• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Complexity Analysis of a Kind of Hybrid Algorithms

    2014-04-02 11:03:20LAIXinsheng
    上饒師范學(xué)院學(xué)報 2014年6期

    LAI Xin-sheng

    (Shangrao Normal University, Shangrao Jiangxi 334001, China)

    Introduction

    Hybrid algorithms are now an interesting topic in computer sciences and technology. Hybridizing different algorithms is an efficient method to get more powerful tools for solving hard problems. Many researchers have designed and are trying to design more efficient algorithms following this way of hybridization.

    Though hybrid algorithms are receiving increasing attention from researchers, theoretic work on hybrid algorithms is rare. Zhou et al. analyzed a hybrid algorithm combining RandomWalk and Local (1+1) EA on a MaxSAT problem[6]. However, many theoretic research works are now focusing on base algorithms[7, 8, 9, 10, 11]. Even though, the bulk of theoretic work on base algorithms focus on the time complexity of genetic algorithms. He and Yao introduced a framework for analysis of the time complexity[12]. Lehre and Yao investigated how the interplay of mutation and selection impact the runtime of evolutionary algorithms[13], and their results showed that a correct balance between selection pressure and mutation rate is important to find the optimal solution in polynomial time. Chen et al. theoretically analyzed how the population size impact the runtime of evolutionary algorithms[14], and found that large populations may not always be useful. On unique input-output problem, Lehre and Yao investigated how the choice of acceptance criterion in the (1+1) EA and the use of crossover in the (μ+1) steady state genetic algorithm impact the runtime of EA, their rigorously analyzed results showed that changing these parameters can reduce the runtime from exponential to polynomial for some instance classes of the UIO problem[15]. For wide-gap problems with two optima, Chen et al. analyzed how selection pressure impact the runtime of evolutionary algorithms, and their results showed that low selection pressure is better for wide-gap problems with two optima[16]. Besides, a little work has been done on particle swarm algorithm. And most of theoretic work on particle swarm algorithm is about convergence of this algorithm[17, 18, 19], few of them discussed the time complexity of particle swarm algorithm.

    In this paper, we investigate the time complexity of a kind of hybrid algorithms. This kind of hybrid algorithms combines two base algorithms. Both base algorithms should be able to be described by a discrete homogeneous absorbing Markov chain on the same finite discrete state space S. This requirement could be met, because both base algorithms in this kind of hybrid algorithms are used to solve the same problem. The solution space is the same, and when on a combinatorial optimization problem, the solution is usually finite and discrete. Through our analysis using Markov chain, we have obtained the boundaries of ‖mh‖∞.Here, ‖mh‖∞are the worst case of the time complexity of hybrid algorithms. These boundaries are nontrivial when parameter ω is close to 0 or 1.

    The remainder of this paper is organized as follows. Section 1 describes the kind of hybrid algorithms considered in this paper, and Section 2 is the time complexity analysis of base algorithms. Section 3 is the time complexity analysis of this kind of hybrid algorithms, and Section 4 is relationship between mh, m1and m2. Finally, Section 5 presents conclusion and discussion.

    1 A kind of Hybrid Algorithms

    In this section, we describe the kind of hybrid algorithms, which are to be discussed in this paper. Now, we give the general form of this kind of hybrid algorithms as follows.

    HybridAlgorithms(CombiningTwoBaseAlgorithms)

    Begin

    Initialize parameters of base algorithms 1 and 2, parameter ω and solutionsltn;

    While (termination-condition does not hold) do

    Follow base algorithm 1 and obtain a solutionsltn1;

    Follow base algorithm 2 and obtain a solutionsltn2;

    sltn:=sltn1with the probability ω, orsltn:=sltn2with the probability of (1-ω);

    Wend

    End

    2 The Time Complexity Analysis of Base Algorithms

    Since both base algorithms in this kind of hybrid algorithms could be described by a discrete homogeneous Markov chain, now let (ξt, t≥0) (ξt∈{Si;i=1,2,..., n}) be the discrete homogeneous absorbing Markov chain on a finite discrete states of {S1, S2, ..., Sn}.

    Definition1 [12]. (First hitting time τi). Given a Markov chain (Xt), the first hitting time of the absorbing state set H when starting from transient state Siis defined as: τi= min{t;t≥0,Xt∈H|X0∈Si}.

