• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The correlationship between the metabolizable energy content,chemical composition and color score in different sources of corn DDGS

    2014-03-23 06:24:40YongJieJianZhangLiZhaoQiuMaandChengJi

    Yong-Z Jie,Jian-Y Zhang,Li-H Zhao,Qiu-G Maand Cheng Ji

    The correlationship between the metabolizable energy content,chemical composition and color score in different sources of corn DDGS

    Yong-Z Jie?,Jian-Y Zhang?,Li-H Zhao,Qiu-G Ma*and Cheng Ji*

    Background:This study was conducted to evaluate the apparent metabolizable energy(AME)and true metabolizable energy(TME)contents in 30 sources of corn distillers dried grains with solubles(DDGS)in adult roosters,and establish the prediction equations to estimate the AME and TME value based on its chemical composition and color score.

    Metabolizable energy,Distillers dried grains with solubles,Rooster,Predictive equation

    Background

    Distillers dried grains with solubles(DDGS)is a coproduct from the ethanol industry,which is the residual component of the grain kernel after the starch has been fermented.In the United States the productions and supply of DDGS is increasing annually.Currently,the increased production of DDGS has been widely used in ruminant and swine feeding.In 2011,the majority(80%) of DDGS was fed to ruminants.The swine industry used nearly 10%of DDGS,whereas the poultry industry used around 9%of total DDGS[1].However,previous researches had demonstrated that DDGS could be incorporated into laying hen diets at levels up to 15%to maintain egg production and had no negative effect [2-5].In 2009,China was the second largest corn producer in the world.Besides China had become the third largest ethanol fuel producer after Brazil and the U.S. [6].In 2006-2007,China DDGS production was 3.54 million tons and the productions was increasing annually[7],but only about 0.6 million tons DDGS from theethanol industry and approximately 3 million tons mainly from drinking wine industry[8].In 2010,China imported about 3.02 million tons DDGS from The U.S. and China had become the largest import country of America’s DDGS[9].

    DDGS is not a completely homogenous ingredient. Differences in processing procedures and grain source may lead to large variations in the nutritional value of DDGS[10,11].Furthermore,variable DDGS composition and instable quality may ultimately limit its use in poultry diets.Research had demonstrated the quality of DDGS could be evaluated based on color and chemical composition,because darker and high fiber content of DDGS results in lower TME[12-14]and amino acid digestibility[12,15-17].However,there is little information about the correlation between ME content and chemical composition of DDGS from China.

    Some previous studies[17,18]have indicated that the TME content of DDGS varied from 2,490 to 3,190 kcal/kg. Based on the instable quality of DDGS,it is important for marketers and buyers to develop a rapid method of evaluating metabolizable energy of DDGS.The objective of this study was to measure the AME and TME content in 30 sources of corn DDGS in adult roosters,and establish the prediction equations to estimate the metabolizable energy value based on their chemical composition and color score.

    Methods

    Samples of corn DDGS

    Thirty sources of corn DDGS(the wheat DDGS,soghum DDGS and blend DDGS were not included in the present study)from ethanol plants in 11 provinces of China and the United States were used in this experiment(Table 1).The content of AME and TME in each source of DDGS was measured using roosters.All DDGS samples were ground using a Wiley Mill(model 8,Xingshi Scientific,BJ)equipped with a 2-mm screen, before being measured color score and fed roosters.The DDGS sources were analyzed for AME,TME and the degree of lightness(L*),redness(a*),and yellowness(b*) was measured using the Hunterlab colorimeter(model sc-80c,Kang Guang Photo Imaging China Inc.,SPTCY 17017,BJ).Reported color score was the mean of 6 measurements,with the sample being mixed between each determination.Low values for L*,a*and b*indicated a dark color and lower degrees of redness and yellowness, whereas higher scores indicated a light color and greater degrees of redness and yellowness,respectively.

    Birds and housing

    This study was approved by the Animal Care and Use Committee of the China Agricultural University.In total, 95 healthy Hy-Line brown roosters(BW=2.00±0.10 kg, 25 wk of age)were purchased from a local commercialcompany(Beijing Vocational College of Agriculture Poultry Co.,Ltd,Beijing,China).Prior to the feeding trial,every bird was sutured a threaded hollow plastic cap around the vent for screwing a plastic bag to collect excreta[19].All birds were housed in individual wire cages(47 cm×60 cm×36 cm)for an acclimation and preconditioning period for 4 wk.Birds were maintained on a 16-h light schedule and allowed ad libitum access to water.Room temperature was maintained at 23±2°C.

    Table 1 The origin of the thirty kinds of distillers dried grains with solubles

    Experimental procedures

    The experiment was conducted according to the modified assay program[20],cockerels were precision fed with 50 g of DDGS after 48 h starvation by Sibbald’s crop intubation[21]method.A randomized incompleteblock design was used with 3 periods and 9 replicates totally for each sample.During each period,90 roosters were randomly allotted to 30 treatment groups,each of groups included 3 birds,three birds were deprived of feed for 48 h to ensure that no feed residues remained in the gastrointestinal tract and then tube fed 50 g of one source of DDGS,and other 5 roosters were fasted throughout to allow for the determination of endogenous energy losses.Excreta was collected for 48 h into a plastic bag and then frozen at-20°C.Before analysis,the samples were lyophilized,allowed to reach equilibrium with the atmospheric moisture for 24 h,weighed and followed by fine grinding (<2 mm).The birds were returned to a conventional corn-soybean meal diet for 10 d and then rerandomized to treatments for the next replicates.Excreta were collected from 5 fasted roosters in each period to estimate basal endogenous energy.

