• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    2014-03-23 01:29:23WannaChaijaroenkulArtitiyaThiengsusukKanchanaRungsihirunratStephenAndrewWardKesaraNaBangchang

    Wanna Chaijaroenkul, Artitiya Thiengsusuk, Kanchana Rungsihirunrat, Stephen Andrew Ward, Kesara Na-Bangchang*

    1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumtani 12121, Thailand

    2College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

    3Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, United Kingdom

    Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Wanna Chaijaroenkul1, Artitiya Thiengsusuk1, Kanchana Rungsihirunrat2, Stephen Andrew Ward3, Kesara Na-Bangchang1*

    1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumtani 12121, Thailand

    2College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

    3Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, United Kingdom

    PEER REVIEW

    Peer reviewer

    Parnpen Viriyavejakul, Mahidol University, Faculty of Tropical Pathology. E-mail: parnpen.vir@ mahidol.ac.th

    Co-reviewer: Raewadee Wisedpanichkij, Bangkok, Thailand.

    Comments

    The paper is a basic research which looked at new antimalarial targetmangosteen extract and concluded its effect through glycolysis pathway.

    Details on Page 519

    Objective:To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS).

    Malaria, Proteomics, Garcinia mangostana Linn.

    1. Introduction

    The success in elucidation of genome sequences of several micro-organisms includingPlasmodium falciparum (P. falciparum)in the pre-genomic era has challenged research for identification of potential proteomic markers correlated disease pathology, as well as protein targets of candidate drugs and vaccines in the post genomic era. Proteomics analysis is the large-scale study of proteins, particularly their structures and functions. It determines global protein expression including sub-cellular localization and posttranslational modification. The approach is much more complicated than the genomics approach due to the fact that, while the genome of an organism is relatively stable, its proteome differs from cell to cell and from time to time. This is because distinct genes are expressed in distinct celltypes. Detection of a marked change in the expression of proteins that are vital for the survival of a micro-organism represents one of the most important strategies in drug discovery research. Two-dimensional gel electrophoresis (2-DE) is the common technique applied for investigation of the change in these expressed proteins. The proteins are firstly electrophoresed in one direction, followed by another direction which allows for the visualization of a small change in protein expression which is finally identified by mass spectrometry[1,2].

    A large number of medicinal plants have been identified as potential antimalarial agents. The antimalarial activity ofGarcinia mangostana(G. mangostana) Linn. or mangosteen has previously been reported with IC50(concentration which inhibits parasite growth by 50%) ranging from 4.5 to 12.6 μg/mL[3,4]. Variety of biological activities of xanthones isolated from this fruit pericarp has also been reported[5-7]. The aim of the present study was to identify protein targets for antimalarial activity ofG. mangostanaLinn. (pericarp) in 3D7P. falciparumclone using 2-DE and liquid chromatography mass-spectrometry (LC/MS/MS).

    2. Materials and methods

    2.1. Crude extract of G. mangostana Linn. (pericarp), chemicals and reagents

    TheG. mangostanafruit pericarps were washed, cut into small pieces, air-dried, weighed and ground into powder. The powder was then soaked in ethanol until exhaustion. The ethanol extract was filtrated and evaporated under reduced pressure by rotary evaporation. The extract yield was weighed and stored at -20 °C until used.

    2.2. Assessment of antimalarial activity of crude ethanolic extract of G. mangostana Linn. in vitro

    3D7P. falciparumclone was used in this study. The parasite was cultured according to the method of Trager and Jensen with some modifications[8]. Antimalarial activity of the crude ethanolic extract ofG. mangostanaLinn. (pericarp) was investigated using SYBR Green I assay[9,10]. Highly synchronous ring stage parasite was used in each assay. An aliquot of parasite inoculum (50 μL) with 2% parasitaemia and 1% haematocrit was added into each well of a 96-well microtiter plate. The 96-well drug plates were dosed with the extract at eight final concentrations as follows: 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50 and 100 μg/mL. The experiment was done in triplicate. The IC50and IC90values used as indicators of antimalarial activity were determined from a log-dose-response curve plotted using the CalcusynTMversion 1.1 (BioSoft, Cambridge, UK).

