate that T cells promote hippocampal neurogenesis in Alzheimer’s disease and T-cell immunode fi ciency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer’s disease mice. Our fi ndings provide an experimental basis for understanding the role of T cells in Alzheimer’s disease.

    nerve regeneration; neurodegeneration; Alzheimer’s disease; beta-amyloid 1-42 peptide; neuronal precursors; mice; microglia; interleukin-2; interferon-gamma; interleukin-1β; tumor necrosis factor-α; microtubule associated protein; NSFC grant; neural regeneration

    Funding:This study was supported by the National Natural Science Foundation of China, No. 30840073; the Medical Science Foundation of Guangdong Province, No. A2012298.

    Liu J, Ma YX, Tian SM, Zhang L, Zhao MM, Zhang YQ, Xu DC. T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer’s disease mice. Neural Regen Res. 2014;9(16):1541-1547.

    Introduction

    Alzheimer’s disease (AD), a degenerative disease of the central nervous system, is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and a reduction in the number of neurons in the cerebral cortex and hippocampus. The clinical manifestations for AD include loss of memory, and cognitive and behavioral disorders (Finder, 2010). AD is the most common type of dementia, but its etiology and pathogenesis remain unclear. At present, AD is considered a complex pathological process involving several factors. The amyloid cascade hypothesis, or amyloid-beta (Aβ) toxicity hypothesis, has dominated research for decades, and postulates that the deposition of Aβ peptide in the brain is a central event in AD (Honjo et al., 2012). Although AD is not recognized as a classic immune response-mediated disease, growing evidence highlights the immunological mechanisms closely involved in the occurrence and development of AD (Schroeter et al., 2008; Tabira, 2010). According to the immune hypothesis of AD pathogenesis, when immune dysfunction occurs, Aβ metabolism is disrupted. Subsequently, inflammatory and neurotoxic cascade reactions occur, leading to synaptic damage, and neuronal degeneration and death in the brain, ultimately inducing AD (Chopra et al., 2011).

    As the mechanism underlying neuronal death in AD has been investigated, researchers have begun to focus on the opposite aspect, newborn neurons, in AD pathogenesis (Donovan et al., 2006; Zhang et al., 2007; Yu et al., 2009; Biscaro et al., 2012). The precursor cells in the subventricular zone of the brain have the ability to regenerate (Alvare-Buylla et al., 2004). In adults, neurogenesis provides a specific mechanism for plasticity of the nervous system (Lazarov et al., 2010). AD pathology studies have revealed that damage to the regions where adult neural cells form (subventricular zone and subgranular zone) leads to a dysfunction in neuronal regeneration; if the dead neurons cannot be replaced by new neurons in time, memory and cognitive disorders will inevitably occur (Demars et al., 2010). AD pathogenesis is closely associated with disorders of neuronal regeneration in the brain, and the effect of immunological mechanisms on neuronal regeneration has become a focus of current AD research. Patients with AD have a signi fi cantly higher num-ber of T cells in the brain than healthy people. Immune cells cross the blood-brain barrier and enter the brain, participating in its physiological and pathological functions (Togo et al., 2002; Cao et al., 2009; Monsonego et al., 2013). Additionally, immune cells are shown to maintain nerve cell regeneration function (Ziv et al., 2008). Central-speci fi c T cells play an important role in the maintenance of adult learning and memory capacity, and a deficiency of T cells leads to severe impairments in spatial learning and memory in adult rats (Ziv et al., 2006). We hypothesize that, in AD pathology, T cells are involved in the maintenance of nervous system plasticity, which is also related to neuron regeneration. To our knowledge, no studies have examined the correlation between T cells and neuronal regeneration in the brain. Therefore, the aim of the present study was to investigate the role of T cells in hippocampal neurogenesis in AD pathogenesis, and the underlying molecular mechanisms, in an effort to reveal the contribution of T cells in neuronal regeneration, using immunohistochemistry and quantitative PCR techniques.

    Materials and Methods

    Animals

    Twelve BALB/c wild-type (WT) mice and 12 BALB/c-nude mice, all specific pathogen free, with T lymphocyte deficiency were provided by Guangdong Medical Laboratory Animal Center, China (license No. SCXK (Yue) 2008-0002). The mice were all male, aged 8 weeks, weighing 20-28 g, and housed for 1 week prior to experimentation. Experimental procedures were in accordance with the Guidelines of the Use of Experimental Animals, issued by the Ministry of Science in China.

    Animal grouping

    The mice were randomly divided into an experimental group and a control group (n= 6 per group). In experimental group I (WT + Aβ) and experimental group II (nude + Aβ), oligomeric state Aβ1-42was injected bilaterally into the hippocampal CA1 region, to establish a model of AD. In control group I (WT + NS) and control group II (nude + NS), mice received equivalent volumes of normal saline instead of Aβ1-42.

    On day 7 after modeling, peripheral blood samples collected from the mice were harvested for quantitative PCR detection of interleukin-2 (IL-2) and interferon-γ (IFN-γ) expression. The mouse brain was divided symmetrically along the midline.e lehemisphere was used for immunohistochemistry of hippocampal neuronal regeneration, and the right for quantitative PCR assay of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression in hippocampal tissue.