    Table 2 Chemical composition of the 30 sources of distillers dried grains with solubles on an as-fed basis1

    Table 3 Color characteristics of the 30 sources of distillers dried grains with solubles1

    Chemical analyses

    Chemical composition of DDGS were analyzed according to standard methods[22]for moisture,crude protein,ash,crude fat,Neutral detergent fiber(NDF)and acid detergent fiber(ADF).All DDGS samples and excreta were analyzed for gross energy(GE)with an automatic adiabatic oxygen bomb calorimeter(PARR 1281, PARR Instruments,Moline,IL).AME content of the DDGS samples was determined by the method described by Cozannet[13].TME were calculated according to the procedure outlined by Gao[23].

    Statistical analyses

    The data were analyzed using the one-way analysis of ANOVA of SAS Institute(2003)[24]following a randomized incomplete block design.The individual rooster was the experimental unit.Mean and standard error of the samples were calculated using the PDIFF option of the LSMEANS statement.Correlations were applied to the value of AME,TME,nutrient composition and color data using the CORR procedure of SAS to determine if the value of AME,TME were correlated with nutrient composition and color data(L*,a*,b*).The variance was considered to be significant when P<0.05.Sequential multiple linear regression analysis(stepwise procedure) was employed using nutrient composition(crude protein,ash,crude fat,NDF,ADF),L*,a*,b*and GE as the independentvariablesand AME orTME asthe dependent variable.

    Results

    The analyzed crude protein,crude fat,ash,neutral detergent fiber and acid detergent fiber of the 30 DDGS sources were presented in Table 2.Crude fat contents varied from 1.43 to 15.08%,whereas the range of crude protein was narrower(23.30 to 30.61%).Neutral detergent fiber and acid detergent fiber contents ranged from 40.24 to 61.31 and 10.32 to 26.04%,respectively.Ash content ranged from 1.98 to 7.72%in the 30 DDGS samples.Coefficient of determination values was 0.47(P<0.01)between crude protein and analyzed ADF,and between crude protein and total fat was-0.58(P<0.01),suggesting there is a high positive correlation between crude protein and ADF, while a negative correlation between crude protein and crude fat content.

    DDGS from different provinces of China varied greatly in color,with the Hunterlab L*score ranging from 59.48 (lightest,Source 26)to 30.90(darkest,Source 2).Color score of a*value varying from 12.39 to 27.71,and b* value varying from 35.27 to 59.75(Table 3).Hunterlab L*,a*,and b*scores had mean values of 45.68,19.03 and 46.71.With regard to color score,there was little variation in the a*values among DDGS sources,whereas L* values and b*values were more variable and both highly correlated(0.48,P<0.01)(Table 4).

    Theanalyzed DM,grossenergy(GE),apparent metabolizable energy(AME),true metabolizble energy (TME)contents AME:GE and TME:GE ratio of the 30 DDGS were presented in Table 5.Gross energy content ranged from 16.85 MJ/kg to 22.18 MJ/kg in the 30 DDGS samples and averaged 19.38 MJ/kg.Apparent metabolizable energy ranged from 5.93 to 12.19 MJ/kg and averaged 10.21 MJ/kg.True metabolizable energy ranged from 7.28 to 13.54 MJ/kg and averaged 11.56 MJ/kg.AME:GE ratio in this experiment averaged 52.6%and varied from 35.2 to 69.4%.The TME:GE ratio averaged 59.6%and varied from 43.2 to 77.3%among samples.Coefficient of determination values between b*value and TME was 0.39(P<0.05),and between crude ash content and TME was-0.64(P<0.01),suggesting there is a high positive correlation between TME content and b*value,while a negative one between TME content and ash content(Table 4).

    Table 4 Correlation coefficient(r)values between energy and chemical compositions,color score in DDGS samples1,2

    Table 5 DM、GE、AME、TME、AME:GE and TME:GE ratio of the 30 sources of distillers dried grains with solubles1,2

    Equations with which to estimate the ME on the basis of GE,color scores and chemical composition were developed based on 1 to 6 variables(Table 6).The best single indicator of ME was GE(R2=0.42).The other variables(ash,NDF,ADF,crude fat,L*)improved the accuracy of the ME prediction equations(R2=0.58,0.63, 0.67,0.69,0.70).Regression equation of the content of AME was AME=6.57111+0.51475 GE-0.10003 NDF+ 0.13380 ADF+0.07057 fat-0.57029 Ash-0.02437 L. Regression equation of the content of TME was TME= 7.92283+0.51475 GE-0.10003 NDF+0.13380 ADF+ 0.07057 fat-0.57029 Ash-0.02437 L.

    Discussion

    This experiment demonstrated that the degree of yellowness and the ash content of the corn DDGS highly correlated with the content of TME.This correlationseemed to be particularly exacerbated for the degree of lightness,which had the greatest variability among the 30 DDGS sources evaluated.These results implied that colorimetric measurements,such as L*and b*and chemical composition may provide a rapid method for identifying DDGS sources with good or poor energy availability.

    Table 6 Prediction equations for ME of DDGS based on chemical composition and color score

    Chemical composition of corn DDGS

    The average composition of the corn DDGS used in the present trials is in agreement with previous literature data[10,12,18]and different with wheat DDGS,because wheat DDGS is typically higher in protein(CP:32%-39%,DM)and considerably lower in fat(fat:3.6%-5.6%,DM)than corn DDGS[25-29].In our trials and in connection with the high number of samples obtained from China plants,an important variability in chemical composition was observed among samples,probably related to the characteristics of the grains and the process used to produce ethanol[10,30,31].However,no quantitative and even qualitative information on the processing technologies for the DDGS batches that were studied in the present trials was available.Therefore,we could not relate the nutritional values to the procedures but only to the chemical and physical characteristics of the DDGS.The range in chemical composition of DDGS was fully expected because the chemical composition of DDGS can be influenced by the degree of starch fermentation,heat processing,proportion of solubles added back to the distillers dried grains,and drying method at a particular production facility[32,33].