    2.3. Extraction of P. falciparum proteins following exposure to the ethanolic extract of G. mangostana Linn.

    Synchronized 3D7P. falciparumwas exposed to the ethanolic extract ofG. mangostanaLinn. at the IC50and IC90for 12 h. Parasite culture was harvested and cell pellet was re-suspended in 0.15% saponin and incubated on ice for 1 h in order to lyse red blood cells. The lysate was collected through centrifugation at 8 500 r/min for 5 min (4 °C) and washed three times with 1 mL of 50 mmol/L Tris (pH 7.5) until the supernatant was clear. The parasite pellet was resuspended in 500 μL of rehydration buffer (8 mol/L urea, 2 mol/L thiourea, 2% CHAPS, 65 mmol/L DL-Dithiothreitol, 1% ampholyte (pH 3-10), and 1× of protease inhibitor). Sample was vortexed and sonicated on ice for four times, six seconds each (21% amplitude, 6 seconds, interspersed with 9 seconds), followed by centrifugation at 8 500 r/min for 1 h (4 °C). Protein concentration was measured using Bradford reagent (BioRad Co. Ltd., California, USA) and the supernatant was subjected to 2-DE analysis[11,12].

    2.4. 2-DE

    The extract of parasite protein (100 μg) was mixed with rehydration buffer (8 mol/L urea, 1% CHAP, 15 mmol/L dithiothretol, and 0.001% bromophenol blue) to prepare 125 μL of protein mixture and then applied onto 7 cm immobilized pH gradient strips (non-linear) with a pH range of 3-10 in an isoelectric focusing (IEF) system (PROTEAN? i12? IEF Cell, BioRad Co. Ltd., California, USA). The IEF was initially performed at 250 V for 15 min, followed by 4 000 V for 1 h and 4 000-20 000 volt-hour. The focused strips were equilibrated in equilibration solution I [10 mL of 50 mmol/L Tris-HCl pH 8.8, 6 mol/L urea, 30% glycerol, and 2% sodium dodecyl sulfonate (SDS)] containing the reducing agent DL-Dithiothreitol (100 mg) for 10 min, followed by equilibration solution II (5 mL) containing iodoacetamide (450 mg) for additional 10 min. Finally, the strips were equilibrated with 1× electrode buffer (pH 8.3) for 10 min. The strips were then loaded onto 12% SDS-polyacrylamide gel electrophoresis for second dimension separation. The gels were run on 1× electrode buffer (pH 8.3). After electrophoresis, gels were fixed and stained with silver stain (BioRad Co. Ltd., California, USA) according the manufacturer’s recommendation. The 2-DE gel images were scanned and analyzed using PDQuestTMsoftware (BioRad Co.Ltd., California, USA). At least four independent gels were analyzed for each sample group.

    2.5. Identification of proteins

    Selection of protein spots separated by 2-dimensional gels was guided through images on quadruple gels. Briefly, the excised gel spot was put into a 1.5 mL centrifuge tube and acetonitrile (400 μL) was added. The mixture was incubated at room temperature for 10 min. The gel slices were then incubated overnight at 37 °C in 10-20 μL of sequence grade trypsin (Sigma, Dorset, UK) (10 μg/mL of 25 mmol/L ammonium bicarbonate with 10% acetonitrile). The supernatant was collected through centrifuge at 6 560 r/min (4 °C), and the gel was incubated with 20 μL of the mixture of acetonitrile and 100 mmol/L ammonium bicarbonate (2:1, v/v) at room temperature for 15 min. The supernatant was removed and pooled together with the first aliquot. The combined supernatant was dried in a rotational vacuum concentrator (at 37 °C for 3 h), and the dried samples were kept at -80 °C until used.