    Let pijbe the transition probability from state Sito Sj, and the transition probability matrix is P=(pij)n×n. Since the Markov chain is homogeneous, components of the transition matrix are independent of the time variable. The transition probability matrix P can be written in a block form as follows,

    (1)

    where Q is the transition probability sub-matrix among transient states, and I is the transition probability sub-matrix among absorbing states, an identity matrix, T is the transition probability sub-matrix from transient states to absorbing states, and 0 is a matrix whose entries are all 0.

    Since P is a transition matrix, 0≤qij<1, (i, j=1, 2,…, n), whereqijis the entry of Q. The eigenvalues of Q are all less than 1, so, ρ(Q)=max1≤i≤n{|λi|}<1[12]. Thus the entries of (I-Q)-1are non-negative.

    Theorem1[6,12,20]. Let τibe the first hitting time of Markov chain (Xt) when starting from transient state Si. Let mi=E[τi], and m=[mi]i∈T, where subscript T denotes the set of transient states. We have m=(I-Q)-11, where 1 denotes the vector (1,...,1)t.

    Proof. See reference[20].

    In this paper, we investigate ‖m‖∞, the ∞-norm of vector m. They are defined as ‖m‖∞=maxi∈T{mi}.

    From these definitions, we could see that ‖m‖∞shows the maximum number of iteration steps for an algorithm to first hit the globally optimal solution(s).

    3 Time Complexity Analysis of Hybrid Algorithm

    Proof. Suppose a solution is in state Si, then the hybrid algorithm could transit it from state Sito Sjeither by base algorithm 1 with probability ωpij, or by base algorithm 2 with probability (1-ω)mij, where pijand mijare entries of transition matrices P and M, respectively. So, the solution could be transited by the hybrid algorithm from state Sito Sjwith probability ωpij+ (1-ω)mij(i, j=1, 2, …, n), i.e., hij=(pij+(1-ω)mij. This means that H=ωP+(1-ω)M. By written in block form we obtain the proposition.

    Let mi,hdenote the first hitting time of the hybrid algorithm when starting from state Si, and let mhdenote [mi,h]i∈T, where subscript T denote the transient states set. Let mi,1denote the first hitting time by base algorithm 1 when starting from state Si, and let m1denote [mi,1]i∈T; let mi,2the first hitting time by base algorithm 2 when starting from state Si, and let m2denote [mi,2]i∈T.

    For a same combinatorial optimization problem, we have the following corollary on the first hitting time vector m1of base algorithm 1. Corollary 1. m1=(I-Q1)-11.

    On the first hitting time vector m2of base algorithm 2, the corollary is

    Corollary 2. m2=(I-Q2)-11.

    For mhof the hybrid algorithm combining base algorithms 1 and 2, we have the following corollary.

    Corollary 3. mh=(I-ωQ1-(1-ω)Q2)-11.

    In the following, we investigate the ∞-norm of mh. The ∞-norm represents the worst case of the time complexity.

    4 Relationship Between ‖mh‖∞ and ‖m1‖∞, ‖m2‖∞

    In this section, we discuss the relationship between ‖mh‖∞and ‖m1‖∞,‖m2‖∞.

    Proof. For a same combinatorial optimization problem, according to Corollary 1, we have m1=(I-Q1)-11, and according to corollary 3, we have mh=(I-ωQ1-(1-ω)Q2)-11. By transformation, we have (I-ωQ1-(1-ω)Q2)mh=1. Replacing tiem 1 in m1=(I-Q1)-11 by (I-ωQ1-(1-ω)Q2)mh, we have m1=(I-Q1)-1(I-ωQ1-(1-ω)Q2)mh.

    So, we have m1=(I-Q1)-1(ω(I-Q1)+(1-ω)(I-Q2))mh. Further, m1=ωmh+(1-ω)(I-Q1)-1(I-Q2)mh.

    By taking ∞-norms of both side of above equation, we have ‖m1‖∞=‖ωmh+(1-ω)(I-Q1)-1(I-Q2)mh‖∞, then ‖m1‖∞≤ω‖mh‖∞+(1-ω)‖(I-Q1)-1(I-Q2)mh‖∞, further, ‖m1‖∞≤ω‖mh‖∞+(1-ω)‖(I-Q1)-1‖∞‖(I-Q2)‖∞‖mh‖∞.