    Furthermore,the color attributes(L,a and b values) did not show good correlations with compositional traits.However,b values correlated negatively with ash. This observation indicates that some pre-fractionation procedures(such as fiber and impurities removal)could change color attributes,they could lead to lower ME content in DDGS.

    Color scores of corn DDGS

    It is clear from previous studies that during conversion of corn to ethanol,although the principle is similar, there is a great variation in grain material and methods used among processing plants[34,35].Still others use different parameters(pH,temperature,duration,sources of enzyme,type of equipment,size of screens used for grinding,etc.).Thus,the variations in grain and methods used among plants,plus complex interactions of many factors during the process within a plant,would lead to great variations in color score in the original DDGS samples from different plants.Previous observations showed that the range of Hunterlab L*,a*and b*scores were from 28.0-62.9(L*),4.1-14.47(a*)and 5.3-46.3(b*) [10,15,17,18,36,37].The DDGS samples evaluated by this experiment had L*values that ranged from 30.90 to 59.48,which agrees with previous observations.However,the values of a*(12.39-27.71)and b*(35.27 to 59.75)varied greater than previous researches.The results indicated that the color score of DDGS from China has a higher vary than the samples from America.Furthermore,among color attributes,L*and b*values had a very good positive correlation.

    Availability of energy

    It is clear from this study that the content of AME and TME of DDGS sources(sample no.29 and 30)from America was similar to the values reported by the National Research Council(NRC 1994)[38]for DDGS on 93%DM basis.However,the AME and TME values of DDGS samples from China(sample 3,4,8,11,15,16,23,25)were lower than that reported in the NRC(1994) [38].One possible reason for the inconsistency is that the raw materials and the processing methods are different between two countries[8].In fact,our study indicates that DDGS with high a*value and low L*value would contribute to the lower ME among DDGS samples.Similar observations have been done by Cromwell et al.[10]and Fastinger et al.[17]for DDGS when fed to poultry.This phenomenon affects mainly low starch content.DDGS and is likely associated with Maillard reaction occurrence producing brown compounds and a lower availability of amino acids[17]and energy(present trials).Unfortunately,in our trials,the samples with high rednessvaluesalso had thehighestADF content (Table 2).This also means that the conventional analyses for feed evaluation are insufficient for characterizing that have been overheated.

    Energy digestibility of DDGS

    Energy digestibility in poultry depends on genetic effects [39]and the bird BW or its degree of development.A high correlation between redness and ME:GE ratio suggested the energy digestibility of DDGS could be predicted by the color score.However,there is insufficiently documented about the relationship between ME:GE ratio and color value.In conclusion,our study provided the original data and more researches should be confirmed.

    Prediction energy equation of DDGS

    The use of composition analysis to predict energy values of feed ingredients for poultry is not novel[40-42].Recently,prediction equations derived from composition analysis have been developed for meat and bone meal [43],wheat DDGS[44]and corn DDGS[18].Batal and Dale[18]reported that the best predictors of TME for DDGS were fat,fiber,protein,and ash(R2=0.45).Using a covariate model and simple linear regression,Cozannet et al.[13]determined that the AME of wheat DDGS could be predicted with luminance(R2=0.77)and ADF(R2= 0.79).In this study,however,ash had the strongest correlation with TME rather than NDF or ADF.This could be a result of using wheat DDGS rather than corn DDGS.Furthermore,previous research developed TME prediction equations using only the DDGS from the U.S.[18].As a result,variation in chemical composition between samples was not as large as that observed between the diverse arrays of corn DDGS used in the current study.For example,the crude ash content of samples used by Batal and Dale[18]ranged from 3.9 to 5.4%,whereas crude ash in the current study ranged from 1.98 to 7.72%,respectively.

    Conclusions

    In conclusion,the quality of corn DDGS from this research varied greater than the corn DDGS published from previous observations.Metabolizable energy content had a relation with chemical composition and color score. This experiment suggested that measuring the chemical composition and color score of a corn DDGS sample may provide a quality parameter for identifying corn DDGS sources energy digestibility and metabolizable energy content.The correlationship between ME content and chemical composition and color score of DDGS from wheat, soghum or other blend grains needed further study.

    Competing interests

    The authors declare that they have no competing interests.

    Authors’contributions

    YZJ carried out the statistical analysis and drafted the manuscript.ZLH participated in the chemical analysis.MQG,JYZ and JC conceived the study, participated in its design and coordination,and helped draft the manuscript. All authors read and approved the final manuscript.

    Acknowledgements

    This study was financed by China Agriculture Research System(CARS-41-K15),Special Fund for Agro-scientific Research in the Public Interest (FARA200903006-01),and China Agriculture Research System-Beijing Team for Poultry Industry.Many thanks for the help during samples collection from Dr.Rongsheng Qiu(CP Group),Mr.Jianchuan Zhou(Tieqilishi Group),Mr. Baohai Guo(Uniwin group).The assistance of Huijun Yu in chemical analysis of the samples is gratefully appreciated.

