• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and experimental study on lipophilicity and wound healing activity of ginger compounds

    2014-03-23 05:50:46MohammedAfrozBakhtMohammedAlajmiPerwezAlamAftabAlamPrawezAlamTariqMohammedAljarba

    Mohammed Afroz Bakht, Mohammed F. Alajmi, Perwez Alam, Aftab Alam, Prawez Alam, Tariq Mohammed Aljarba

    1Department of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia

    2Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Kingdom of Saudi Arabia

    3Department of Pharmacognosy, College of Pharmacy, Salman Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia

    Theoretical and experimental study on lipophilicity and wound healing activity of ginger compounds

    Mohammed Afroz Bakht1*, Mohammed F. Alajmi2, Perwez Alam2, Aftab Alam3, Prawez Alam3, Tariq Mohammed Aljarba3

    1Department of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia

    2Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Kingdom of Saudi Arabia

    3Department of Pharmacognosy, College of Pharmacy, Salman Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia

    PEER REVIEW

    Peer reviewer

    Dr. Abd El Raheim Mhammed Donia, Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt.

    Tel: +966560019012

    E-mail: donia22276@yahoo.com

    Comments

    The lipophilicity and wound healing activity of selected ginger compounds (6-shogaol 6-gingerol, 8-gingerol and 10-gingerol) has been investigated using chromatographic and computational methods, and percentage of wound contraction in experimental method was correlated to confirm the influence of log P on wound healing. Research reveals that lipophilicity could be a useful parameter for the determination and prediction of QSPR and QSPR study of ginger compounds.

    Details on Page 332

    Objective:To correlate the chromatographic and computational method to calculate lipophilicity of selected ginger compounds and to observe the effects of log P on wound healing.

    lipophilicity, RP-TLC, RM0, Calculated partition coefficient, Wound healing

    1. Introduction

    Lipophilicity is the most important physicochemical properties frequently used parameter in quantitative structure-activity relationship (QSAR) analysis[1]. It is an important tool to describe pharmacodynamic, pharmacokinetic and toxic aspects of drug activity. The lipophilic nature of compounds has been defined in many ways. The most applied one is a partition coefficient,P, or its decimal logarithm, logP, which represents the tendency of a molecule to partition itself between organic and aqueous phase. The traditional shake-flask partition method betweenn-octanol and water is often substituted by chromatographic approaches [reversedphase high performance liquid chromatography and reversed-phase thin-layer chromatography methods (RP-TLC)][2,3]. LogPin then-octanol-water system is a common measure of lipophilicity because of the similarity of this environment to biological membranes. However, other alternative approaches for measuring lipophilicity have also been developed such as chromatographic, artificial membranes, electro kinetic and partitioning between lipid and water phase approaches[4]. Lipophilicity is the most important physicochemical properties of compounds which involved in pharmacokinetic processes such as absorption, distribution, metabolism and excretion, as well as toxicity, usually referred to as ADMET[5]. Some of pharmaceutical industry publications have confirmed that poor oral absorption and pharmacokinetic properties are the main problems upset the potential drug claimants[6,7]. The lipophilic ginger rhizome extracts have yielded the potentially active components, gingerols and shogaols[8] and the lipophilicity increases as their alkyl side chain increases in length from 10 to 16 carbons[9]. Among them, chromatographic methods are still widely used for determination of the lipophilicity of drug-like compounds[10,11] and also has been found to offer a rapid method for the analysis of a large number compounds[11]. Ginger compounds have a variety of effects on the skin that may contribute to improved wound healing. Gingerol and shogaol in particular, is known to have anti-oxidant and antiinflammatory properties[12], and has been reported to promote new blood vessel formation[13]. One of the recent experimental data suggests that a combination of curcumin and ginger extract might provide a novel approach to improving structure and function in skin and, concomitantly, reducing formation of non-healing wounds in “at-risk” skin[14]. Lipophilic drugs creating an effective dermal drug delivery system that simultaneously repairs the skin barrier and facilitates wound healing[15]. The aim of this study is the determination of the lipophilicity of a ginger compounds, by chromatographic and computational methods and to see the influence of lipophilicity on wound healing.

    2. Materials and methods

    2.1. Materials

    Acetonitrile (HPLC-grade) was supplied by (Darmstadt, Germany), and water was obtained from our laboratory water still (DAFCO, Germany). TLC plates (5 cm×10 cm) RP-18 F254S (Merck, Darmstadt, Germany). Standard 6-shogaol (CAS No. 555-66-8), 6-gingerol (CAS No. 23513-14-6), 8-gingerol (CAS No. 23513-08-8) and 10-gingerol (CAS No. 23513-15-7) were obtained from Natural Remedies Bangalore Pvt. Ltd., India.