    Since Q2is a block matrix of a transition matrix, ‖(I-Q2)‖∞≤2. Then, we have ‖m1‖∞≤ω‖mh‖∞+2(1-ω)‖m1‖∞‖mh‖∞. Further, ‖m1‖∞≤(ω+2(1-ω)‖m1‖∞)‖mh‖∞.

    Proposition 2 demonstrates the relationship between mhand m1. The lower boundary may be trivial when ω takes a small value. For example, when ω=0, the lower boundary is 0.5. This is a trivial lower boundary. However, when ω takes a larger value, the lower boundary becomes nontrivial. For example, when ω1=1, the lower boundary is ‖m1‖∞, which is tight in this case.

    In the same way, we get the relationship between mhand m2, that is Proposition 3.

    Proof. The proof is the same as that of Proposition 2.

    This boundary may be trivial when ω takes a large value in [0, 1]. However, the smaller value ω takes, the tighter lower boundary becomes, since in this case base algorithm 1 takes a marginal role in the hybrid algorithm.

    Propositions 2 and 3 demonstrate the lower boundaries of ‖mh‖∞. Both lower boundaries relate the norms of ‖m1‖∞and ‖m2‖∞. Since ‖V‖∞is the max item of vector V, Propositions 2 and 3 show the relationship between the maximum number of iteration steps of first hitting the globally optimal solution(s) for the hybrid algorithm and for the base algorithms.

    Proof. It comes from combining Propositions 2 and 3.

    This joint lower boundary is nontrivial when ω takes a large or small value. It tells us that the time complexity of the hybrid algorithm is not less than that of base algorithm 1 when ω is close to 1, and not less than that of base algorithm 2 when ω takes a value close to 0. Because when ω takes a value close to 0, base algorithm 1 becomes marginal in the hybrid algorithm, and when ω takes a value close to 1, base algorithm 2 becomes marginal in the hybrid algorithm. However, this joint lower boundary is trivial when ω takes a medium value in [0,1].

    We have obtained the lower boundaries of ‖mh‖∞. Now we investigate the upper boundaries of ‖mh‖∞.

    Proof. According to Corollary 1, we have m1=(I-Q1)-11. By transformation, we obtain (I-Q1)m1=1. According to Corollary 3, we have mh=(I-ωQ1-(1-ω)Q2)-11.

    By replacing item 1 in the last equation with (I-Q1) m1, we obtain mh=(I-ωQ1-(1-ω)Q2)-1(I-Q1)m1, mh=(I-ωQ1-(1-ω)Q2)-1(I-ωQ1-(1-ω)Q2-(1-ω)Q1+(1-ω)Q2)m1, and mh= m1+(I-ωQ1-(1-ω)Q2)-1(-(1-ω)Q1+(1-ω)Q2)m1. By taking the ∞-norms of both sides, we have ‖mh‖∞≤‖m1‖∞+‖(I-ωQ1-(1-ω)Q2)-1(-(1-ω)Q1+(1-ω)Q2)m1‖∞and ‖mh‖∞≤‖m1‖∞+‖(1-ωQ1-(1-ω)Q2)-1‖∞‖(-(1-ω)Q1+(1-ω)Q2)m1‖∞.

    Since the entries of (I-ωQ1-(1-ω)Q2)-1are non-negative, ‖mh‖∞=‖(I-ωQ1-(1-ω)Q2)-11‖∞=‖(I-ωQ1-(1-ω)Q2)-1‖∞.Hence, we have ‖mh‖∞≤‖m1‖∞+‖mh‖∞‖(-(1-ω)Q1+(1-ω)Q2)m1‖∞,‖mh‖∞≤‖m1‖∞+‖mh‖∞(‖-(1-ω)Q1‖∞+‖(1-ω)Q2‖∞)‖m1‖∞.and ‖mh‖∞≤‖m1‖∞+‖mh‖∞((1-ω)‖Q1‖∞+(1-ω)‖Q2‖∞)‖m1‖∞.

    Since Q1and Q2are block matrices of a transition matrices, ‖Q1‖∞≤1 and ‖Q2‖∞≤1. Then, we have ‖mh‖∞≤‖m1‖∞+2(1-ω)‖mh‖∞‖m1‖∞, and‖mh‖∞(1-2(1-ω)‖m1‖∞)≤‖m1‖∞.