    The sample was re-suspended in 20 μL of 0.1% formic acid and centrifuge at 8 500 r/min (4 °C) for 20 min. Proteins were separated using nano-flow high-performance liquid chromatography on a C18 reverse phase Dionex Ultimate 3000 column (Thermo Scientific, California, USA) and the mobile phase consisting of 50% acetonitrile for 30 min. The elute proteins were detected using LTQ ion-trap mass spectrometer (Thermo Scientific, California, USA). The resulting MS/MS spectra were submitted to TurboSequest Bioworks version 3.1 (Thermo Electron, California, USA) and the individual spectrum was merged into an MGF file before submitting to Mascot (v2.2).

    3. Results

    The median (range) IC50and IC90values of the ethanolic extract ofG. mangostanaLinn. (pericarp) for the 3D7P. falciparumclone were 12.6 (10.5-13.2) and 27.3 (24.7-48.4) μg/ mL, respectively. The patterns of protein spots separated from the parasite extract following exposure to 12 (IC50) and 30 (IC90) μg/mL of the plant extract including the nonexposed parasite are shown in Figure 1. The number of protein spots from the parasite extract following exposure to 12 and 30 μg/mL and the control were 102, 73 and 95, respectively. The number of matched protein spots with the control for the parasite exposed to the plant extract at the concentrations of 12 and 30 μg/mL were 84 (82%) and 11 (15%), respectively. Among these matched spots, the number of clear up-regulated protein spots (at least 3 out of 4 spots) were 22 and 11 for the parasite extract following exposure to 12 and 30 μg/mL extract, respectively (Table 1 and 2). The six protein spots at least two-fold upregulated were identified by LC/MS/MS as phosphoglycerate mutase putative (PGM1), L-lactate dehydrogenase (LDH)/ glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and fructose-bisphosphate aldolase/phosphoglycerate kinase (PGK) (Table 3). All these proteins were enzymes that play role in glycolysis pathway. The proteosome subunit putative protein was found only in parasite extract following exposure to 30 μg/mL of the plant extract.

    Figure 1. Differential expression of protein spots from the extract of 3D7 P. falciparum separated by 2-DE: (A) control (non-exposed), (B) following exposure to the extract of G. mangostana Linn. (pericarp) at the IC50level (12 μg/mL), and (C) following exposure to the extract of G. mangostana Linn. (pericarp) at the IC90level (30 μg/mL).

    Table 1 Comparison of 2-DE protein spots from 3D7 P. falciparum exposure to G. mangostana Linn. (pericarp) at 12 μg/mL with at least 2-fold increase in density compared with control.

    Table 2 Comparison of 2-DE protein spots from 3D7 P. falciparum exposure to G. mangostana Linn. (pericarp) at 30 μg/mL with at least 2-fold increase in density compared with control.

    Table 3 Identification of protein spots (by LC/MS/MS) separated from the extract of 3D7 P. falciparum following exposure to the extract of G. mangostana Linn. (pericarp) at either concentration of IC50(12 μg/mL) or IC90(30 μg/mL).