    Establishment of AD models using hippocampal injection of Aβ1-42

    To prepare oligomeric state Aβ1-42, freeze-dried Aβ1-42powder (500 μg; AnaSpec, San Jose, CA, USA) was dissolved in 100 μL of 1% NH4OH solution for a stock solution at a concentration of 500 μg/100 μL, which was then aliquoted (50 μg/10 μL) and stored at -20°C. At the time of experimentation, an aliquot was thawed and 15 μL normal saline was added to prepare the working solution (2 μg/μL, 50 μg/25 μL), which was incubated at 37°C for 24 hours. This allowed aggregation of Aβ1-42to toxic oligomeric Aβ (Dahlgren et al., 2002).

    Mice were anesthetized by intraperitoneal injection of 0.4% sodium pentobarbital at a dose of 0.2 mL/10 g body weight. The heads were fixed onto a stereotaxic frame, and then the skull was drilled to create a hole at 2.3 mm posterior to bregma and 1.8 mm lateral to the midline, to 1.0 mm depth. A 25 μL microsyringe was inserted 2.0 mm into the brain, and 2 μL Aβ1-42working solution (experimental groups I and II) or saline (control groups I and II) was slowly (0.4 μL/minute) injected bilaterally into the hippocampal CA1viamicropipette (KDS Model 310 Plus, KD Scientific Holliston, MA, USA). The needles were maintained in place for 5 minutes and then slowly withdrawn to prevent leakage.e skin was sutured and disinfected with alcohol, followed by intramuscular injections of sodium penicillin (40,000 units) for 3 consecutive days. For the remainder of the experiment, mice were housed in speci fi c-pathogen-free cages.

    Harvesting the specimens

    The brain tissue was harvested 7 days after injection. In brief, mice were anesthetized with 0.4% sodium pentobarbitalviaintraperitoneal injection, and 1 mL cardiac blood was collected and placed into a tube containing the anticoagulant EDTA.e sample was stored at -20°C for gene expression analysis. Aer the blood sample was collected, the mice were quickly decapitated, and the brain was removed and cut in two along the middle.e lehemisphere was fixed in 4% paraformaldehyde and embedded in paraffin for the detection of hippocampal neuronal regeneration. The right hippocampus was removed and preserved in pre-cooling preservation tubes, then frozen in liquid nitrogen and stored at -80°C for the detection of microglial cytokine expression.

    Immunohistochemistry of doublecortin (DCX) expression in hippocampal neurons

    Fluorescence quantitative PCR detection of mRNA expression in peripheral blood and hippocampus of mice

    Specific primers in the coding region were designed using Primer Express v2.0 software (Applied Biosystems, Foster, CA, USA) according to the target gene mRNA sequences in GenBank.e primers were synthesized using the ABI 3900 High-roughput DNA synthesizer (Applied Biosystems).

    Primer sequences and product sizes are as follows:

    Primer Sequence Product size (bp) IL-2 5′-GCA CCT GGA GCA GCT GTT G-3′5′-AGG TTC CTG TAA TTC TCC ATC CTG-3′66 IFN-γ 5′-CAA GTT TGA GGT CAA CAA CCC A-3′5′-GCT GGA TTC CGG CAA CAG-3′105 IL-1β 5′-TGC CAC CTT TTG ACA GTG AT-3′5′-GCT CTT GTT GAT GTG CTG CT-3′146 TNF-α5′-CCC CAA AGG GAT GAG AAG TTC-3′5′-GGC TTG TCA CTC GAA TTT TGA GA-3′101 β-Actin 5′-ATG GTG GGA ATG GGT CAG AA-3′5′-TCT CCA TGT CGT CCC AGT TG-3′121

    Statistical analysis

    Data were analyzed using SPSS 16.0 statistical soware (SPSS, Chicago, IL, USA) and expressed as mean ± SD. Groups were compared using one-way analysis of variance followed by the least signi fi cant di ff erence tests. Statistical signi fi cance was set atP< 0.05.

    Results

    Neuronal regeneration in the hippocampus of AD mice

    The mice were injected with Aβ1-42peptide or normal saline for 7 days, and neuronal regeneration in the hippocampus was examined using DCX immunohistochemistry (Figure 1). Under a high magni fi cation microscope, DCX-immunopositive cells were stained brown or yellow, with unilateral radial fi lament-like projections. The results revealed signi fi cant differences in DCX expression between the groups (F= 460.707,P< 0.01). In the WT groups (Figure 1A, C), the number of positive cells was signi fi cantly higher than that in the nude groups (Figure 1B, D). DCX expression was the highest in the WT + NS group, then in the WT + Aβ group, nude + NS group, and the lowest in the nude + Aβ group. Statistical analysis showed that the WT groups had a signi fi cantly higher number of DCX-positive cells than the nude groups (P< 0.01), and that nude + Aβ mice had a higher expression of DCS than nude + NS mice (P< 0.01; Figure 2).e fi ndings con fi rm that injection of Aβ1-42peptide inhibits the regeneration of hippocampal neurons. Furthermore, they indicate that T cells promote hippocampal neuron regeneration, and that such regeneration does not notably occur without T cells.