    Proposition 5 gives an upper boundary of ‖mh‖∞. This upper boundary is related to ‖m1‖∞. It tells us that the time complexity of the hybrid algorithm is not larger than that of base algorithm 1 when ω takes a value close to 1. This upper boundary becomes tighter, when ω takes a value much closer to 0.

    The following proposition gives another upper boundary of ‖mh‖∞, which is related to ‖m2‖∞.

    Proof. The proof is similar to that of Proposition 5.

    This upper boundary is tight when ω takes a value close to 0. It tells us that if ω is close to 0, which means that base algorithm 1 takes a marginal role in the hybrid algorithm, the time complexity upper boundary of hybrid is not large than that of base algorithm 2.

    The lower boundary and upper boundary of the hybrid algorithm are nontrivial when ω takes a value close to 0 or to 1.

    When ω is close to 0, the time complexity of the hybrid algorithm is close to that of base algorithm 2. When ω is close to 1, the time complexity of the hybrid algorithm is close to that of base algorithm 1. This tells us that we should make the lowest time complexity algorithm take a notable role in such akind hybrid algorithm.

    5 Conclusions and Furture Work

    In this paper, we investigated the ∞-norm of mhof a kind of hybrid algorithms combining two base algorithms. We aim to study the relationship between ‖mh‖∞and ‖m1‖∞, ‖m2‖∞. In consequence, we obtained the lower and upper boundaries of ‖mh‖∞. The lower and upper boundaries of ‖mh‖∞of this kind of hybrid algorithms are functions of parameter ω and the corresponding norms of base algorithms. Those boundaries are nontrivial when ω is close to 0 or 1. This indicates that we should let the base algorithm that has a lower time complexity takes a major role in the hybrid algorithm, which may direct to design an efficient hybrid algorithm.

    When ω takes a value not close to either 0 or 1, these boundaries may be trivial. Therefore, obtaining a tighter boundary is our future work. In addition, we will investigate the lower and upper boundaries of ‖mh‖1of this kind of hybrid algorithms which combining two base algorithms as shown in Hybrid Algorithms, which is an average case of the time complexity.

    [1] Hendrickx I., Bosch A. V. D. Hybrid Algorithms with Instance-based Classification[C]. Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, 2005,3720:158-169.

    [2] Robles V., Pena J. M., Pérez M.S., Herves V. GA-EDA: A new hybrid cooperative search evolutionary algorithm[J]. In J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms[M],Springer Verlag, 2006.

    [4] Alba E., Chicano J. F. Training neural networks with GA hybrid algorithms[C]. Proceedings of the Genetic and Evolutionary Computation Conference, Alba E., Chicano J. F.GECCO 2004, ser. Lecture Notes in Computer Science, 2004,3102:852-863.

    [5] Abraham A., Nath B. Optimal Design of Neural Nets Using Hybrid Algorithms[C]. Proceedings of 6th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2000), 2000,1:510-520.

    [6] Zhou Y., He J., Nie Q. A comparative runtime analysis of heuristic algorithms for satisfiability problems[J]. Artificial Intelligence, 2009, 173(2): 240-257.

    [7] Yu Y., Zhou Z.-H. A new approach to estimating the expected first hitting time of evolutionary algorithms[J]. Artificial Intelligence, 2008, 172: 1809-1832.

    [8] He J., Yao X. Drift analysis and average time complexity of evolutionary algorithms[J]. Artificial Intelligence, 2001, 127: 57-85.

    [9] S. Droste, T. Jansen, I. Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 2002, 276: 51-81.

    [10] Garnier J., Kallel L., Schoenauer M. Rigorous hitting times for binary mutations[J]. Evolutionary Computation, 1999, 7(2): 173-203.

    [11] Sasaki G. H., Hajek B. The time complexity of maximum matching by simulated annealing[J]. Journal of the ACM, 1988, 35(2): 387-403.

    [12] He J., Yao X. Towards an analytic framework for analysing the computation time of evolutionary algorithms[J]. Artificial Intelligence, 2003, 145:59-97.

    [13] Lehre P. K., Yao X. On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms[J]. IEEE Transactions on Evolutionary Computation,2012,16(2):225-241.

    [14] Chen T., Tang K., Chen G., Yao X. A Large Population Size Can Be Unhelpful in Evolutionary Algorithms[J]. Theoretical Computer Science,2012,436:54-70.[15] Lehre P. K., Yao X. Crossover can be constructive when computing unique inputoutput sequences[J]. Soft Computing, 2011, 15(9):1675-1687.