    4. Discussion

    The proteomics approach is a potential tool for target identification in the discovery of medicines and vaccines. For malaria research in the post-genomics era, this tool has facilitated the search for new promising targets that are selective and biologically significant for parasite’s growth and survival. Nevertheless, the application of 2-DE in the investigation of malaria parasite proteomes has been limited due to the problem relating to the extraction and solubilization of parasite proteins. In our previous study, the ethanolic extract ofG. mangostanaLinn. (pericarp) was shown to exhibit good to moderate antimalarial activity with IC50of 4.5-12.6 μg/mL[4]. In the present study, the proteomics approach was applied to analyze possible malarial parasite’s protein targets ofG. mangostanaLinn. (pericarp). Difference in protein patterns of 3D7P. falciparumextract following exposure to the plant extract at the concentrations of 12 (IC50) and 30 (IC90) μg/mL was observed. At the IC50concentration, about 82% of the expressed parasite proteins were found to be matched with the control, while at the IC90concentration, only 15% matched proteins were found. The possible explanation for this phenomenon is that the concentration at IC90level was too high to detect an initial change in protein expression. This supposition was supported by the detection of proteasome subunit protein expressed following parasite’s exposure to the extract at the IC90level. Although malaria parasites critically rely on lysosomes and the ubiquitin proteasome system for their growth and survival[13,14], this proteasome subunit protein plays a major role in the degradation of cellular contents of the damaged parasites[13,14]. Following parasite’s exposure to the extract at the IC50level on the other hand, an initial change in protein expression was observed, but with absence of this protein. The expression of proteins that were markedly changed (at least three-fold up-regulated) are proteins which are involved in the glycolysis pathway,i.e., PGM1, LDH/GAPDH, and fructose-bisphosphate aldolase/PGK[15,16]. The malaria parasite utilizes glucose for energy production, which is converted to lactate[15]. Several glycolytic intermediates may be diverted into other products that serve as precursors for the synthesis of other final products, particularly those involved in the redox system[16]. In the footprinting metabolites, pyruvates were expressed at the level of aboutsix times of the control (Chaijaroenkulet al, unpublished data). The metabolism of pyruvate may provide intermediates in several biosynthetic pathways. Furthermore, direct evidence showed thatG. mangostanaLinn. (pericarp) might affect glucose or glycolysis pathway of malaria parasite.

    The proteomics approach is a potential tool for target identification in the drug discovery. Investigation of possible protein targets for antimalarial activity of ethanolic extract ofG. mangostanaLinn. suggested that the glycolysis pathway may be the major protein target from this extract.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    The study was supported by The National Research Council of Thailand, (Grant No.034/2556) and the Commission on Higher Education, Ministry of Education of Thailand (NRU Project). Wanna Chaijaroenkul receives financial support from Thailand Research Fund, (Grant No. MRG5380192). We would like to thank Dr. Gavin Laing for protein analysis (LC/

    MS/MS).

    Comments

    Background

    Though, its clinical application is far from present, the present paper has generated a significant contribution of the proof of concept, and deeper understanding of using mangosteen extract as antimalarial drug target.

    Research frontiers

    The paper addresses the effect of mangosteen extract on malaria glycolysis pathway. Methodology applied is straight forward and has yielded appreciable results. The work generated scientific idea to bridge between “concept” and future “clinical application”.

    Innovations and breakthroughs

    The paper concluded that mangosteen affects parasite glycolysis pathway. The paper initiates further research interest in looking for new antimarial drug target using medicinal plants/fruits parts.

    Applications

    The proteomics approach is a potential tool for target identification in the drug discovery. Investigation of possible protein targets for antimalarial activity of ethanolic extract ofG. mangostanaLinn. suggested that the glycolysis pathway may be the major protein target from this extracts.

    Peer review

    The paper is a basic research which looked at new antimalarial target-mangosteen extract and concluded its effect through glycolysis pathway.

    [1] Brewis IA, Brennan P. Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 2010; 80: 1-44.

    [2] Stoyanov A. IEF-based multidimensional applications in proteomics: toward higher resolution. Electrophoresis 2012; 33(22): 3281-3290.

    [3] Mahabusarakam W, Kuaha K, Wilairat P, Taylor WC. Prenylated xanthones as potential antiplasmodial substances. Planta Med 2006; 72(10): 912-916.

    [4] Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 2013; 112(4): 1475-1481.

    [5] Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, et al. Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 2011; 11(8): 666-677.

    [6] Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 2009; 23(8): 1047-1065.

    [7] Pedraza-Chaverri J, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 2008; 46(10): 3227-3239.

    [8] Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976; 193(4254): 673-675.

    [9] Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson E, et al. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004; 48(5): 1807-1810.

    [10] Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 2004; 48(5): 1803-1806.

    [11] Makanga M, Bray PG, Horrocks P, Ward SA. Towards a proteomic definition of CoArtem action in Plasmodium falciparum malaria. Proteomics 2005; 5(7): 1849-1858.

    [12] Rungsihirunrat K, Chaijaroenkul W, Siripoon N, Seugorn A, Thaithong S, Na-Bangchang K. Comparison of protein patterns between Plasmodium falciparum mutant clone T9/94-M1-1(b3) induced by pyrimethamine and the original parent clone T9/94. Asian Pac J Trop Biomed 2012; 2(1): 66-69.