    Received∶16 August 2013 Accepted∶23 September 2013

    Published∶25 September 2013

    1. Renewable Fuels Association:Industry resources:Co-Products.2011.http:// www.ethanolrfa.org/pages/industryresources-coproducts.

    2. Roberson KD,Kalbfleisch JL,Pan W,Charbeneau RA:Effect of corn distillers dried grains with solubles at various levels on performance of laying hens and yolk color.Int J Poult Sci 2005,4∶44-51.

    3. ?wi?tkiewicz S,Koreleski J:Effect of maize distillers dried grains with solubles and dietary enzyme supplementation on the performance of laying hens.J Anim Feed Sci 2006,5∶253-260.

    4. Lumpkins B,Batal A,Dale N:Use of distillers dried grains plus solubles in laying hen diets.J Appl Poult Res 2005,14∶25-31.

    5. Masa’deh MK,Purdum SE,Hanford KJ:Dried distillers grains with solubles in laying hen diets.Poult Sci 2011,90∶1960-1966.

    6. Kittiporn H:Effect of different sources and levels of distillers dried grains with solubles on production performance,serum biochemistry,bone parameters, carcass quality,and properties of myofibers of broilers,PhD thesis.Beijing: China Agriculture University,Animal Science Department;2009.

    7. Qi GH:Pay attention to the development and utilization of distillers’grains and solubles(DDGS)as feed ingredients.J Feed and Hus 2008, 9∶2-3.

    8. Guo FC:DDGS nutritional value and limiting factor.J China Poult 2007, 29∶43-44.

    9. The third China DDGS conference.http://www.foodchina.com.Cn/ fcc_website/ad/2012ddgs/2012ddgs-home.html.

    10.Cromwell GL,Herkelman KL,Stahly TS:Physical,chemical,and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. J Anim Sci 1993,71∶679-686.

    11.Belyea RL,Rausch KD,Clevengerc TE,Singh V,Johnston DB,Tumbleson ME: Sources of variation in composition of DDGS.J Anim Feed Sci 2010, 159∶122-130.

    12.Fastinger ND,Mahan DC:Determination of the ileal AA and energy digestibilities of corn distillers dried grains with solubes using growerfinisher pigs.J Anim Sci 2006,84∶1722-1728.

    13.Cozannet P,Lessire M,Gady C,Metayer JP,Primot Y,Skiba F,Noblet J: Energy value of wheat dried distillers grains with solubles in roosters, broilers,layers,and turkeys.Poult Sci 2010,89∶2230-2241.

    14.Rochell SJ,Kerr BJ,Dozier WA:Energy determination of corn co-products fed to broiler chicks from 15 to 24 days of age,and use of compositionanalysis to predict nitrogen-corrected apparent metabolizable energy. Poult Sci 2011,90∶1999-2007.

    15.Pahm AA,Scherer CS,Pettigrew JE,Baker DH,Parsons CM,Stein HH: Standardized amino acid digestibility in cecectomized roosters and lysine bioavailability in chicks fed distillers dried grains with solubles. Poult Sci 2009,88∶571-578.

    16.Ergul T,Martinez-Amezcua C,Parsons C,Walters B,Brannon J,Noll SL: Amino acid digestibility in corn distiliers dried grains with solubles.In Proceedings of the 2003 Poultry science association.WI:Mtg.,Madison;2003.

    17.Fastinger ND,Latshaw JD,Mahan DC:Amino acid availability and true metabolizable energy content of corn dried distillers grains with solubles in adult cecectomized roosters.Poult Sci 2006,85∶1212-1216.

    18.Batal AB,Dale NM:True metabolizable energy and amino acid digestibility of distillers dried grains with solubles.J Appl Poult Res 2006, 15∶89-93.

    19.Adeola O,Ragland D,King D:Feeding and excreta collection techniques in metabolizable energy assays for ducks.Poult Sci 1997,76∶728-732.

    20.McNab JM,Blair JC:Modified assay for true and apparent metabolisable energy based on tube feeding.Br Poult Sci 1988,29∶697-707.

    21.Sibbald IR:A bioassay for ture metabolisable energy in feedingstuffs. Poult Sci 1976,55∶303-308.

    22.AOAC:Official methods of analysis.17th edition.Gaithersburg,MD: Association of Official Analytical Chemists;2000.

    23.Gao CQ,Ma QG,Ji C,Lou XG,Tang HF,Wei YM:Evaluation of the compositional and nutritional values of phytase transgenic corn to conventional corn in roosters.Poult Sci 2012,91∶1142-1148.

    24.SAS Institute:SAS User’s guide:statistics.Cary NC:Version.9.1 ed.SAS Inst. Inc;2003.

    25.Waldo G,Nuez O,Yu PQ:Nutrient variation and availability of wheat DDGS,corn DDGS and blend DDGS from bioethanol plants.J Sci Food Agric 2009,89∶1754-1761.

    26.Thacker PA:Nutrient digestibility,performance and carcass traits of growing-finishing pigs fed diets containing dried wheat distillers grains with solubles.Can J Anim Sc 2006,86∶527-529.

    27.Bandegan A,Guenter W,Hoehler D,Crow GH,Nyachoti CM:Standardized ileal amino acid digestibility in wheat distillers dried grains with solubles for broilers.Poult Sci 2009,88∶2692-2599.

    28.Kluth H,Rodehutscord M:Effect of the duration of pre-feeding on amino acid digestibility of wheat distillers dried grains with solubles in broiler chicken.Poult Sci 2010,89∶681-687.

    29.Oryschak M,Korver D,Zuidhof M,Meng X,Beltranena E:Comparative feeding value of extruded and non-extruded wheat and corn distillers grains with solubles for broilers.Poult Sci 2010,89∶2183-2196.