    [16] Chen T., He J., Chen G., and Yao X. Choosing selection pressure for wide-gap problems[J]. Theoretical Computer Science, 2010, 411(6): 926-934.

    [17] Clerc M., Kennedy J. The particle swarm: explosion stability and convergence in a multi-dimensional complex space[J]. IEEE Transactions Evolutionary Computation,2002, 6(1): 58-73.

    [18] Trelea I. C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85: 317-325.

    [19] Bergh V. D., Engelbrecht A.P. A convergence proof for the particle swarm optimizer[J]. Fundamental Informaticae, 2010, 105: 341-374.

    [20] Iosifescu M. Finite Markov Processes and Their Applications[M]. Chichester: Wiley, 1980.

    [21] Gentle J. E. Matrix Algebra: Theory, Computations, and Applications in Statistics[M]. Berlin German: Springer, 2007.

    又黄又爽又刺激的免费视频.| 夜夜爽天天搞| 久久精品久久久久久噜噜老黄 | 高清日韩中文字幕在线| 亚洲av.av天堂| 综合色丁香网| 可以在线观看的亚洲视频| 国内久久婷婷六月综合欲色啪| 日韩在线高清观看一区二区三区| 欧美日韩综合久久久久久| 只有这里有精品99| 亚州av有码| 69av精品久久久久久| 综合色av麻豆| 欧美精品国产亚洲| 欧美精品国产亚洲| 国产一区二区激情短视频| 亚洲综合色惰| 久久精品国产清高在天天线| 男女做爰动态图高潮gif福利片| 搡女人真爽免费视频火全软件| 国产精品无大码| 26uuu在线亚洲综合色| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久 | 美女被艹到高潮喷水动态| av黄色大香蕉| 午夜福利成人在线免费观看| 久久人人爽人人片av| 免费人成视频x8x8入口观看| 成人午夜精彩视频在线观看| 哪里可以看免费的av片| av免费在线看不卡| 精品国产三级普通话版| 精品一区二区免费观看| 午夜a级毛片| 婷婷色综合大香蕉| 人人妻人人澡人人爽人人夜夜 | 狂野欧美白嫩少妇大欣赏| 一级二级三级毛片免费看| 亚洲七黄色美女视频| 亚洲av熟女| 女人十人毛片免费观看3o分钟| 中国国产av一级| 丝袜美腿在线中文| 免费搜索国产男女视频| 久久久久网色| 啦啦啦啦在线视频资源| 亚洲成a人片在线一区二区| 观看免费一级毛片| 久久久欧美国产精品| 天堂av国产一区二区熟女人妻| 尤物成人国产欧美一区二区三区| 日韩亚洲欧美综合| 在线国产一区二区在线| 国产日韩欧美在线精品| 又爽又黄a免费视频| 高清毛片免费看| 久久久久久久久久久丰满| 精品久久久久久成人av| 国产综合懂色| 国产亚洲av片在线观看秒播厂 | 亚洲乱码一区二区免费版| 精品少妇黑人巨大在线播放 | 久久久a久久爽久久v久久| 亚洲欧美清纯卡通| 狠狠狠狠99中文字幕| 69人妻影院| 我要搜黄色片| 丝袜美腿在线中文| 亚洲七黄色美女视频| 69av精品久久久久久| 丰满的人妻完整版| 十八禁国产超污无遮挡网站| 一级av片app| 极品教师在线视频| 欧美高清性xxxxhd video| 男人狂女人下面高潮的视频| 嘟嘟电影网在线观看| 一级毛片久久久久久久久女| 国产精品电影一区二区三区| 中文在线观看免费www的网站| 亚洲av电影不卡..在线观看| 免费看av在线观看网站| 国产一级毛片在线| 男人狂女人下面高潮的视频| 久久国产乱子免费精品| 国产久久久一区二区三区| 久久草成人影院| 免费黄网站久久成人精品| 中文在线观看免费www的网站| 真实男女啪啪啪动态图| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 久久久久国产网址| 久久久久久久久久久免费av| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜福利久久久久久| av福利片在线观看| 久久精品人妻少妇| 日韩欧美一区二区三区在线观看| 亚洲最大成人手机在线| 久久久久久久亚洲中文字幕| 神马国产精品三级电影在线观看| 成人午夜高清在线视频| 亚洲人成网站高清观看| 22中文网久久字幕| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 能在线免费看毛片的网站| 国产av一区在线观看免费| 女同久久另类99精品国产91| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| www.av在线官网国产| 成年女人看的毛片在线观看| 国产乱人视频| 高清午夜精品一区二区三区 | 久久这里有精品视频免费| 久久久精品大字幕| 国产精品野战在线观看| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区三区| 午夜免费激情av| 一本一本综合久久| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 免费看光身美女| 亚洲中文字幕日韩| 国内少妇人妻偷人精品xxx网站| 一级黄色大片毛片| 全区人妻精品视频| 3wmmmm亚洲av在线观看| 欧美性感艳星| 日韩欧美国产在线观看| 午夜福利高清视频| 一区二区三区四区激情视频 | 国产一区二区在线av高清观看| 麻豆乱淫一区二区| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播| 变态另类成人亚洲欧美熟女| 国产成人精品婷婷| 特大巨黑吊av在线直播| 国内少妇人妻偷人精品xxx网站| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 欧美性感艳星| 国产大屁股一区二区在线视频| 午夜福利高清视频| 美女内射精品一级片tv| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 久久精品国产清高在天天线| 色哟哟·www| 久久人人精品亚洲av| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放 | 在线天堂最新版资源| 欧美精品一区二区大全| 久久中文看片网| 两个人视频免费观看高清| 精品人妻熟女av久视频| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清| 黄色一级大片看看| 午夜爱爱视频在线播放| 国产视频内射| 真实男女啪啪啪动态图| 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| 亚洲七黄色美女视频| 成年免费大片在线观看| 精品久久久久久久久久免费视频| 人妻制服诱惑在线中文字幕| 亚洲精品色激情综合| 国产精品一二三区在线看| 国产伦在线观看视频一区| 亚洲av男天堂| 99久国产av精品| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 欧美一区二区亚洲| 欧美高清性xxxxhd video| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件| 国产在线精品亚洲第一网站| 精品久久久久久久久亚洲| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 观看免费一级毛片| 国产色爽女视频免费观看| 国产成人精品婷婷| 村上凉子中文字幕在线| 97人妻精品一区二区三区麻豆| 校园人妻丝袜中文字幕| 啦啦啦啦在线视频资源| 18+在线观看网站| 三级国产精品欧美在线观看| 久久国产乱子免费精品| 噜噜噜噜噜久久久久久91| 亚洲成a人片在线一区二区| 麻豆成人av视频| 国产极品天堂在线| 少妇被粗大猛烈的视频| 国产一区二区在线av高清观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 欧美潮喷喷水| 99久久久亚洲精品蜜臀av| 亚洲国产欧洲综合997久久,| 亚洲精品久久国产高清桃花| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区 | 国产高清激情床上av| 国产人妻一区二区三区在| 色综合色国产| or卡值多少钱| 天堂网av新在线| 中文欧美无线码| 最近手机中文字幕大全| 精品少妇黑人巨大在线播放 | 午夜福利视频1000在线观看| 国产午夜精品论理片| 日日撸夜夜添| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 少妇熟女aⅴ在线视频| av又黄又爽大尺度在线免费看 | 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 哪里可以看免费的av片| 观看免费一级毛片| 欧美bdsm另类| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区 | 毛片女人毛片| 精品不卡国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | 91久久精品国产一区二区成人| 免费一级毛片在线播放高清视频| 久久久久久伊人网av| 久久精品国产99精品国产亚洲性色| 国产熟女欧美一区二区| 免费人成视频x8x8入口观看| 国产成人freesex在线| 国产一区二区亚洲精品在线观看| 成人综合一区亚洲| 久久久久久久久久黄片| 精品99又大又爽又粗少妇毛片| 日韩av不卡免费在线播放| videossex国产| 亚洲国产日韩欧美精品在线观看| 深夜精品福利| 成熟少妇高潮喷水视频| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 欧美人与善性xxx| 精品久久国产蜜桃| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久 | 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 国产视频内射| 亚洲成人久久性| 成人无遮挡网站| 