    IL-2 and IFN-γ expression in peripheral blood of AD mice

    To explore the correlation between hippocampal neuronal regeneration and T cell-associated cytokine expression in AD mice, we measured the expression of cytokines in peripheral blood using quantitative PCR 7 days aer modeling. A significant difference in IL-2 gene expression was found (F= 120.109,P< 0.01). IL-2 expression in the WT mice was significantly higher than that in nude mice (P< 0.01; Figure 3A). The results of IL-2 expression were consistent with those of DCX expression in each group, suggesting that IL-2 expression might be related to neuronal regeneration. Signi fi cant di ff erences in IFN-γ expression were also found among the groups (F= 55.663,P< 0.01). IFN-γ expression was greatest in the WT + NS group, and signi fi cantly lower in the WT + Aβ and nude + NS groups (P< 0.01; Figure 3B).ese results indicate that intrahippocampal injection of Aβ1-42 inhibited the expression of IFN-γ in BALB/c-WT mice, and that the BALB/c-nude genotype was associated with lower expression of IFN-γ.

    IL1-β and TNF-α gene expression in the hippocampus of AD mice

    To further explore the possible mechanism of T cells on neuronal regeneration in AD mouse models, we used quantitative PCR to measure the expression of microglial cytokines in the hippocampus 7 days aer modeling (Figure 4). Significant di ff erences in IL-1β gene expression were found among the groups (F= 1217.713,P< 0.01). Expression levels of IL-1β and TNF-α in wild-type mice were higher than those in nude mice (P< 0.01).e highest level of IL-1β and TNF-α expression was found in the WT + Aβ group, suggesting that hippocampal injection of Aβ peptides may producesome toxicity, and that WT mice with normal immune function react more severely to Aβ peptide (and produced more cytokines) than nude mice with T-cell immunodeficiency, which respond weakly to Aβ peptide, producing fewer reactive cytokines.

    Figure 1 Immunolabeling for doublecortin-positive (newborn) neurons in the hippocampal dentate gyrus 7 days after hippocampal injection of Aβ1-42or saline.

    Figure 2 Quantitative analysis of doublecortin (DCX) expression in hippocampal dentate gyrus neurons 7 days after modeling.

    Discussion

    AD is caused by synaptic loss and neuronal death, which result from Aβ deposition-mediated chronic inflammation (Ferretti et al., 2012; Rubio-Perez et al., 2012). In the brain of patients with AD, Aβ deposition not only causes in flammation, but also allows speci fi c T cells to cross the microvascular endothelial cells of the blood-brain barrier and enter the brain parenchyma, thus exacerbating in flammatory responses (Man et al., 2007; Li et al., 2009; Fisher et al., 2011). Neuronal regeneration, in particular its induction and maintenance, is attracting increasing attention in studies of AD pathogenesis.

    DCX is a microtubule-associated protein, which is speci fi cally expressed in neuronal precursors and is involved in the migration of immature neurons and neurite growth (Rao et al., 2004). DCX is transiently expressed for 2-3 weeks in the cytoplasm and projections of newly formed neuronal precursors, after which it begins to decline; it is not expressed in mature neurons (Brown et al., 2003).is characteristic allows the use of DCX as a specific marker of neuronal precursors.e present results indicate that T cells promote nerve cell regeneration in the subgranular zone of the hippocampus in WT mice, and a lack of T cells may impair regeneration. In addition, injection of Aβ1-42inhibits the production of hippocampal nerve cells, depending on the neurotoxicity of Aβ1-42. Previous studies compared neuronal regeneration in WT BALB/c/Ola mice and BALB/c-nude mice with a de ficiency of T cells but normal B cells.e evidence suggests that T-cells can not only promote proliferation of neural precursors in the dentate gyrus, but also a ff ect the di ff erentiation of precursor cells (Ziv et al., 2006). Immune de fi ciency in cells is considered to be the main cause of con flicting results. In the present study, we compared neuronal regenera-tion in normal BALB/c-WT mice and T-cell-de fi cient BALB/ c-nude mice; our results highlight the contribution of T cells to neuronal regeneration in the hippocampus of AD mice, consistent with previous fi ndings.us, hippocampal neuronal regeneration is presumably mediated by the activation of microglial cells.e mechanisms underlying T cell promotion of hippocampal neuronal regeneration also depend on microglial cell-secreted cytokines (Monsonego et al., 2003; Pellicanò et al., 2010; Swardfager et al., 2010).

    Figure 3 Quantitative fluorescence PCR for interleukin-2 (IL-2) and interferon-γ (IFN-γ) gene expression in peripheral blood of mice 7 days after modeling.

    Figure 4 Interleukin-1β (IL-1β; A) and tumor necrosis factor-α (TNF-α; B) gene expression in the hippocampus of mice 7 days after modeling.

    IL-2 is a T-cell growth factor, mainly produced by activated T-cells. It plays a crucial role in maintaining the growth of T-cell subsets and promoting the proliferation of activated B cells. In the present study, we used PCR to show that the secretion of IL-2 from T cells (IL-2 expression) was positively correlated with the regeneration of hippocampal neurons. IL-2 is an important pro-in flammatory cytokine, and its expression correlates closely with the degree of in flammation and neuronal loss in AD and other degenerative diseases (Meola et al., 2013).e quantity of CD4+T-cells is signi ficantly increased in the peripheral blood of AD patients, consistent with upregulated expression of IL-2, IL-6 and other in flammatory cytokines in peripheral blood, all of which are secreted by T cells (Becher et al., 2006; Wolf et al., 2009). Interestingly, IL-2 expression correlates with neuronal regeneration, indicating that the in flammatory and neuroprotective e ff ects exist simultaneously in AD, and peripheral IL-2 gene expression can re flect the activation state of T-cells.