    30.Spiehs MJ,Whitney MH,Shurson GC:Nutrient database for distillers dried grains with solubles produced from new ethanol plants in Minnesota and south Dakota.J Anim Sci 2002,80∶2639-2645.

    31.Kim EJ,Parsons CM,Srinivasan R,Singh V:Nutritional composition, nitrogen-corrected true metabolizable energy,and amino acid digestibilities of new corn distillers dried grains with solubles produced by new fractionation processes.Poult Sci 2010,89∶44-51.

    32.Martinez-Amezcua C,Parsons CM:Effect of increased heat processing and particle size on phosphorus bioavailability in corn distillers dried grains with solubles.Poult Sci 2007,86∶331-337.

    33.Martinez-Amezcua C,Parsons CM,Singh V,Srinivasan R,Murthy GS: Nutritional characteristics of corn distillers dried grains with solubles as affected by the amounts of grains versus solubles and different processing techniques.Poult Sci 2007,86∶2624-2630.

    34.Bothast RJ,Schlicher MA:Biotechnological processes for conversion of corn into ethanol.Appl Microbiol Biotechnol 2005,67∶19-25.

    35.Singh V,Johnston DB,Naidu K,Rausch KD,Belyea RL,Tumbleson ME: Comparison of modified dry-grind corn processes for fermentation characteristics and DDGS composition.Cereal Chem 2005,82∶187-190.

    36.Rosentrater KA:Some physical properties of distillers dried grains with solubles(DDGS).Appl Eng Agric 2006,22∶589-595.

    37.Liu K:Particle size distribution of distillers dried grains with solubles (DDGS)and relationships to compositional and color properties.Biores Technol 2008,99∶8421-8428.

    38.NRC:Nutrient requirements of poultry.Washington DC:9th rev.ed.Natl. Acad.Press;1994.

    39.Hassan AS,Delpech P:Energie métabolisable et digestibilité azotée chez les poulets en croissance∶Influence du genotype,de l’age et du régime. Genet Sel Evol 1986,18∶225-236.

    40.Sibbald IR,Czarecki J,Slinger SJ,Ashton GC:The prediction of metabolizable energy content of poultry feeding stuffs from a knowledge of their chemical composition.Poult Sci 1963,42∶486-492.

    41.Guirguis N:Evaluating poultry feedstuffs in terms of their metabolizable energy content and chemical composition.Aust J Exp Agric Anim Husb 1975,15∶773-779.

    42.Coates BJ,Slinger SJ,Summers JD,Bayley HS:Metabolizable energy values and chemical and physical characteristics of wheat and barley.Can J Anim Sci 1977,57∶195-207.

    43.Adedokun SA,Adeola O:Apparent metabolizable energy value of meat and bone meal for white pekin ducks.Poult Sci 2005,84∶1539-1546.

    44.Cozannet P,Primot Y,Gady C,Metayer JP,Callu P,Lessire M,Skiba F,Noblet J:Ileal digestibility of amino acids in wheat distillers dried grains with solubles for pigs.Anim Feed Sci Technol 2010,158∶177-186.

    doi∶10.1186/2049-1891-4-38

    Cite this article as:Jie et al.:The correlationship between the metabolizable energy content,chemical composition and color score in different sources of corn DDGS.Journal of Animal Science and Biotechnology 2013 4:38.

    Submit your next manuscript to BioMed Central and take full advantage of:

    · Convenient online submission

    · Thorough peer review

    · No space constraints or color fi gure charges

    · Immediate publication on acceptance

    · Inclusion in PubMed, CAS, Scopus and Google Scholar

    · Research which is freely available for redistribution

    Submit your manuscript at www.biomedcentral.com/submit

    *Correspondence:maqiugang@cau.edu.cn;jicheng@cau.edu.cn

    ?Equal contributors

    State Key Laboratory of Animal Nutrition,College of Animal Science and Technology,China Agricultural University,Beijing 100193,People's Republic of China

    ?2013 Jie et al.;licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative

    Commons Attribution License(http://creativecommons.org/licenses/by/2.0),which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.

    Methods:Twenty-eight sources of corn DDGS made from several processing plants in 11 provinces of China and others imported from the United States.DDGS were analyzed for their metabolizable energy(ME)contents, measured for color score and chemical composition(crude protein,crude fat,ash,neutral detergent fiber,acid detergent fiber),to predict the equation of ME in DDGS.A precision-fed rooster assay was used,each DDGS sample was tube fed(50 g)to adult roosters.The experiment was conducted as a randomized incomplete block design with 3 periods.Ninety-five adult roosters were used in each period,with 90 being fed the DDGS samples and 5 being fasted to estimate basal endogenous energy losses.

    Results:Results showed that the AME ranged from 5.93 to 12.19 MJ/kg,TME ranged from 7.28 to 13.54 MJ/kg. Correlations were found between ME and ash content(-0.64,P<0.01)and between ME and yellowness score(0.39, P<0.05)of the DDGS samples.Furthermore,the best-fit regression equation for AME content of DDGS based on chemical composition and color score was AME=6.57111+0.51475 GE-0.10003 NDF+0.13380 ADF+0.07057 fat-0.57029 ash-0.02437 L(R2=0.70).The best-fit regression equation for TME content of DDGS was TME=7.92283+0.51475 GE-0.10003 NDF+0.13380 ADF+0.07057 fat-0.57029 ash-0.02437 L(R2=0.70).