欧美+日韩+精品| 久久久久久国产a免费观看| 国产 一区 欧美 日韩| 26uuu在线亚洲综合色| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久电影| 一级毛片我不卡| 亚洲国产日韩欧美精品在线观看| 国产视频首页在线观看| 麻豆一二三区av精品| 久久久久久久久久黄片| 国产 一区 欧美 日韩| 日韩精品有码人妻一区| 成熟少妇高潮喷水视频| 精品久久久久久久久亚洲| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 最近手机中文字幕大全| 在线天堂最新版资源| 夜夜爽天天搞| 国产黄片美女视频| av卡一久久| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 国产精品福利在线免费观看| 欧美色欧美亚洲另类二区| 国内少妇人妻偷人精品xxx网站| 国产精华一区二区三区| 亚洲中文字幕日韩| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 久久午夜福利片| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 综合色av麻豆| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 午夜久久久久精精品| 精品国产三级普通话版| 国产久久久一区二区三区| eeuss影院久久| 婷婷色av中文字幕| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 亚洲欧美精品专区久久| 亚洲精品456在线播放app| 自拍偷自拍亚洲精品老妇| 亚洲人与动物交配视频| 男人舔奶头视频| 国产美女午夜福利| 1000部很黄的大片| 久99久视频精品免费| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片| 欧美成人a在线观看| 婷婷亚洲欧美| 好男人视频免费观看在线| 国产黄片美女视频| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线 | 99热6这里只有精品| 在线观看av片永久免费下载| 热99re8久久精品国产| 日韩一本色道免费dvd| 国产精品一区www在线观看| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 91久久精品电影网| 最近2019中文字幕mv第一页| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| 国产av在哪里看| 青春草国产在线视频 | 亚洲国产精品成人久久小说 | 晚上一个人看的免费电影| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app| 美女大奶头视频| 极品教师在线视频| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 国产91av在线免费观看| 久久久久久伊人网av| 国产大屁股一区二区在线视频| 我的女老师完整版在线观看| 亚洲人成网站高清观看| 亚洲精品粉嫩美女一区| 免费av观看视频| 乱人视频在线观看| 亚洲欧美日韩东京热| 亚洲av第一区精品v没综合| 看免费成人av毛片| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 国产淫片久久久久久久久| 我的老师免费观看完整版| 精品一区二区三区视频在线| 男女啪啪激烈高潮av片| 干丝袜人妻中文字幕| 精品人妻视频免费看| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久 | 你懂的网址亚洲精品在线观看 | 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 亚洲性久久影院| 青青草视频在线视频观看| 国产成人freesex在线| 免费人成视频x8x8入口观看| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 99国产极品粉嫩在线观看| 干丝袜人妻中文字幕| av国产免费在线观看| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 国产成人精品一,二区 | 黄色配什么色好看| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看 | 国产av麻豆久久久久久久| 成人特级av手机在线观看| 97超碰精品成人国产| 99九九线精品视频在线观看视频| 黄色配什么色好看| 亚洲va在线va天堂va国产| 亚洲第一区二区三区不卡| 亚洲欧美日韩高清专用| 日产精品乱码卡一卡2卡三| 免费看日本二区| 热99在线观看视频| 精品久久久噜噜| 精品久久久久久久久av| 国产伦在线观看视频一区| 日日摸夜夜添夜夜爱| 国产老妇女一区| 国产老妇伦熟女老妇高清| 欧美+亚洲+日韩+国产| 99热这里只有是精品在线观看| 亚洲成人中文字幕在线播放| 99久久人妻综合| 亚洲精品色激情综合| 久久这里有精品视频免费| 深爱激情五月婷婷| 黄色配什么色好看| 99久久精品国产国产毛片| 日本免费一区二区三区高清不卡| 欧美丝袜亚洲另类| 热99在线观看视频| 免费观看精品视频网站| 久久综合国产亚洲精品| 