    IFN-γ is generated by a variety of immune cells including T-cells, the crucial immune regulatorsin vivo. IFN-γ can increase the expression of MHC-II molecules on the macrophage surface and promote phagocytosis. In AD model mice, IFN-γ produced by Aβ-specific T cells activates microglia to stimulate inflammation and aggravate abnormal Aβ protein deposition (Browne et al., 2013). Another study showed that Aβ-speci fi c T-cells induce immune cells to clear Aβ protein deposition in the brain through the secretion of IFN-γ (Fisher et al., 2010). Hippocampal injection of Aβ1-42downregulates the expression of IFN-γ and inhibits neuro-nal regeneration (Zheng et al., 2013). The major adaptive immune cytokine, IFN-γ, not only promotes regeneration of hippocampal neurons and improves spatial learning and memory capacity in adult WT mice, but also plays a crucial role in the regulation of brain in flammation, repair of damaged neurons, and maintenance of normal nervous system function (Baron et al., 2008; Mastrangelo et al., 2009).e present study shows that hippocampal injection of Aβ1-42peptide inhibits the expression of peripheral blood IFN-γ, and the expression level in BALB/c-nude mice is lower than that in WT mice. Changes in IFN-γ expression reflect the complexity of immunoregulation.

    TNF-α is an important inflammatory factor that can kill tumor cells or cytokines that induce tumor tissue necrosis. It is mainly produced by activated microglia (Montgomery et al., 2012).e biological activity of TNF-α is diverse, and includes direct killing of cells, as well as immune regulation and the promotion of cell proliferation and differentiation (McCoy et al., 2008; Alvarez et al., 2011). Studies have shown that the loss of neurons in AD is mainly due to the activation of microglial cells by oligomerized Aβ protein, altering the cell cycle via the TNF-α and c-Jun kinase signaling pathways, affecting normal neuronal differentiation and ultimately leading to apoptosis (Bhaskar et al., 2014). The present results suggest that TNF-α expression correlates positively with neuronal regeneration in each group.

    As AD progresses, the Aβ-activated microglia produce inflammatory cytokines (such as IL-1α, IL-1β and TNF-α), inducing neuronal death and memory impairment (Fang et al., 2010). Neurotrophic factors (including NGF, BDNF and GDNF) are also produced, to maintain neuronal regeneration and learning and memory functions (Scharfman et al., 2005; Ji et al., 2011; Lilja et al., 2013). Changes in the balance of inflammatory cytokines and neurotrophic factors will accelerate or delay the AD process. Here, we have examined the regeneration of hippocampal neurons and the expression of pro-inflammatory cytokines (IL-2, IFN-γ, IL-1β, TNF-α) in AD mice at 7 days, and found a positive correlation, that is, signi fi cant neuronal regeneration and high expression levels of cytokines are found in the same group.e present results suggest that both nerve inflammation and neuroprotective effects might be concomitant in the AD pathological state, and they may maintain a dynamic balance under normal immune function; when an immune imbalance or defect occurs, neuroprotective e ff ects are decreased, a ff ecting nerve regeneration. Our experimental results showed that neuronal regeneration in BALB/ c-WT mice was notably better than in T-cell-de fi cient BALB/ c-nude mice.e contribution of T cells to neuronal regeneration in AD mice is closely related to immune status, microglial activation, and the secretion of cytokines.

    Author contributions:Liu J was responsible for the study design, implementation and writing the manuscript. Ma YX and Tian SM participated in the experimental implementation and data analysis. Zhang L, Zhao MM and Zhang YQ prepared animals models and implemented the experiments. Xu DC supervised the study and modified the manuscript. All authors approved the final version of the manuscript.

    Con flicts of interest:None declared.

    Alvare-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683-686.

    Alvarez S, Blanco A, Fresno M, Mu?oz-Fernández Má (2011) TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT. PLoS One 6:e16100.

    Baron R, Nemirovsky A, Harpaz I, Cohen H, Owens T, Monsonego A (2008) IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J 22:2843-2852.

    Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS in flammation: how T lymphocytes recognize the brain. J Mol Med 84:532-543.

    Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransoho ff RM, Herrup K, Lamb BT (2014) Microglial derived tumor necrosis factor-α drives Alzheimer’s disease-related neuronal cell cycle events. Neurobiol Dis 62:273-285.

    Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive de fi cits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis 9:187-198.

    Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1-10.

    Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KH, Lynch MA (2013) IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190:2241-2251.

    Cao C, Arendash GW, Dickson A, Mamcarz MB, Lin X, Ethell DW (2009) Abeta-speci fi c2 cells provide cognitive and pathological bene fi ts to Alzheimer’s mice without in fi ltrating the CNS. Neurobiol Dis 34:63-70.

    Chopra K, Misra S, Kuhad A (2011) Neurobiological aspects of Alzheimer’s disease. Expert Opiner Targets 15:535-555.

    Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, KraGA, LaDu MJ (2002) Oligomeric and fi brillar species of amyloid-beta peptides di ff erentially a ff ect neuronal viability. J Biol Chem 277:32046-32053.

    Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88:2103-2107.

    Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70-83.

    Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Yan S, Schmidt AM, Chen JX, Yan SS (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24:1043-1055.

    Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12:762-780.

    Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC (2012) Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 33:1329-1342.

    Finder VH (2010) Alzheimer’s disease: a general introduction and pathomechanism. J Alzheimers Dis 22:5-19.

    Fisher Y, Nemirovsky A, Baron R, Monsonego A (2010) T cells speci fi cally targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer’s disease. PLoS One 5:e10830.