    2.2. Methods

    Mixtures of acetonitrile and water with acetonitrile content between 95% and 50% v/v in 5% increments were kept separately in 10 different chromatographic chambers, saturated with solvent for 2 h[16]. The tested compounds were dissolved in methanol (1 mg/ mL) and 10 μL samples of the solutions were separately spotted on the plates. After developing and drying the plates, the spots were observed under UV light at λ=254 nm after spraying p-anisaldehyde as spraying reagent. TheRfvalues are means from three independent determinations.RMvalues of tested compounds were calculated using equation (1):

    The correlations between theRMvalues and concentration of organic solvent were calculated separately for each compound according to equation:

    WhereCis the concentration of acetonitrile in the mobile phase (% v/v).

    Calculation of LogP: All the theoretical calculation was done using the Alogps 2.1 online program at Virtual Computational Chemistry Laboratory[17].

    2.3. Excisions wound healing

    2.3.1. Animals

    The mice (25-30 g) of either sex were obtained from the experimental animal care centre, College of Pharmacy, Salman Bin Abdulaziz University, Al-Kharj. The animals were kept in animal house in standard condition of temperature [(22±2) °C] and relative humidity (55%) with 12 h light/dark condition. They were provided with Purina chow diet and drinking waterad libitumduring the whole period of experiment. The experiments and procedures used were approved by the Ethical Committee of the College of Pharmacy, Salman Bin Abdulaziz University, Al-Kharj, KSA.

    2.3.2. Wound

    The excision wound model was used to monitor wound contraction and wound closure time. Five groups (n=5) of mice were used in the experiment. At the beginning of the experiment, the dorsal fur of each mouse was shaved with an electric clipper. After 24 h, all animals were anesthetized by 1 mL of intravenous ketamine hydrochloride (10 mg/kg body weight) and the shaved areas were sterilized with 70% alcoholic solution. A predetermined dorsal area (approximately 20 mm2) was excised using toothed forceps, scalpel and pointed scissors. A fresh surgical blade was used for the perpendicular cut in each animal and tension of skin was kept constant during the procedure.

    2.3.3. Treatments

    After the making wounds, all mice were randomly divided into five groups and colored with a non-toxic color. Group A, Group B, Group C, Group D were orally administered 35 mg/ kg 6-shogoal, 6-gingerol, 8-gingerol, 10-gingerol respectively. Group E as the control group received tap water. All mice were monitored daily for 10 d. The wound areas were calculated using vernier caliper immediately after the wound excision and 10 d post wounding.

    3. Results

    The chemical structures of the ginger compounds are shown in Table 1. The lipophilicity (RMO) were obtained fromRfvalues (Table 2) by the following equations 1 and 2 and theRMvalue was calculated from theRfvalue by the equation 1[18,19].

    Table 1 Name and structure of ginger compounds investigated.

    Table 2 Rfvalue of ginger compounds.

    Lipophilicity value is obtained by the extrapolation to zero concentration of polar component in the Figure 1 drawn betweenRMand concentration of polar component in mobile phase.

    Figure 1. Relationship between the extrapolated percentage organic solvent and RM.

    TheRMOandbin the above equation 2 were represents intercepts and slope of the figure drawn betweenCandRM. TheCin the equation 2 was the concentration of polar component in the mobile phase. The lipophilicity determined in the RP-TLC was being correlated with the theoretical partition coefficients (logP) of the compounds using ALOGPs, AC logp, miLogp, MLOGP, Kow-Win and XLOGP2 under the ALOGPS 2.1 program. The calculated logPvalues from above described computer programs are listed in Table 3. In general, the lowest logPvalues were obtained from the calculations made with MLOGP program. The difference between theoretical values derived from these programs was a consequence of a method of calculation of logPvalues.

    Table 3 Various types of calculated log P for ginger compounds.

    The lipophilicity values determined in TLC were correlated with the above theoretically calculated various logPby linear regression analysis and as a result equation 3 to 8 are generated shown below:

    RMvalues of the ginger compounds decreased linearly with increasing concentration of organic modifier (Acetonitrile) in the mobile phase. The dependence ofRMon the concentration of acetonitrile in the mobile phase for ginger compounds is presented in Table 4 and Figure 1. The relative lipophilicity, expressed asRMOvalues, and statistical parameters for four ginger compounds under investigation are listed in Table 5. The lipophilicity parameters determined by RP-TLC and expressed asRMOvalues were in the range 2.170-2.640 (Table 5). The effects of lipophilicity (RMO) are compared with the wound healing activity of gingerol and shogaol presented in Table 6.