国产精品一区二区在线观看99 | 国产精品三级大全| 国产成人一区二区在线| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 麻豆国产97在线/欧美| 久久久欧美国产精品| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 日本欧美国产在线视频| 免费看a级黄色片| 精品99又大又爽又粗少妇毛片| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| 精品免费久久久久久久清纯| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 老女人水多毛片| 久久久精品94久久精品| 亚洲欧美日韩东京热| 一级毛片我不卡| 午夜福利高清视频| 特大巨黑吊av在线直播| 亚洲精品色激情综合| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频 | 欧美色欧美亚洲另类二区| 久久精品久久久久久噜噜老黄 | 99久久久亚洲精品蜜臀av| 色视频www国产| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 成人漫画全彩无遮挡| 婷婷精品国产亚洲av| 99在线视频只有这里精品首页| 日本与韩国留学比较| 亚洲不卡免费看| 国产国拍精品亚洲av在线观看| 色5月婷婷丁香| 好男人视频免费观看在线| 男的添女的下面高潮视频| 亚洲精品456在线播放app| av免费在线看不卡| 在线播放无遮挡| 六月丁香七月| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 又粗又硬又长又爽又黄的视频 | 国产精品日韩av在线免费观看| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 国产精品久久久久久精品电影小说 | 亚洲精品久久久久久婷婷小说 | 亚洲丝袜综合中文字幕| 成人午夜高清在线视频| 精品一区二区三区人妻视频| 免费看日本二区| 亚州av有码| 国产伦在线观看视频一区| 国产精品久久视频播放| 亚洲精品亚洲一区二区| 日本在线视频免费播放| 国产一区二区激情短视频| 黄色一级大片看看| 亚洲欧美中文字幕日韩二区| 欧美bdsm另类| 日韩一区二区视频免费看| 欧美激情在线99| 国产精品一区二区性色av| 亚洲精品456在线播放app| 日韩三级伦理在线观看| 亚洲在久久综合| 日本欧美国产在线视频| 97人妻精品一区二区三区麻豆| 亚洲在线自拍视频| 嫩草影院新地址| 永久网站在线| 一级av片app| 亚洲国产欧洲综合997久久,| 国产精品乱码一区二三区的特点| 久久久久九九精品影院| 久久人人精品亚洲av| 真实男女啪啪啪动态图| 欧美日韩乱码在线| 日本黄大片高清| 蜜桃亚洲精品一区二区三区| 亚洲熟妇中文字幕五十中出| 人妻制服诱惑在线中文字幕| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 久久久久久久久中文| 久久午夜福利片| 亚洲精品久久久久久婷婷小说 | 国产精品人妻久久久久久| 中国美女看黄片| 亚洲av中文av极速乱| av黄色大香蕉| 免费大片18禁| 麻豆久久精品国产亚洲av| 午夜福利成人在线免费观看| 97在线视频观看| 波野结衣二区三区在线| 欧美色欧美亚洲另类二区| 在线免费观看的www视频| 色5月婷婷丁香| 日本欧美国产在线视频| 色噜噜av男人的天堂激情| 精品国内亚洲2022精品成人| 色播亚洲综合网| 男女啪啪激烈高潮av片| 中文字幕人妻熟人妻熟丝袜美| 一级毛片久久久久久久久女| 身体一侧抽搐| 亚洲久久久久久中文字幕| 久久久久久大精品| 国产熟女欧美一区二区| 嘟嘟电影网在线观看| 精品久久久久久久久av| 在线观看66精品国产| 日本黄色片子视频| 国产亚洲91精品色在线| 99久久九九国产精品国产免费| 51国产日韩欧美| 婷婷六月久久综合丁香| 久久久久免费精品人妻一区二区| 日本一二三区视频观看| 欧美日韩精品成人综合77777| 美女被艹到高潮喷水动态| 精品久久久久久久末码| 亚洲欧美精品专区久久| 国产探花在线观看一区二区| 亚洲五月天丁香| 国产精品福利在线免费观看| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 最好的美女福利视频网| 日韩大尺度精品在线看网址| 一个人观看的视频www高清免费观看| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 久久6这里有精品| 久久久午夜欧美精品| 99热这里只有是精品50| 卡戴珊不雅视频在线播放| 蜜臀久久99精品久久宅男| 久久久精品大字幕| 男女视频在线观看网站免费| 国产av在哪里看| 青春草视频在线免费观看| 久久午夜福利片| 深夜a级毛片| 99久久精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲成人中文字幕在线播放| 中文字幕av在线有码专区| 国产精华一区二区三区| avwww免费| 国产伦理片在线播放av一区 | 欧美日韩一区二区视频在线观看视频在线 | 熟妇人妻久久中文字幕3abv| 亚洲欧美中文字幕日韩二区| 日日撸夜夜添| 国产毛片a区久久久久| 麻豆精品久久久久久蜜桃| 99在线人妻在线中文字幕| 女同久久另类99精品国产91|