    [13] Chung DW, Ponts N, Prudhomme J, Rodrigues EM, Le Roch KG. Characterization of the ubiquitylating components of the human malaria parasite’s protein degradation pathway. PLoS One 2012; doi: 10.1371/journal.pone.0043477.

    [14] Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol 2011; 712: 30-48.

    [15] Sander BJ, Lowery MS, Kruckeberg WC. Glycolytic metabolism in malaria infected red cells. Prog Clin Biol Res 1981; 55: 469-490.

    [16] MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol 2013; 11: 67.

    10.12980/APJTB.4.2014APJTB-2014-0043

    *Corresponding author: Prof. Dr. Kesara Na- Bangchang, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumtani 12121, Thailand.

    Tel: +662-564-4440-79 Ext.1803

    Fax: +662-564-4398

    E-mail: kesaratmu@yahoo.com

    Foundation Project: supported by The National Research Council of Thailand, (Grant No.034/2556) and Thailand Research Fund, (Grant No. MRG5380192).

    Article history:

    Received 28 Apr 2014

    Received in revised form 5 May, 2nd revised form 13 May, 3rd revised form 20 May 2014

    Accepted 15 Jun 2014

    Available online 28 Jul 2014

    Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G. mangostana Linn. (pericarp) at the concentrations of 12μg/mL (IC50level: concentration that inhibits parasite growth by 50%) and 30 μg/mL (IC90level: concentration that inhibits parasite growth by 90%) for 12 h. Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.

    Results:At the IC50concentration, about 82% of the expressed parasite proteins were matched with the control (non-exposed), while at the IC90concentration, only 15% matched proteins were found. The selected protein spots from parasite exposed to the plant extract at the concentration of 12 μg/mL were identified as enzymes that play role in glycolysis pathway, i.e., phosphoglycerate mutase putative, L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase/phosphoglycerate kinase. The proteosome was found in parasite exposed to 30 μg/mL of the extract.

    Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G. mangostana Linn. (pericarp).