    Table 4 RMvalue of ginger compounds.

    Table 5 The relative lipophilicity and statistical parameters for four ginger compounds.

    Table 6 Excision wound studies showing average reduction in wound size, when treated with compounds and control (n=5).

    The correlation coefficient and standard deviation of the equations 3-8 are in the Table 7. The comparison of correlation coefficient of equation 3-8 is shown in Figure

    2 and it revealed that Kow-Win had higher correlation coefficient than the other theoretical calculated logP, hence theoretically calculated Kow-Win can be used instead of lipophilicity wherever applicable in quantitative structurepharmacokinetics relationship (QSPR) and in turn QSAR study for the above ginger compounds under investigation.

    Table 7 Correlation coefficient and standard deviation.

    Figure 2. Comparison of the correlation coefficient of the equation 3-8.

    The order of wound healing activity of ginger compounds 6-shogaol>10-gingerol>8-gingerol>6-gingerol. The lipophilicity of compound has been compared with reduction in wound size (%). It is quite interesting to see that order of wound healing property of ginger compounds was directly dependent on lipophilicityi.e.more lipophilic compound has the highest activity (Table 5 and 6).

    4. Discussion

    A quantitative structure retention relationships could be obtained with the help of retention parameter (RMO). A higherRMOvalue indicates greater lipophilicity and depends on the different arrangements of substituents in a structure. Presence of aliphatic chain length and double bond greatly influences the difference ofRMOamongst four ginger compounds in this experiment. Replacing OH group of 6-gingerol and inserting double bond theRMOwas increased. Presence of additional -CH2- group in 10-gingerol makes theirRMO(2.521) higher in comparison to 6-gingerol (RMO=2.170) and 8-gingerol (RMO=2.342) having less branching and no double bonds. Order of wound healing property is also directly proportional to their logP(RMO). On close examination of structure of ginger compounds it is also observed that double bond in aliphatic chain is more essential for the biological activity.

    Experimentally determinedRMOvalues depend on the concentration of organic modifier (acetonitrile) in the mobile phase and it is linearly dependent. Satisfactory correlation was obtained between retention constants and ALOGPs, AC logp, miLogp, MLOGP, Kow-Win and XLOGP2. RMOcould be a useful parameter for the determination and prediction of QSPR and QSAR study of ginger compounds. Lipophilicity is most important determinant factor for any biological activity. In this particular experiment, more lipophilic ginger compound exhibiting higher wound healing activity.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    The authors are thankful to the staff and College of Pharmacy, Salman Bin Abdul Aziz University, providing animal facilities for the present studies. This research is funded by grant from the deanship under Grant No. RGPVPP-150 at King Saud University.

    Comments

    Background

    Main objective of present study is to correlate the chromatographic and computational method to calculate lipophilicity of selected ginger compounds and to observethe effects of logPon wound healing. With the help of logPvalues we will generate QSAR data and their analysis, pharmacokinetics and pharmacodyanamics of a ginger compounds.

    Research frontiers

    The present study mainly described how lipophilicity influence the biological activity of a ginger compounds. LogPwas generated by chromatographic (RP-TLC) and computational (Software) methods so as to access the effect of lipophilicity on wound healing.

    Related reports

    Comparison of predicted and experimental lipophilicity calculation and afterwards observation of their influence on biological activity were also reported for many organic synthesized compounds but not for the herbal originated compounds.

    Innovations and breakthroughs

    With known structure of herbal origin like ginger compounds of their lipophilicity to observe the impact of biological activity is quite interesting in the present research article.

    Applications

    Literature reveals that lipophilicity is an important physicochemical property of drugs. This research will be helpful for the scientists working on different plant constituents to identify lead molecules.

    Peer review

    The lipophilicity and wound healing activity of selected ginger compounds (6-shogaol 6-gingerol, 8-gingerol and 10-gingerol) has been investigated using chromatographic and computational methods, and percentage of wound contraction in experimental method was correlated to confirm the influence of logPon wound healing. Research reveals that lipophilicity could be a useful parameter for the determination and prediction of QSPR and QSAR study of ginger compounds.