    Fisher Y, Nemirovsky A, Baron R, Monsonego A (2011) Dendritic cells regulate amyloid-β-specific T-cell entry into the brain: the role of perivascular amyloid-β. J Alzheimers Dis 27:99-111.

    Graber JJ, Dhib-Jalbut S (2009) Protective autoimmunity in the nervous system. Pharmacoler 121:147-159.

    Honjo K, Black SE, Verhoe ff NP (2012) Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci 39:712-728.

    Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223:267-281.

    Li M, Shang SD, Zhao WD, Tian L, Li B, Fang WG, Zhu L, Man SM, Chen YH (2009) Amyloid β interaction with receptor for advanced glycation end products up-regulates brain endothelial CCR5 expression and promotes T cells crossing the blood-brain barrier. J Immunol 182:5778-5788.

    Lilja AM, R?jdner J, Mustafiz T, Thomé CM, Storelli E, Gonzalez D, Unger-Lithner C, Greig NH, Nordberg A, Marutle A (2013) Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels. PLoS One 8:e58752.

    Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH (2007) Peripheral T cells overexpress MIP-1α to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28:485-496.

    Mastrangelo MA, Sudol KL, Narrow WC. Bowers WJ (2009) Interferon-gamma di ff erentially a ff ects Alzheimer’s disease pathologies and induces neurogenesis in triple transgenic-AD mice. Am J Pathol 175:2076-2088.

    McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroin flammation 5:45.

    Meola D, Huang Z, Ha GK, Petitto JM (2013) Loss of neuronal phenotype and neurodegeneration: e ff ects of T lymphocytes and brain interleukin-2. J Alzheimers Dis Parkinsonism Suppl 10:3.

    Monsonego A, Imitola J, Zota V, Oida T, Weiner HL (2003) Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to1 cells. J Immunol 171:2216-2224.

    Monsonego A, Nemirovsky A, Harpaz I (2013) CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology 139:438-446.

    Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7:42-59.

    Pellicanò M, Bulati M, Bu ff a S, Barbagallo M, Di Prima A, Misiano G, Picone P, Di Carlo M, Nuzzo D, Candore G, Vasto S, Lio D, Caruso C, Colonna-Romano G (2010) Systemic immune responses in Alzheimer’s disease: in vitro mononuclear cell activation and cytokine production. J Alzheimers Dis 21:181-192.

    Rao MS, Shetty AK (2004) E ffi cacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234-246.

    Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Scientific World Journal 2012:756357.

    Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348-356.

    Schroeter S, Khan K, Barbour R, Doan M, Chen M, Guido T, Gill D, Basi G, Schenk D, Seubert P, Games D (2008) Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J Neurosci 28:6787-6793.

    Song C, Zhang Y, Dong Y (2013) Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroin flammation 10:59.

    Swardfager W, Lanct?t K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930-941.

    Tabira T (2010) Immunization therapy for Alzheimer disease: a comprehensive review of active immunization strategies. Tohoku J Exp Med 220:95-106.

    Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y (2008) Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 104:1387-1393.

    Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124: 83-92.

    Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A, Blankenstein T, Kempermann G (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182:3979-3984.

    Yu Y, He J, Zhang Y, Luo H, Zhu S, Yang Y, Zhao T, Wu J, Huang Y, Kong J, Tan Q, Li XM (2009) Increased hippocampal neurogenesis in the progressive stage of Alzheimer’s disease phenotype in an APP/ PS1 double transgenic mouse model. Hippocampus 19:1247-1253.

    Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204:77-87.

    Zheng M, Liu J, Ruan Z, Tian S, Ma Y, Zhu J, Li G (2013) Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain. Amyloid 20:13-20.

    Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learening abilities in adulthood. Nat Neurosci 9:268-275.

    Ziv Y, Schwartz M (2008) Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease. Trends Mol Med 14:471-478.

    Copyedited by Murphy S, Norman C, Wang J, Yang Y, Li CH, Song LP, Zhao M

    Dachuan Xu, M.D., Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China, chjcana@126.com.