    久久av网站| 精品少妇一区二区三区视频日本电影 | 午夜福利在线免费观看网站| 国产成人精品久久久久久| 国产麻豆69| 国产1区2区3区精品| 亚洲精品中文字幕在线视频| 男女午夜视频在线观看| 成人午夜精彩视频在线观看| 老鸭窝网址在线观看| av网站免费在线观看视频| 国产av一区二区精品久久| 成人免费观看视频高清| 亚洲第一青青草原| 亚洲精品自拍成人| 久久国产精品大桥未久av| 看非洲黑人一级黄片| 欧美久久黑人一区二区| 国产精品久久久久久久久免| 国产在线视频一区二区| 久久久久精品久久久久真实原创| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 亚洲国产精品999| 又大又爽又粗| 欧美久久黑人一区二区| 亚洲精品国产av蜜桃| 不卡视频在线观看欧美| 久久久久精品久久久久真实原创| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区蜜桃| 最近中文字幕2019免费版| 成人国产麻豆网| 久久97久久精品| 老司机靠b影院| 中文字幕人妻丝袜一区二区 | 乱人伦中国视频| 美女高潮到喷水免费观看| 日本色播在线视频| 国产男女内射视频| 亚洲精品成人av观看孕妇| 久久狼人影院| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 日韩一区二区三区影片| 欧美日本中文国产一区发布| e午夜精品久久久久久久| 国产一区二区三区av在线| 成人影院久久| 晚上一个人看的免费电影| 欧美人与善性xxx| 国产精品成人在线| 色视频在线一区二区三区| 丰满饥渴人妻一区二区三| 蜜桃在线观看..| 午夜日本视频在线| 色视频在线一区二区三区| 婷婷色av中文字幕| 国产精品一区二区在线观看99| 日本色播在线视频| 一级毛片我不卡| videos熟女内射| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 丝袜脚勾引网站| h视频一区二区三区| 一级片免费观看大全| 亚洲欧洲日产国产| 热re99久久精品国产66热6| 亚洲美女视频黄频| 日本欧美国产在线视频| 国产精品国产av在线观看| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 人人妻,人人澡人人爽秒播 | 日本午夜av视频| 观看美女的网站| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 色婷婷av一区二区三区视频| 99九九在线精品视频| 韩国精品一区二区三区| 肉色欧美久久久久久久蜜桃| 国产一区亚洲一区在线观看| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 视频区图区小说| 热re99久久国产66热| 男女午夜视频在线观看| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| av免费观看日本| 亚洲精品av麻豆狂野| 熟妇人妻不卡中文字幕| 成年美女黄网站色视频大全免费| 国产亚洲午夜精品一区二区久久| 国产亚洲av高清不卡| 亚洲,欧美精品.| 日本av免费视频播放| 国产99久久九九免费精品| 亚洲专区中文字幕在线 | 老司机在亚洲福利影院| 精品人妻熟女毛片av久久网站| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美软件| 亚洲精华国产精华液的使用体验| 日本wwww免费看| 无限看片的www在线观看| 青春草视频在线免费观看| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 中文字幕人妻丝袜制服| 久久久久人妻精品一区果冻| 嫩草影视91久久| 免费观看av网站的网址| 大片电影免费在线观看免费| 亚洲av综合色区一区| 国产在线免费精品| 亚洲av福利一区| 一级a爱视频在线免费观看| 尾随美女入室| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 欧美日韩av久久| 国产伦理片在线播放av一区| 国产97色在线日韩免费| 国产 精品1| 尾随美女入室| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 女人久久www免费人成看片| av片东京热男人的天堂| 韩国av在线不卡| 久久精品国产亚洲av涩爱| 一区二区av电影网| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品第二区| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻一区二区| 伦理电影大哥的女人| 色吧在线观看| 午夜激情av网站| 99re6热这里在线精品视频| 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 亚洲在久久综合| 少妇人妻久久综合中文| 欧美成人午夜精品| 日韩熟女老妇一区二区性免费视频| 国产精品人妻久久久影院| 精品少妇一区二区三区视频日本电影 | 观看av在线不卡| 咕卡用的链子| 欧美黄色片欧美黄色片| 国产精品人妻久久久影院| 国产亚洲av高清不卡| 女人久久www免费人成看片| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的| 啦啦啦 在线观看视频| 十分钟在线观看高清视频www| 日本欧美国产在线视频| 国产精品二区激情视频| 久久久国产一区二区| 丝袜脚勾引网站| 亚洲在久久综合| 99久久精品国产亚洲精品| 久久久久网色| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美精品综合一区二区三区| 最近中文字幕2019免费版| 激情五月婷婷亚洲| 丁香六月天网| 制服诱惑二区| 国产 精品1| 五月开心婷婷网| 国产亚洲欧美精品永久| 久久人人97超碰香蕉20202| 大话2 男鬼变身卡| 卡戴珊不雅视频在线播放| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 色婷婷久久久亚洲欧美| av有码第一页| 久久ye,这里只有精品| 亚洲美女搞黄在线观看| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 欧美在线黄色| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频| 亚洲图色成人| 久久性视频一级片| a 毛片基地| 国产免费现黄频在线看| 久久热在线av| 亚洲国产看品久久| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 天天添夜夜摸| 亚洲 欧美一区二区三区| 国产色婷婷99| 七月丁香在线播放| 热re99久久精品国产66热6| av.