    Conclusions:This experiment suggested that measuring the chemical composition and color score of a corn DDGS sample may provide a quality parameter for identifying corn DDGS sources energy digestibility and metabolizable energy content.

    亚洲第一区二区三区不卡| 一级毛片我不卡| 99热这里只有是精品在线观看| 亚洲av不卡在线观看| 80岁老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 日日撸夜夜添| 国模一区二区三区四区视频| 高清在线视频一区二区三区| 国产在线免费精品| 亚洲av成人精品一二三区| 97在线视频观看| 高清欧美精品videossex| 国语对白做爰xxxⅹ性视频网站| 久久99热6这里只有精品| 一级毛片aaaaaa免费看小| 99视频精品全部免费 在线| 最黄视频免费看| 美女xxoo啪啪120秒动态图| 午夜激情av网站| 天天影视国产精品| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 视频中文字幕在线观看| 啦啦啦啦在线视频资源| 国产色婷婷99| 精品久久国产蜜桃| 91在线精品国自产拍蜜月| 韩国av在线不卡| 久久这里有精品视频免费| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 国产精品三级大全| 国产黄片视频在线免费观看| 特大巨黑吊av在线直播| 色94色欧美一区二区| 久久精品国产亚洲av涩爱| 成人毛片a级毛片在线播放| 日韩中文字幕视频在线看片| 91精品一卡2卡3卡4卡| 成人亚洲欧美一区二区av| 亚洲人成77777在线视频| 色网站视频免费| 看十八女毛片水多多多| 91精品一卡2卡3卡4卡| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 2018国产大陆天天弄谢| 99热6这里只有精品| 赤兔流量卡办理| 一级,二级,三级黄色视频| 国产精品免费大片| 三级国产精品片| 18+在线观看网站| 亚洲精品自拍成人| 国产男女内射视频| 久久99热6这里只有精品| 国产精品人妻久久久久久| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 大码成人一级视频| 亚洲五月色婷婷综合| 欧美变态另类bdsm刘玥| 美女主播在线视频| 最后的刺客免费高清国语| 国产亚洲精品第一综合不卡 | 波野结衣二区三区在线| 亚洲国产av影院在线观看| 丝袜美足系列| 精品视频人人做人人爽| 国产精品偷伦视频观看了| 国产精品女同一区二区软件| 婷婷成人精品国产| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 国产精品麻豆人妻色哟哟久久| 狠狠婷婷综合久久久久久88av| 免费不卡的大黄色大毛片视频在线观看| 一级毛片电影观看| 搡老乐熟女国产| 欧美日韩在线观看h| 国产成人免费观看mmmm| 毛片一级片免费看久久久久| 欧美亚洲日本最大视频资源| 老熟女久久久| 两个人免费观看高清视频| .国产精品久久| 国产精品 国内视频| 九九久久精品国产亚洲av麻豆| 9色porny在线观看| 久久久久网色| 夜夜爽夜夜爽视频| 99视频精品全部免费 在线| 少妇人妻 视频| 免费观看性生交大片5| 国产 精品1| 国产在线一区二区三区精| 成人午夜精彩视频在线观看| 久久免费观看电影| 成人18禁高潮啪啪吃奶动态图 | 在线精品无人区一区二区三| 日韩制服骚丝袜av| 丝袜脚勾引网站| 午夜免费男女啪啪视频观看| 国产欧美日韩综合在线一区二区| 久久久久网色| 伊人久久精品亚洲午夜| av免费在线看不卡| 亚洲精品成人av观看孕妇| 亚洲,欧美,日韩| 日韩伦理黄色片| 精品国产国语对白av| 少妇精品久久久久久久| freevideosex欧美| 国产高清有码在线观看视频| av在线app专区| 寂寞人妻少妇视频99o| 黑人猛操日本美女一级片| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 久久国产精品男人的天堂亚洲 | 国产熟女午夜一区二区三区 | 99热这里只有精品一区| av电影中文网址| 夜夜骑夜夜射夜夜干| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| av.在线天堂| 寂寞人妻少妇视频99o| 欧美老熟妇乱子伦牲交| 男的添女的下面高潮视频| 多毛熟女@视频| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| 久久久久精品性色| 精品一区二区三卡| 免费av不卡在线播放| 只有这里有精品99| 精品视频人人做人人爽| 亚洲人成77777在线视频| 国产高清有码在线观看视频| 国产永久视频网站| 色吧在线观看| 青青草视频在线视频观看| 一本大道久久a久久精品| 国产精品久久久久久久久免| 午夜影院在线不卡| www.av在线官网国产| 伊人亚洲综合成人网| 久久久久久久久久久免费av| 午夜日本视频在线| 色吧在线观看| 久久午夜福利片| 亚洲精品456在线播放app| 国产av一区二区精品久久| 男女免费视频国产| 中文字幕av电影在线播放| 国产成人精品婷婷| 18禁观看日本| 母亲3免费完整高清在线观看 | 男女免费视频国产| 亚洲美女视频黄频| 亚洲精品久久午夜乱码| 精品一区二区三区视频在线| 久久精品久久精品一区二区三区| 有码 亚洲区| a级毛片黄视频| 大又大粗又爽又黄少妇毛片口| 国产免费福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产在视频线精品| 天天影视国产精品| 日本免费在线观看一区| 26uuu在线亚洲综合色| 在线观看美女被高潮喷水网站| 国产高清国产精品国产三级| a级毛片免费高清观看在线播放| a 毛片基地| 精品久久久噜噜| 99精国产麻豆久久婷婷| 最黄视频免费看| 亚洲经典国产精华液单| 日韩中字成人| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| .