    10.4103/1673-5374.139481

    http://www.nrronline.org/

    Accepted: 2014-07-05

    精品午夜福利视频在线观看一区 | 国产高清videossex| 国产野战对白在线观看| 九色亚洲精品在线播放| 久久精品亚洲熟妇少妇任你| 狂野欧美激情性xxxx| 自拍欧美九色日韩亚洲蝌蚪91| 国产区一区二久久| 女警被强在线播放| 成人国语在线视频| 国产精品一区二区在线不卡| 久久久久精品国产欧美久久久| 丰满迷人的少妇在线观看| 啦啦啦在线免费观看视频4| 亚洲av片天天在线观看| 香蕉久久夜色| 免费日韩欧美在线观看| 一本久久精品| 看免费av毛片| 亚洲精品国产色婷婷电影| 色婷婷av一区二区三区视频| 亚洲国产中文字幕在线视频| 亚洲欧美日韩高清在线视频 | 91成人精品电影| 999久久久精品免费观看国产| 女同久久另类99精品国产91| 亚洲国产成人一精品久久久| 亚洲伊人色综图| 日韩欧美国产一区二区入口| 成人国产一区最新在线观看| 国产精品麻豆人妻色哟哟久久| 成年动漫av网址| 黄片小视频在线播放| 99在线人妻在线中文字幕 | 久久精品成人免费网站| 精品福利永久在线观看| 国产av又大| 首页视频小说图片口味搜索| 国产在线精品亚洲第一网站| 欧美日韩国产mv在线观看视频| 午夜激情av网站| 亚洲欧美激情在线| 黑人巨大精品欧美一区二区蜜桃| 99re在线观看精品视频| 老汉色av国产亚洲站长工具| 99国产综合亚洲精品| 麻豆av在线久日| 黄色片一级片一级黄色片| 国产极品粉嫩免费观看在线| 中文字幕人妻熟女乱码| 午夜福利欧美成人| 巨乳人妻的诱惑在线观看| 午夜福利欧美成人| 深夜精品福利| 国产亚洲欧美在线一区二区| 99在线人妻在线中文字幕 | 1024香蕉在线观看| 一二三四社区在线视频社区8| 黄色视频不卡| 一夜夜www| 国产欧美日韩一区二区精品| 精品久久久久久电影网| 法律面前人人平等表现在哪些方面| 久久青草综合色| 咕卡用的链子| 亚洲欧美日韩另类电影网站| 人人妻,人人澡人人爽秒播| 久久亚洲精品不卡| 日本精品一区二区三区蜜桃| 俄罗斯特黄特色一大片| 亚洲七黄色美女视频| 国产精品 国内视频| 后天国语完整版免费观看| 操美女的视频在线观看| 亚洲精品国产色婷婷电影| 一区二区三区乱码不卡18| 手机成人av网站| 三上悠亚av全集在线观看| 日韩精品免费视频一区二区三区| 1024香蕉在线观看| 日韩视频一区二区在线观看| 色综合婷婷激情| 久久99热这里只频精品6学生| 一区二区三区乱码不卡18| 国产精品一区二区精品视频观看| www.自偷自拍.com| 国产精品麻豆人妻色哟哟久久| 亚洲视频免费观看视频| 国产精品自产拍在线观看55亚洲 | 亚洲一区二区三区欧美精品| 久久久国产成人免费| 久久久久久亚洲精品国产蜜桃av| 国产激情久久老熟女| 啦啦啦视频在线资源免费观看| 激情在线观看视频在线高清 | 亚洲国产毛片av蜜桃av| 宅男免费午夜| 成人亚洲精品一区在线观看| 亚洲精品自拍成人| 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 一级毛片精品| 国产精品一区二区精品视频观看| 色在线成人网| 男女床上黄色一级片免费看| 免费观看av网站的网址| 制服诱惑二区| 亚洲精品乱久久久久久| 黄色怎么调成土黄色| 亚洲欧美一区二区三区久久| 一边摸一边做爽爽视频免费| 午夜免费成人在线视频| 他把我摸到了高潮在线观看 | 在线观看免费高清a一片| 97人妻天天添夜夜摸| 99久久人妻综合| 精品乱码久久久久久99久播| 中文字幕另类日韩欧美亚洲嫩草| 国产色视频综合| 久久精品国产99精品国产亚洲性色 | 国产欧美亚洲国产| 国产精品久久久久久人妻精品电影 | 夫妻午夜视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲三区欧美一区| 亚洲美女黄片视频| 高清视频免费观看一区二区| 黄色视频,在线免费观看| 久久久久国内视频| 亚洲伊人久久精品综合| 久久人妻av系列| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 两个人免费观看高清视频| 极品教师在线免费播放| 日韩有码中文字幕| 国产日韩一区二区三区精品不卡| 窝窝影院91人妻| 侵犯人妻中文字幕一二三四区| 女人高潮潮喷娇喘18禁视频| 国产成人免费无遮挡视频| 欧美日韩av久久| 在线观看人妻少妇| 精品人妻熟女毛片av久久网站| 肉色欧美久久久久久久蜜桃| 成年人黄色毛片网站| 亚洲色图av天堂| 久久热在线av| 亚洲专区字幕在线| 亚洲 国产 在线| 考比视频在线观看| 美女高潮到喷水免费观看| 久久亚洲真实| 日本wwww免费看| 亚洲欧美日韩高清在线视频 | 国产福利在线免费观看视频| 免费在线观看黄色视频的| √禁漫天堂资源中文www| 99九九在线精品视频| 悠悠久久av| 久热这里只有精品99| 国产有黄有色有爽视频| 久久九九热精品免费| 亚洲国产中文字幕在线视频| 99久久99久久久精品蜜桃| 飞空精品影院首页| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 美女主播在线视频| 高清在线国产一区| 欧美日韩国产mv在线观看视频| 在线亚洲精品国产二区图片欧美| 久热这里只有精品99| 黑丝袜美女国产一区| 日韩大码丰满熟妇| 老司机午夜福利在线观看视频 | 狠狠精品人妻久久久久久综合| 国产aⅴ精品一区二区三区波| www.精华液| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费 | 亚洲视频免费观看视频| 免费观看av网站的网址| 国产欧美日韩综合在线一区二区| 免费久久久久久久精品成人欧美视频| 久久精品亚洲精品国产色婷小说| 久久久久久人人人人人| 欧美变态另类bdsm刘玥| 免费女性裸体啪啪无遮挡网站| 午夜福利在线观看吧| 老司机福利观看| 亚洲自偷自拍图片 自拍| 97在线人人人人妻| 十八禁网站网址无遮挡| 日本av免费视频播放| 精品第一国产精品| 曰老女人黄片| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看| 电影成人av| 熟女少妇亚洲综合色aaa.