在线天堂| 天美传媒精品一区二区| 午夜影院在线不卡| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 美女午夜性视频免费| 精品国产乱码久久久久久小说| 曰老女人黄片| 精品国产一区二区三区久久久樱花| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 久久久国产精品麻豆| 日本猛色少妇xxxxx猛交久久| 熟妇人妻不卡中文字幕| 国产精品一国产av| 亚洲精品第二区| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 国产成人系列免费观看| 在线观看免费午夜福利视频| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| videosex国产| 亚洲三区欧美一区| 妹子高潮喷水视频| 中文字幕人妻丝袜一区二区 | 国产成人a∨麻豆精品| 国产一级毛片在线| 成人亚洲欧美一区二区av| 亚洲综合色网址| 午夜福利视频精品| 国产野战对白在线观看| 大陆偷拍与自拍| 国产精品亚洲av一区麻豆 | 交换朋友夫妻互换小说| 免费久久久久久久精品成人欧美视频| 老司机亚洲免费影院| 久久狼人影院| 久久久亚洲精品成人影院| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| 亚洲男人天堂网一区| 国产熟女午夜一区二区三区| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| 看免费成人av毛片| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 久久久久久久国产电影| 美女高潮到喷水免费观看| 性少妇av在线| 欧美国产精品va在线观看不卡| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 一级毛片我不卡| 久久毛片免费看一区二区三区| 午夜老司机福利片| 多毛熟女@视频| 啦啦啦在线免费观看视频4| 桃花免费在线播放| 丰满少妇做爰视频| 赤兔流量卡办理| 少妇人妻 视频| 男人爽女人下面视频在线观看| 国产又色又爽无遮挡免| 制服诱惑二区| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| av免费观看日本| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久久人妻精品电影 | 欧美乱码精品一区二区三区| 国产又色又爽无遮挡免| 99精品久久久久人妻精品| av在线播放精品| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 夜夜骑夜夜射夜夜干| 一个人免费看片子| 一级片免费观看大全| av在线播放精品| 国产在线一区二区三区精| 精品国产露脸久久av麻豆| 少妇的丰满在线观看| 久久精品亚洲熟妇少妇任你| 久久国产精品男人的天堂亚洲| 亚洲av国产av综合av卡| 久久影院123| 国产爽快片一区二区三区| 99国产综合亚洲精品| 久久久久国产一级毛片高清牌| a 毛片基地| 亚洲久久久国产精品| 日韩伦理黄色片| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 只有这里有精品99| av在线播放精品| 男人添女人高潮全过程视频| 男人操女人黄网站| 国产精品99久久99久久久不卡 | 久久青草综合色| kizo精华| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 久久久久精品国产欧美久久久 | 国产黄色视频一区二区在线观看| a级毛片在线看网站| 曰老女人黄片| 久久久亚洲精品成人影院| 美女国产高潮福利片在线看| 午夜福利网站1000一区二区三区| a 毛片基地| 精品福利永久在线观看| 狂野欧美激情性bbbbbb| 亚洲一区二区三区欧美精品| 99热全是精品| 超色免费av| 一边摸一边做爽爽视频免费| 街头女战士在线观看网站| 欧美成人午夜精品| 香蕉国产在线看| 啦啦啦啦在线视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 亚洲av成人精品一二三区| 午夜精品国产一区二区电影| 少妇人妻 视频| 18禁观看日本| 日本vs欧美在线观看视频| av线在线观看网站| 成人国语在线视频| 国产色婷婷99| 欧美国产精品一级二级三级| 18禁国产床啪视频网站| 欧美久久黑人一区二区| 亚洲精品美女久久av网站| 日本爱情动作片www.