    [1] Szymanski P, Skibinski R, Liszka M, Jargielo L, Mikiciuk-Olasik E, Komsta L. A TLC study of the lipophilicity of thirtytwo acetylcholinesterase inhibitors—1,2,3,4-tetrahydroacridine and 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives. Cent Eur J Chem 2013; 11: 927-934.

    [2] Bajda M, Boryczka S, Wietrzyk J, Malawska B. Investigation of lipophilicity of anticancer-active thioquinoline derivatives. Biomed Chromatogr 2007; 21: 123-131.

    [3] Kepczynska E, Obloza E, Stasiewicz UA, Bojarski J, Pyka A. Lipophilicity of thiobarbiturates determined by TLC. Acta Pol Pharm 2007; 64: 295-302.

    [4] Hartmann T, Schmitt J. Lipophilicity-beyond octanol/water: a short comparison of modern technologies. Drug Discov Today Technol 2004; 1: 431-439.

    [5] Biagi G, Recantini M, Barbaro A, Borea P. Lipophilicity estimation of drugs. Process Control Qual 1997; 10: 129-149.

    [6] Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, et al. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem 2004; 47: 224-232.

    [7] Leeson PD, Davis AM. Time-related differences in the physical property profiles of oral drugs. J Med Chem 2004; 47: 6338-6348.

    [8] Haghighi M, Khalvat A, Toliat T, Jallaei S. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med 2005; 8: 266-271.

    [9] Nurtjahja-Tjendraputra EA, Ammit J, Roufogalis BD, Tran VH, Duke CC. Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res 2003; 111: 259-265.

    [10] Waksmundzka-Hajnos MD, Matosiuk A, Petruczynik Kijkowska-Murak U. Determination of the lipophilicity of selected isoquinoline alkaloids by RP-TLC. Acta Chromatographica 2008; 20: 563-573.

    [11] Jevri? L, Koprivica GB, Mi?ljenovi? NM, Jovanovi? B?. Chromatographic behavior and lipophilicity of s-triazine derivatives on silica gel impregnated with paraffin oil. APTEFF 2010; 41: 159-168.

    [12] Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, et al. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol esterstimulated mouse skin. Oncogene 2005; 15: 2558-2567.

    [13] Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): review of recent research. Food Chem Toxicol 2008; 46: 409-420.

    [14] Adam B, Muhammad N, Aslam K, Johnson J, James V. A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid-damaged hairless rat skin. Wound Repair Regen 2009; 17: 360-365.

    [15] Xie E, Xu R, Wang C, Pu Z, Liusup H, Zhou L, et al. The effect of moist exposed burn ointment on maintaining a physiological moist environment in treating burn wound. Ann Burns Fire Disasters 2002; 15: 166-167.

    [16] Malawska B, Kulig, K, Buck A, Zbek P, Wieckowska A. The study of the lipophilicity of α - (4-phenylpiperazin-1-yl) -γ Phthalimidobutyramides using chromatographic and computational methods. Biomed Chromatogr 2008; 22: 688-694.

    [17] Virtual Computational Chemistry Laboratory. ALOGPS 2.1. bei Munich: Virtual Computational Chemistry Laboratory; 2005. [Online] Available from: http://www.vcclab.org/lab/alogps/ [Accessed on 17th September, 2013].

    [18] Sherma J. Thin-layer chromatography of pesticides- a review of applications for 2002-2004. Acta Chromatographica 2005; 15: 5-30.

    [19] Tibor C, Gyula O. Relationship between lipophilicity and specific hydrophobic surface area of non-homologous series of synthetic dyes. Croat Chem Acta 2000; 73: 293-303.

    10.12980/APJTB.4.2014C1012

    *Corresponding author: Mohammed Afroz Bakht, Department of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia.

    Tel: +966-553753763

    E-mail: m_afroz007@yahoo.com

    Foundation Project: Supported by the deanship at King Saud University with Grant No. RGP-VPP-150.

    Article history:

    Received 12 Feb 2014

    Received in revised form 16 Feb, 2nd revised form 22 Feb, 3rd revised form 29 Feb 2014

    Accepted 24 Mar 2014

    Available online 28 Apr 2014

    Methods:Mixtures of acetonitrile and water with acetonitrile content between 95% and 50% v/ v in 5% increments were kept separately in 10 different chromatographic chambers, saturated with solvent for 2 h. Spots were observed under UV light at λ=254 nm p-anisaldehyde used as a spraying reagent. Theoretical calculation was done using the Alogps 2.1 online program at www. vcclab.org/lab/alogps. For percentage wound contraction, five groups of animal (mice) (25-30 g) of either sex were selected. Wound were created on dorsal surface of animals using toothed forceps, scalpel and pointed scissors. The wound areas were calculated using vernier caliper. After making wound mice were orally administered 35 mg/kg 6-shogoal, 6-gingerol, 8-gingerol and 10-gingerol respectively. Group E as the control group received tap water.