| 老司机亚洲免费影院| 丝袜喷水一区| 视频区欧美日本亚洲| 国产欧美日韩一区二区精品| 欧美精品av麻豆av| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 日韩欧美免费精品| 69精品国产乱码久久久| 黄色丝袜av网址大全| 一本久久精品| av线在线观看网站| 亚洲熟妇熟女久久| 国产av又大| av天堂久久9| 欧美日韩av久久| 男女无遮挡免费网站观看| 99国产精品一区二区蜜桃av | 欧美成人免费av一区二区三区 | 最黄视频免费看| 国产日韩一区二区三区精品不卡| 国产亚洲av高清不卡| 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 一区在线观看完整版| 久久 成人 亚洲| 成人av一区二区三区在线看| 久久久久久久大尺度免费视频| 亚洲国产欧美日韩在线播放| 女人久久www免费人成看片| 日韩中文字幕视频在线看片| 麻豆乱淫一区二区| 成人免费观看视频高清| 久久久久国产一级毛片高清牌| 亚洲五月色婷婷综合| 亚洲人成77777在线视频| 中文字幕色久视频| 亚洲专区国产一区二区| 人人妻人人爽人人添夜夜欢视频| a在线观看视频网站| 久久 成人 亚洲| 精品亚洲成国产av| 母亲3免费完整高清在线观看| 一区在线观看完整版| 欧美久久黑人一区二区| 成人国产一区最新在线观看| 纵有疾风起免费观看全集完整版| 黑人欧美特级aaaaaa片| 我要看黄色一级片免费的| av在线播放免费不卡| 高清黄色对白视频在线免费看| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 黄片小视频在线播放| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 日本精品一区二区三区蜜桃| 成人黄色视频免费在线看| 国产精品亚洲av一区麻豆| 一级毛片电影观看| 欧美日韩av久久| 99re在线观看精品视频| 99香蕉大伊视频| 热99国产精品久久久久久7| 国产av一区二区精品久久| 国产黄频视频在线观看| 人人澡人人妻人| 免费看a级黄色片| 亚洲av第一区精品v没综合| 国产亚洲午夜精品一区二区久久| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| 亚洲人成电影免费在线| 伦理电影免费视频| 欧美在线一区亚洲| 国产97色在线日韩免费| 女性被躁到高潮视频| 蜜桃在线观看..| 亚洲人成电影观看| 黄片播放在线免费| 成人av一区二区三区在线看| 午夜福利在线免费观看网站| 日韩大片免费观看网站| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 午夜福利在线观看吧| 天堂8中文在线网| www.自偷自拍.com| 亚洲精品中文字幕一二三四区 | 国产亚洲一区二区精品| 国产一区二区激情短视频| 成年女人毛片免费观看观看9 | 久久热在线av| 91字幕亚洲| 啪啪无遮挡十八禁网站| 黑人欧美特级aaaaaa片| 99久久人妻综合| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩另类电影网站| 蜜桃国产av成人99| 一二三四社区在线视频社区8| 99久久国产精品久久久| 99国产精品一区二区三区| 人妻 亚洲 视频| 大香蕉久久成人网| 啦啦啦中文免费视频观看日本| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 色尼玛亚洲综合影院| 欧美 日韩 精品 国产| 黄色视频,在线免费观看| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 一级a爱视频在线免费观看| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 久久久久网色| 免费在线观看完整版高清| 久久这里只有精品19| 欧美精品啪啪一区二区三区| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | 深夜精品福利| 久久这里只有精品19| 侵犯人妻中文字幕一二三四区| av有码第一页| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 国产一区二区三区在线臀色熟女 | 国产精品.久久久| 精品午夜福利视频在线观看一区 | 美女高潮到喷水免费观看| 人妻久久中文字幕网| 丰满饥渴人妻一区二区三| 国产精品av久久久久免费| 午夜激情久久久久久久| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 18禁观看日本| 1024视频免费在线观看| 色视频在线一区二区三区| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 男人操女人黄网站| 午夜福利影视在线免费观看| 久久av网站| 一本色道久久久久久精品综合| 精品国产亚洲在线| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 亚洲 国产 在线| a在线观看视频网站| netflix在线观看网站| avwww免费| 精品久久久久久电影网| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 亚洲综合色网址| 天堂俺去俺来也www色官网| 亚洲人成77777在线视频| 高清av免费在线| 精品少妇内射三级| 精品福利观看| 90打野战视频偷拍视频| 伦理电影免费视频| 日本五十路高清| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 亚洲视频免费观看视频| 久久精品国产99精品国产亚洲性色 | 婷婷丁香在线五月| 在线观看www视频免费| 亚洲七黄色美女视频| 久久青草综合色| 男女无遮挡免费网站观看| 精品一区二区三区四区五区乱码| 不卡av一区二区三区| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| netflix在线观看网站| 亚洲,欧美精品.