国产精品久久| 日韩中文字幕视频在线看片| 最近2019中文字幕mv第一页| 人妻一区二区av| 国产 一区精品| 热re99久久国产66热| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 成人漫画全彩无遮挡| 18禁观看日本| 九九在线视频观看精品| 日日撸夜夜添| 青青草视频在线视频观看| 18禁动态无遮挡网站| 久久久久国产网址| 亚洲成人av在线免费| 免费观看在线日韩| 久久久精品94久久精品| 欧美成人精品欧美一级黄| 国产精品99久久久久久久久| 母亲3免费完整高清在线观看 | 欧美97在线视频| 色网站视频免费| 男女边吃奶边做爰视频| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| 天堂中文最新版在线下载| 亚洲精品国产色婷婷电影| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 91aial.com中文字幕在线观看| 国产成人免费无遮挡视频| 在线亚洲精品国产二区图片欧美 | 女性被躁到高潮视频| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 亚洲国产av影院在线观看| 熟女人妻精品中文字幕| 免费看不卡的av| 美女主播在线视频| 一区二区三区乱码不卡18| 丁香六月天网| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 91成人精品电影| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| 久久人人爽人人片av| videosex国产| 777米奇影视久久| 亚洲成人一二三区av| 欧美激情极品国产一区二区三区 | 国产国拍精品亚洲av在线观看| 五月天丁香电影| 精品人妻在线不人妻| a级毛片在线看网站| 久久久国产一区二区| 最近手机中文字幕大全| 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 国产精品无大码| av国产精品久久久久影院| 久久精品国产a三级三级三级| 大陆偷拍与自拍| 亚州av有码| 最近的中文字幕免费完整| 欧美激情 高清一区二区三区| 国产午夜精品久久久久久一区二区三区| 国精品久久久久久国模美| 亚洲国产精品国产精品| 两个人的视频大全免费| av天堂久久9| 少妇精品久久久久久久| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 一区二区三区精品91| 五月天丁香电影| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 在线观看国产h片| 91成人精品电影| 欧美bdsm另类| 香蕉精品网在线| 男女边摸边吃奶| 一本大道久久a久久精品| 免费大片黄手机在线观看| 亚洲精品国产色婷婷电影| 午夜影院在线不卡| 日韩制服骚丝袜av| 如何舔出高潮| 成人黄色视频免费在线看| 熟女人妻精品中文字幕| 中文字幕人妻丝袜制服| 一本久久精品| 人体艺术视频欧美日本| 丝袜美足系列| 男女无遮挡免费网站观看| 一区二区av电影网| 免费日韩欧美在线观看| 极品少妇高潮喷水抽搐| 熟女人妻精品中文字幕| 少妇精品久久久久久久| 精品人妻偷拍中文字幕| 9色porny在线观看| 国产一级毛片在线| 久久女婷五月综合色啪小说| 国产男人的电影天堂91| 99热全是精品| 国产精品.久久久| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 少妇高潮的动态图| 亚洲国产欧美在线一区| 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| 最近最新中文字幕免费大全7| 亚洲人与动物交配视频| www.av在线官网国产| xxx大片免费视频| 国产视频内射| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久久av| 免费人成在线观看视频色| 免费不卡的大黄色大毛片视频在线观看| 亚洲美女搞黄在线观看| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 91久久精品电影网| 亚洲欧美中文字幕日韩二区| 久久热精品热| 少妇 在线观看| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 日本黄大片高清| 男男h啪啪无遮挡| 久久久久国产网址| 国产综合精华液| 免费黄频网站在线观看国产| 少妇人妻 视频| 另类精品久久| 成人毛片a级毛片在线播放| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 婷婷色综合www| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 久久狼人影院| 国产欧美另类精品又又久久亚洲欧美| 免费黄网站久久成人精品| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 久久久午夜欧美精品| 国产黄色视频一区二区在线观看| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 午夜日本视频在线| 日本黄色片子视频| 成人黄色视频免费在线看| 免费看av在线观看网站| 最黄视频免费看| 特大巨黑吊av在线直播| 精品国产一区二区久久| 亚洲精品一区蜜桃| 日本vs欧美在线观看视频| 伊人久久国产一区二区| 成人国语在线视频| 久久国产精品男人的天堂亚洲 | 在线观看美女被高潮喷水网站| 人妻一区二区av| 99九九线精品视频在线观看视频| 精品人妻熟女毛片av久久网站| 日本av手机在线免费观看| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 亚洲久久久国产精品| 综合色丁香网| 国产白丝娇喘喷水9色精品| 美女福利国产在线| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 国产成人精品久久久久久| 一本一本综合久久| 欧美精品一区二区大全| 最近的中文字幕免费完整| freevideosex欧美| 欧美亚洲日本最大视频资源| 日韩不卡一区二区三区视频在线| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| av在线老鸭窝| 国产亚洲午夜精品一区二区久久| 97超碰精品成人国产| 国产精品一区二区在线不卡| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 九草在线视频观看| av国产久精品久网站免费入址| 亚洲成人av在线免费| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 