    Results:The lipophilicity values determined in thin layer chromatography were correlated with the theoretically calculated various log P by linear regression analysis. Significant correlations were found between log P values calculated by software program and the experimental reversedphase thin-layer chromatography data. Order of wound healing property of ginger compounds is directly dependent on lipophilicity i.e. more lipophilic compound has highest activity.

    Conclusions:Experimentally determined lipophilicity (RMO) values were correlated with log P determined by software's and found satisfactory. Lipophilicity (RMO) is a useful parameter for the determination and prediction of biological activity of ginger compounds.

    在线播放无遮挡| 街头女战士在线观看网站| 国产精品精品国产色婷婷| 国产午夜精品一二区理论片| 麻豆国产97在线/欧美| 久久99蜜桃精品久久| 亚洲精品亚洲一区二区| 日韩电影二区| 久久久久久久久久久丰满| 久久99热6这里只有精品| 99久国产av精品国产电影| 国产成人a∨麻豆精品| 六月丁香七月| 淫秽高清视频在线观看| 五月玫瑰六月丁香| 亚洲真实伦在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产精品国产精品| 中文天堂在线官网| 国产有黄有色有爽视频| 国产高清不卡午夜福利| 国产精品久久久久久久电影| 搞女人的毛片| 中文资源天堂在线| 精品久久久久久成人av| 久久6这里有精品| 久久久久久伊人网av| 天堂√8在线中文| 日本猛色少妇xxxxx猛交久久| 舔av片在线| 国产综合精华液| 亚洲av福利一区| 纵有疾风起免费观看全集完整版 | 又爽又黄a免费视频| 狠狠精品人妻久久久久久综合| 天堂影院成人在线观看| 欧美潮喷喷水| 中文资源天堂在线| 白带黄色成豆腐渣| 99久久九九国产精品国产免费| 99久国产av精品国产电影| 一个人看的www免费观看视频| 少妇熟女aⅴ在线视频| 国产伦在线观看视频一区| 亚洲精华国产精华液的使用体验| 成年女人在线观看亚洲视频 | 又大又黄又爽视频免费| 国产午夜精品一二区理论片| 18+在线观看网站| 免费大片黄手机在线观看| av.在线天堂| 久久久久久九九精品二区国产| 亚洲av中文av极速乱| 中文字幕av在线有码专区| 久久99蜜桃精品久久| 国产精品1区2区在线观看.| 久久草成人影院| 久久国内精品自在自线图片| 人妻系列 视频| 嘟嘟电影网在线观看| 国产 一区 欧美 日韩| 国产又色又爽无遮挡免| 欧美高清成人免费视频www| 午夜免费观看性视频| 国产精品一区二区三区四区免费观看| ponron亚洲| 2021天堂中文幕一二区在线观| 亚洲乱码一区二区免费版| 黑人高潮一二区| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 伦理电影大哥的女人| 国产成人一区二区在线| 大又大粗又爽又黄少妇毛片口| 成人一区二区视频在线观看| 国产成人a区在线观看| 青春草视频在线免费观看| 欧美日韩亚洲高清精品| 晚上一个人看的免费电影| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看| 国产一区亚洲一区在线观看| 精品熟女少妇av免费看| 麻豆久久精品国产亚洲av| 日韩av在线免费看完整版不卡| 精品国产一区二区三区久久久樱花 | 青春草亚洲视频在线观看| 九九久久精品国产亚洲av麻豆| 日韩制服骚丝袜av| 日韩伦理黄色片| 一区二区三区高清视频在线| 乱人视频在线观看| 国产男人的电影天堂91| 青春草亚洲视频在线观看| 丰满少妇做爰视频| 激情 狠狠 欧美| 国产精品女同一区二区软件| 久久99蜜桃精品久久| 如何舔出高潮| 亚洲国产精品成人久久小说| 国产精品熟女久久久久浪| 97精品久久久久久久久久精品| 18禁动态无遮挡网站| 2021少妇久久久久久久久久久| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 大香蕉97超碰在线| 99热6这里只有精品| 两个人视频免费观看高清| 在线a可以看的网站| 国产免费福利视频在线观看| 亚洲av日韩在线播放| 汤姆久久久久久久影院中文字幕 | 国产三级在线视频| 日韩伦理黄色片| 一级毛片电影观看| av一本久久久久| 午夜激情久久久久久久| 97在线视频观看| 国产黄色小视频在线观看| 