| av网站在线播放免费| 婷婷成人精品国产| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人 | 久久久久久人人人人人| cao死你这个sao货| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| 男人操女人黄网站| 免费日韩欧美在线观看| 大香蕉久久网| 搡老乐熟女国产| 色在线成人网| 美女主播在线视频| 女同久久另类99精品国产91| 免费观看人在逋| 啦啦啦在线免费观看视频4| 久久狼人影院| 欧美日韩一级在线毛片| 黄色视频在线播放观看不卡| 老司机影院毛片| 免费av中文字幕在线| av天堂在线播放| 美女主播在线视频| 精品少妇一区二区三区视频日本电影| 丝袜美腿诱惑在线| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 最新在线观看一区二区三区| 欧美日韩亚洲高清精品| 亚洲黑人精品在线| 日日夜夜操网爽| 他把我摸到了高潮在线观看 | 国产xxxxx性猛交| 99久久精品国产亚洲精品| 亚洲精品中文字幕在线视频| a级毛片在线看网站| 日韩免费高清中文字幕av| 大香蕉久久网| 色尼玛亚洲综合影院| 免费少妇av软件| 久久久久久亚洲精品国产蜜桃av| 中文字幕制服av| 亚洲欧美精品综合一区二区三区| 午夜福利一区二区在线看| 亚洲第一欧美日韩一区二区三区 | 免费观看人在逋| 国产成人av激情在线播放| 欧美黑人精品巨大| 少妇的丰满在线观看| 亚洲 国产 在线| 后天国语完整版免费观看| 午夜激情av网站| 在线天堂中文资源库| 色尼玛亚洲综合影院| 国产不卡一卡二| 久久久久视频综合| 久久久久久久国产电影| 欧美性长视频在线观看| 黄色 视频免费看| 老鸭窝网址在线观看| 久久精品国产综合久久久| 精品少妇黑人巨大在线播放| 国产精品 欧美亚洲| 无遮挡黄片免费观看| 久久这里只有精品19| 999久久久精品免费观看国产| 一级片免费观看大全| 色播在线永久视频| 亚洲中文av在线| 一级毛片女人18水好多| 国产精品免费一区二区三区在线 | 18在线观看网站| 桃花免费在线播放| 免费在线观看影片大全网站| 麻豆av在线久日| 亚洲欧美激情在线| 亚洲人成电影观看| 建设人人有责人人尽责人人享有的| 色精品久久人妻99蜜桃| 老司机在亚洲福利影院| 国产av精品麻豆| 美国免费a级毛片| 俄罗斯特黄特色一大片| 女人爽到高潮嗷嗷叫在线视频| 女人久久www免费人成看片| 久久99热这里只频精品6学生| 国产精品1区2区在线观看. | 在线 av 中文字幕| 少妇裸体淫交视频免费看高清 | 国产成+人综合+亚洲专区| 亚洲精品美女久久av网站| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av香蕉五月 | √禁漫天堂资源中文www| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 黄色 视频免费看| tocl精华| 中文亚洲av片在线观看爽 | 亚洲国产av影院在线观看| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 日本黄色视频三级网站网址 | 久9热在线精品视频| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 国产精品亚洲一级av第二区| 1024视频免费在线观看| 亚洲五月色婷婷综合| 超色免费av| 老汉色∧v一级毛片| 美女主播在线视频| 日韩免费av在线播放| 一进一出抽搐动态| 99久久人妻综合| 亚洲伊人久久精品综合| 国产在线一区二区三区精| 久久精品成人免费网站| 亚洲 欧美一区二区三区| 99在线人妻在线中文字幕 | 91老司机精品| 亚洲欧美色中文字幕在线| 麻豆国产av国片精品| 999久久久精品免费观看国产| av福利片在线| 欧美成人午夜精品| 日本av免费视频播放| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合| 在线观看人妻少妇| 国产成人免费观看mmmm| 91成人精品电影| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 涩涩av久久男人的天堂| 三级毛片av免费| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 日韩视频在线欧美| 大片电影免费在线观看免费| 一区福利在线观看| 国产成人啪精品午夜网站| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 久热这里只有精品99| 黄色丝袜av网址大全| 另类亚洲欧美激情| 欧美精品av麻豆av| 人妻一区二区av| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 18禁美女被吸乳视频| 成年版毛片免费区| 丝袜人妻中文字幕| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 欧美日韩福利视频一区二区| 欧美 日韩 精品 国产| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 欧美成人免费av一区二区三区 | 建设人人有责人人尽责人人享有的| 十八禁人妻一区二区| 午夜视频精品福利| 亚洲国产av影院在线观看| 丁香欧美五月| 黄色丝袜av网址大全| 99国产精品免费福利视频| 中文字幕高清在线视频| 国产麻豆69| videos熟女内射| 午夜久久久在线观看| 国产91精品成人一区二区三区 | 高清视频免费观看一区二区| 看免费av毛片| 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| 亚洲视频免费观看视频| 黄色怎么调成土黄色| 精品久久久久久久毛片微露脸| 色婷婷久久久亚洲欧美| 日韩人妻精品一区2区三区| 麻豆乱淫一区二区| 国产国语露脸激情在线看| 国产野战对白在线观看| 午夜成年电影在线免费观看| 国产av一区二区精品久久| 黄色a级毛片大全视频| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 人成视频在线观看免费观看| 一级黄色大片毛片| 久9热在线精品视频| 久久人人97超碰香蕉20202| 精品久久蜜臀av无| av视频免费观看在线观看| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 中文字幕精品免费在线观看视频| 啪啪无遮挡十八禁网站| 国产一区二区三区视频了| 久久久精品国产亚洲av高清涩受| 亚洲欧美色中文字幕在线| 夫妻午夜视频| www.999成人在线观看| 99久久99久久久精品蜜桃| 国产成人精品无人区| 老司机在亚洲福利影院| 成人手机av| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 十八禁高潮呻吟视频| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三|