婷婷成人精品国产| 亚洲欧美成人综合另类久久久| 国产深夜福利视频在线观看| 国产一区亚洲一区在线观看| 99久久精品一区二区三区| 激情五月婷婷亚洲| 国产成人freesex在线| 黄色毛片三级朝国网站| 国产av码专区亚洲av| 国内精品宾馆在线| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 一区在线观看完整版| 久久久久久人妻| 亚洲国产精品专区欧美| 日韩视频在线欧美| 青春草亚洲视频在线观看| 麻豆成人av视频| 日日摸夜夜添夜夜爱| 国产免费现黄频在线看| 我要看黄色一级片免费的| 人妻夜夜爽99麻豆av| 狂野欧美白嫩少妇大欣赏| 国产黄频视频在线观看| 久久久久久人妻| 一级毛片 在线播放| 久久国产精品男人的天堂亚洲 | 久久久久国产精品人妻一区二区| 如日韩欧美国产精品一区二区三区 | 久久久久久人妻| 七月丁香在线播放| 一区二区日韩欧美中文字幕 | 18禁在线无遮挡免费观看视频| 欧美日韩一区二区视频在线观看视频在线| a 毛片基地| 大话2 男鬼变身卡| 99热全是精品| 日韩精品有码人妻一区| 国产成人精品一,二区| 久久久精品94久久精品| 亚洲在久久综合| 大片免费播放器 马上看| 免费观看在线日韩| 久久精品国产亚洲网站| 久久久久精品久久久久真实原创| 又黄又爽又刺激的免费视频.| 九色成人免费人妻av| kizo精华| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 青春草国产在线视频| 少妇丰满av| tube8黄色片| 久久久精品94久久精品| www.av在线官网国产| av电影中文网址| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| 国产熟女午夜一区二区三区 | 一级毛片电影观看| www.av在线官网国产| 亚洲精品国产av成人精品| 母亲3免费完整高清在线观看 | 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 久久久久精品性色| 日本与韩国留学比较| 丝瓜视频免费看黄片| 精品午夜福利在线看| 熟女av电影| 91精品伊人久久大香线蕉| 男女免费视频国产| 妹子高潮喷水视频| 日日撸夜夜添| 国产成人午夜福利电影在线观看| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 国产精品一二三区在线看| 草草在线视频免费看| 美女中出高潮动态图| 在线观看国产h片| videosex国产| 黄色视频在线播放观看不卡| 美女主播在线视频| 欧美一级a爱片免费观看看| 搡老乐熟女国产| 国产白丝娇喘喷水9色精品| 美女cb高潮喷水在线观看| 久久久午夜欧美精品| 九九爱精品视频在线观看| 极品人妻少妇av视频| 老熟女久久久| 成人国语在线视频| 亚洲无线观看免费| 国产成人免费无遮挡视频| 岛国毛片在线播放| av卡一久久| 久久99一区二区三区| 国产69精品久久久久777片| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 中文字幕免费在线视频6| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 亚洲四区av| 欧美日韩在线观看h| 精品亚洲成国产av| 成人影院久久| 久久久久久久久久人人人人人人| 久久精品夜色国产| 国产伦精品一区二区三区视频9| 秋霞伦理黄片| 美女福利国产在线| 日韩一本色道免费dvd| 精品99又大又爽又粗少妇毛片| 少妇的逼好多水| 国产欧美亚洲国产| 久久久久精品性色| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 黄色毛片三级朝国网站| 国产av精品麻豆| 99九九在线精品视频| 九九在线视频观看精品| 亚洲欧美清纯卡通| 久久人妻熟女aⅴ| 日本欧美国产在线视频| 成人毛片a级毛片在线播放| 国产精品99久久99久久久不卡 | 高清在线视频一区二区三区| a级毛片免费高清观看在线播放| 色94色欧美一区二区| 狂野欧美白嫩少妇大欣赏| 搡女人真爽免费视频火全软件| 日韩欧美一区视频在线观看| 国产精品久久久久久av不卡| 亚洲精品自拍成人| 蜜桃久久精品国产亚洲av| 欧美国产精品一级二级三级| 亚洲成色77777| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 日日摸夜夜添夜夜添av毛片| 我要看黄色一级片免费的| 欧美日韩视频精品一区| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 91午夜精品亚洲一区二区三区| 亚洲美女搞黄在线观看| 中文字幕最新亚洲高清| 国产精品久久久久久久电影| 欧美亚洲日本最大视频资源| 2018国产大陆天天弄谢| 久久精品人人爽人人爽视色| 99热6这里只有精品| 99久久中文字幕三级久久日本| 久久av网站| 国产精品熟女久久久久浪| 国产一区二区在线观看日韩| 午夜免费观看性视频| 亚洲成人手机| 免费人妻精品一区二区三区视频| 一级爰片在线观看| 中文字幕av电影在线播放| 久久免费观看电影| 精品亚洲成a人片在线观看| 国产精品女同一区二区软件| 久久人妻熟女aⅴ| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 亚洲成色77777| 青春草国产在线视频| 各种免费的搞黄视频| 国产成人freesex在线| 熟女人妻精品中文字幕| 美女国产视频在线观看| 91精品三级在线观看| 欧美日韩av久久| 亚洲综合色惰| 十八禁网站网址无遮挡| 亚洲国产色片| 国产一区二区在线观看av| 熟女av电影| 五月天丁香电影| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添av毛片| 老司机影院成人| 亚洲怡红院男人天堂| 亚洲性久久影院| 久久久久精品性色| 99热网站在线观看| 精品人妻熟女毛片av久久网站| 黄色视频在线播放观看不卡| 亚洲av男天堂| 99国产精品免费福利视频| 亚洲欧美中文字幕日韩二区| 日本vs欧美在线观看视频| 一个人看视频在线观看www免费| 男人爽女人下面视频在线观看| 亚洲欧美成人综合另类久久久| 国产伦理片在线播放av一区| 精品一区二区三区视频在线| 精品一区二区免费观看| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 亚洲国产精品专区欧美| 国产在线视频一区二区| 在线免费观看不下载黄p国产|