老司机影院成人| 高清毛片免费看| 国产成人精品福利久久| 人妻夜夜爽99麻豆av| 高清午夜精品一区二区三区| 欧美变态另类bdsm刘玥| 中国国产av一级| 日日干狠狠操夜夜爽| 午夜爱爱视频在线播放| 麻豆av噜噜一区二区三区| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 精品亚洲乱码少妇综合久久| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 成年版毛片免费区| 日韩av免费高清视频| 插阴视频在线观看视频| 国产黄色视频一区二区在线观看| 晚上一个人看的免费电影| 国产在视频线在精品| 高清视频免费观看一区二区 | 亚洲欧美精品专区久久| 日日啪夜夜撸| 欧美丝袜亚洲另类| 免费观看性生交大片5| 亚洲精品国产成人久久av| 国产黄a三级三级三级人| 日韩大片免费观看网站| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app| 国产伦一二天堂av在线观看| 一级毛片黄色毛片免费观看视频| 黄片无遮挡物在线观看| 99久久中文字幕三级久久日本| 日本av手机在线免费观看| 97精品久久久久久久久久精品| 成人综合一区亚洲| 精品不卡国产一区二区三区| 综合色av麻豆| 久久精品久久久久久久性| 韩国av在线不卡| 成年av动漫网址| 日本一本二区三区精品| 免费人成在线观看视频色| 国产伦理片在线播放av一区| 国产成人一区二区在线| 欧美三级亚洲精品| 国产av码专区亚洲av| 亚洲精品中文字幕在线视频 | 亚洲欧美成人精品一区二区| 亚洲av中文字字幕乱码综合| 天天躁夜夜躁狠狠久久av| 亚洲内射少妇av| 三级毛片av免费| 成年女人在线观看亚洲视频 | 国产高清不卡午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看电影| 精品99又大又爽又粗少妇毛片| 少妇熟女aⅴ在线视频| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 免费看av在线观看网站| 直男gayav资源| 一夜夜www| 五月伊人婷婷丁香| 精品久久久久久电影网| 亚洲av成人av| 国产精品久久视频播放| 人妻系列 视频| 中文在线观看免费www的网站| 国产亚洲av片在线观看秒播厂 | 亚洲成人精品中文字幕电影| 亚洲真实伦在线观看| 国产成人精品婷婷| 国产高清国产精品国产三级 | av在线老鸭窝| 国产精品久久视频播放| 国产成人福利小说| 大陆偷拍与自拍| 午夜福利高清视频| 国产乱人视频| 丰满人妻一区二区三区视频av| 97精品久久久久久久久久精品| 国产黄色视频一区二区在线观看| 欧美丝袜亚洲另类| 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 少妇人妻一区二区三区视频| 国产淫片久久久久久久久| 日本熟妇午夜| 色综合站精品国产| 欧美成人午夜免费资源| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 午夜视频国产福利| 亚洲精品色激情综合| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 五月天丁香电影| 黄色一级大片看看| 美女xxoo啪啪120秒动态图| a级毛色黄片| 日韩一区二区视频免费看| 免费av观看视频| 亚洲人与动物交配视频| 26uuu在线亚洲综合色| 精品一区二区免费观看| 亚洲自偷自拍三级| 日韩强制内射视频| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| 成人av在线播放网站| 中文在线观看免费www的网站| 日本熟妇午夜| av在线观看视频网站免费| 精品久久久久久久久av| 91在线精品国自产拍蜜月| 欧美激情在线99| 97精品久久久久久久久久精品| 赤兔流量卡办理| 亚洲成色77777| 免费大片黄手机在线观看| 精品久久久精品久久久| 99热全是精品| 亚洲欧美成人精品一区二区| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 亚洲av国产av综合av卡| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| a级毛片免费高清观看在线播放| 老司机影院成人| 亚洲最大成人中文| or卡值多少钱| 久久久精品免费免费高清| 亚洲综合色惰| 亚洲图色成人| 日韩中字成人| 欧美3d第一页| 日日啪夜夜撸| 老司机影院成人| 国产精品一区二区在线观看99 | 亚洲精品第二区| 国产午夜福利久久久久久| 日韩av在线大香蕉| 一个人看视频在线观看www免费| 高清av免费在线| 极品少妇高潮喷水抽搐| 久久这里只有精品中国| 欧美极品一区二区三区四区| 亚洲精品日韩av片在线观看| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 视频中文字幕在线观看| 久久亚洲国产成人精品v| 久久久国产一区二区| av黄色大香蕉| 免费av毛片视频| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 国内精品宾馆在线| 波野结衣二区三区在线| 亚洲av电影在线观看一区二区三区 | 久久热精品热| 成人国产麻豆网| 一夜夜www| 成年版毛片免费区| 少妇熟女aⅴ在线视频| 亚洲怡红院男人天堂| 18禁裸乳无遮挡免费网站照片| 免费黄频网站在线观看国产| 三级国产精品欧美在线观看| 一级a做视频免费观看| 最近2019中文字幕mv第一页| 亚洲av成人精品一区久久| 欧美区成人在线视频| 国产精品久久久久久精品电影| 久久久久九九精品影院| 十八禁国产超污无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 国产成年人精品一区二区| 校园人妻丝袜中文字幕| 国产精品久久久久久久久免| 国产高潮美女av| 久久97久久精品| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 精品一区二区三区视频在线| 啦啦啦韩国在线观看视频| 免费高清在线观看视频在线观看| 国产精品久久久久久av不卡| 秋霞伦理黄片| av国产免费在线观看| 欧美日韩国产mv在线观看视频 | 亚洲在久久综合| 久久久亚洲精品成人影院| 久久久久久久午夜电影| 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 99久久人妻综合| 看非洲黑人一级黄片| 美女高潮的动态| 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看| 韩国av在线不卡| 我的老师免费观看完整版| 日本一二三区视频观看| 看十八女毛片水多多多| 美女内射精品一级片tv| 亚洲成色77777| 亚洲国产精品成人综合色| 十八禁网站网址无遮挡 | 在线a可以看的网站| 久久久久久国产a免费观看| 联通29元200g的流量卡| 色哟哟·www| 国产探花在线观看一区二区| 日韩三级伦理在线观看| 中文字幕久久专区| 日韩av免费高清视频| 国产免费又黄又爽又色| 国产 一区精品| 嫩草影院入口| 又爽又黄a免费视频| 亚洲第一区二区三区不卡| 亚洲av福利一区| 禁无遮挡网站| 久久久久久久亚洲中文字幕| 插逼视频在线观看| av免费在线看不卡| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 中文天堂在线官网| 综合色av麻豆| 高清毛片免费看| 日本免费在线观看一区| 日韩人妻高清精品专区| 成人特级av手机在线观看| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 亚洲经典国产精华液单| 久久精品综合一区二区三区| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区| 久久久久九九精品影院| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 亚洲精品成人av观看孕妇| 97超碰精品成人国产| 99久久精品热视频| 国产亚洲av片在线观看秒播厂 | 成年免费大片在线观看| 精华霜和精华液先用哪个| 亚洲国产成人一精品久久久| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品 | av在线老鸭窝| 亚洲内射少妇av| 午夜视频国产福利| 免费看美女性在线毛片视频| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| 免费观看在线日韩| 国产精品美女特级片免费视频播放器| 亚洲精品,欧美精品| 色视频www国产| 中文欧美无线码| 欧美 日韩 精品 国产| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 亚洲av中文字字幕乱码综合| 观看美女的网站| www.av在线官网国产| 一个人观看的视频www高清免费观看| 国产精品一区二区在线观看99 | 欧美不卡视频在线免费观看| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区| 亚洲欧美中文字幕日韩二区| 神马国产精品三级电影在线观看| 超碰97精品在线观看| 3wmmmm亚洲av在线观看| 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 久久久久久久久中文| 亚洲av一区综合| 少妇熟女aⅴ在线视频| 亚洲精品影视一区二区三区av| 国产有黄有色有爽视频| 国产精品美女特级片免费视频播放器| 中文欧美无线码| 亚洲av电影不卡..在线观看| 国产精品国产三级国产av玫瑰| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 欧美成人a在线观看| 熟女电影av网| 亚洲欧美一区二区三区国产| 美女大奶头视频| 免费黄网站久久成人精品| 亚洲av.av天堂| 国产探花在线观看一区二区| 偷拍熟女少妇极品色| 国产毛片a区久久久久| 日韩欧美精品免费久久| 精品人妻偷拍中文字幕| 麻豆av噜噜一区二区三区| 男人舔女人下体高潮全视频| 国产综合懂色| 久久精品综合一区二区三区| 亚洲最大成人中文| 春色校园在线视频观看| 男人舔奶头视频| 91精品国产九色| 国产成人91sexporn| 亚洲三级黄色毛片| 免费大片18禁| 国产精品一区二区在线观看99 | 两个人的视频大全免费| 最近手机中文字幕大全| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 又大又黄又爽视频免费| 国产成人a区在线观看| 成人特级av手机在线观看| 精品少妇黑人巨大在线播放| 97热精品久久久久久| 日韩欧美 国产精品| 日本黄色片子视频| 精品久久久久久电影网| 欧美潮喷喷水| 一夜夜www| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说 | 日韩电影二区| 搡老乐熟女国产| 日韩,欧美,国产一区二区三区| av卡一久久| 色综合色国产| 久久97久久精品| 大陆偷拍与自拍| 成人av在线播放网站| av在线蜜桃| 精品欧美国产一区二区三| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 亚洲精品乱久久久久久| 亚洲精品一二三| 丝袜美腿在线中文| 麻豆久久精品国产亚洲av| 国产精品一二三区在线看| 亚洲美女视频黄频| 日韩一区二区视频免费看| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 秋霞在线观看毛片| 亚洲av成人精品一二三区| 国产探花在线观看一区二区| 搡老妇女老女人老熟妇| 高清午夜精品一区二区三区| 国产精品国产三级国产专区5o| 热99在线观看视频| 成人欧美大片| 日日摸夜夜添夜夜爱| 寂寞人妻少妇视频99o| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| a级一级毛片免费在线观看| 亚洲欧美日韩卡通动漫| 青春草国产在线视频| 日韩欧美精品v在线| 午夜久久久久精精品| 综合色av麻豆| 国产高清不卡午夜福利| 秋霞在线观看毛片| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 青青草视频在线视频观看| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美中文字幕日韩二区| 久久精品国产自在天天线| 精品一区二区三卡| 亚洲精品久久午夜乱码| 三级国产精品欧美在线观看| 如何舔出高潮| 高清av免费在线| 国内精品一区二区在线观看| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 国产成人aa在线观看| 神马国产精品三级电影在线观看| 99热6这里只有精品| 国产精品久久久久久久电影| 久久久久久久久大av| 国产乱人偷精品视频| 国产 亚洲一区二区三区 | 亚洲人与动物交配视频| 男人舔奶头视频| 久久人人爽人人片av| 亚洲精品视频女| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 三级国产精品片| 只有这里有精品99| 国产亚洲一区二区精品| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品 | 精品一区二区三区视频在线| av在线蜜桃| 97精品久久久久久久久久精品| 蜜臀久久99精品久久宅男| 成年免费大片在线观看| 久久国产乱子免费精品| 内地一区二区视频在线| 在线免费观看的www视频| 久久精品熟女亚洲av麻豆精品 | 国产精品一二三区在线看| 五月伊人婷婷丁香| 乱系列少妇在线播放| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 午夜激情福利司机影院| 91av网一区二区| 熟妇人妻不卡中文字幕| 亚洲综合色惰| 免费人成在线观看视频色| 夫妻午夜视频| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 国产成人福利小说| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 熟妇人妻久久中文字幕3abv| 国产黄片视频在线免费观看| 成人亚洲精品一区在线观看 | 国产精品一区二区在线观看99 | 91精品一卡2卡3卡4卡| 国产在视频线精品| 日本午夜av视频| 天堂av国产一区二区熟女人妻| 成人无遮挡网站| 国产真实伦视频高清在线观看| 国产淫语在线视频| 一区二区三区免费毛片| 2021天堂中文幕一二区在线观| 黄色欧美视频在线观看| 国产av国产精品国产| 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 777米奇影视久久| 亚洲精华国产精华液的使用体验| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| 国产精品一及| 青春草国产在线视频| 婷婷色综合大香蕉| videos熟女内射| 一级a做视频免费观看| 91狼人影院| 国产成人a∨麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av二区三区四区| 精品欧美国产一区二区三| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 亚洲av福利一区| 伦精品一区二区三区| 天天躁日日操中文字幕| 精品不卡国产一区二区三区| 国产精品一区www在线观看| 日韩欧美精品v在线| 高清在线视频一区二区三区| 亚洲av成人av| 精品亚洲乱码少妇综合久久| 国产激情偷乱视频一区二区|