在线观看| 91精品三级在线观看| 日韩成人av中文字幕在线观看| 亚洲精品一二三| 久久久久精品国产欧美久久久 | 免费看av在线观看网站| 婷婷色综合大香蕉| 一个人免费看片子| 最近最新中文字幕免费大全7| 老熟女久久久| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 久久久精品94久久精品| 欧美老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 美女中出高潮动态图| 一边亲一边摸免费视频| 国产午夜精品一二区理论片| 人人澡人人妻人| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| www.av在线官网国产| 久久97久久精品| 女性生殖器流出的白浆| 亚洲欧美一区二区三区久久| 免费观看人在逋| 一级毛片我不卡| 久久久久久久久久久免费av| 我的亚洲天堂| 欧美变态另类bdsm刘玥| 久久久久视频综合| 国产精品蜜桃在线观看| 国产精品久久久久久人妻精品电影 | 在线观看免费午夜福利视频| 热99国产精品久久久久久7| 1024香蕉在线观看| 观看av在线不卡| 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 美女高潮到喷水免费观看| 夫妻午夜视频| 乱人伦中国视频| 日韩一本色道免费dvd| netflix在线观看网站| 亚洲av电影在线进入| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 人妻 亚洲 视频| 中文字幕最新亚洲高清| 看免费成人av毛片| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 国产黄色视频一区二区在线观看| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 亚洲成人免费av在线播放| 少妇人妻 视频| 亚洲精品国产区一区二| 最新的欧美精品一区二区| 亚洲欧美清纯卡通| 久久精品人人爽人人爽视色| 久久午夜综合久久蜜桃| videos熟女内射| 91aial.com中文字幕在线观看| 中文字幕高清在线视频| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄| 丝袜在线中文字幕| 精品免费久久久久久久清纯 | 在线观看免费视频网站a站| 制服诱惑二区| 亚洲精品中文字幕在线视频| 中文欧美无线码| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 成人国语在线视频| 国产亚洲精品第一综合不卡| 日韩精品有码人妻一区| 国产 精品1| 久久精品国产亚洲av高清一级| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 国产成人91sexporn| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 亚洲国产精品成人久久小说| 午夜福利免费观看在线| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 操美女的视频在线观看| 亚洲精品在线美女| 亚洲国产精品999| 激情五月婷婷亚洲| 欧美日本中文国产一区发布| 亚洲成人手机| 最近最新中文字幕大全免费视频 | 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 久久精品人人爽人人爽视色| 在现免费观看毛片| 十八禁人妻一区二区| 中文字幕制服av| 一级毛片 在线播放| 一区二区日韩欧美中文字幕| 久久综合国产亚洲精品| 90打野战视频偷拍视频| 老司机亚洲免费影院| 国产黄色免费在线视频| 国产乱来视频区| 免费人妻精品一区二区三区视频| 国产乱来视频区| 韩国精品一区二区三区| 亚洲,欧美,日韩| 亚洲色图综合在线观看| 美女高潮到喷水免费观看| 搡老乐熟女国产| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 伦理电影大哥的女人| 嫩草影院入口| 欧美最新免费一区二区三区| 中文字幕高清在线视频| 波野结衣二区三区在线| 一级毛片我不卡| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人手机| 久久久久久久久久久免费av| 综合色丁香网| 在线观看免费视频网站a站| 国产精品三级大全| av视频免费观看在线观看| 一级毛片电影观看| 国产精品国产av在线观看| 多毛熟女@视频| 久久天堂一区二区三区四区| 一级毛片电影观看| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 欧美激情极品国产一区二区三区| 毛片一级片免费看久久久久| 色网站视频免费| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 精品一区二区三区av网在线观看 | 一级爰片在线观看| 日韩中文字幕视频在线看片| 天天影视国产精品| xxx大片免费视频| 国产xxxxx性猛交| 日韩伦理黄色片| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 新久久久久国产一级毛片| 色吧在线观看| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 亚洲,欧美精品.| 国产一区二区 视频在线| 熟女av电影| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 国语对白做爰xxxⅹ性视频网站| 又大又爽又粗| videos熟女内射| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 青春草国产在线视频| 99热网站在线观看| 尾随美女入室| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区| 国产成人系列免费观看| 日本av手机在线免费观看| 亚洲七黄色美女视频| 国产成人欧美| 一级片'在线观看视频| 国产在线免费精品| 九色亚洲精品在线播放| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 精品久久久精品久久久| 两性夫妻黄色片| 一级爰片在线观看| 国产99久久九九免费精品| 男的添女的下面高潮视频| 午夜精品国产一区二区电影| 黑人猛操日本美女一级片| 成人亚洲精品一区在线观看| 少妇人妻精品综合一区二区| 国产成人91sexporn| 免费在线观看完整版高清| 老司机深夜福利视频在线观看 | 1024视频免费在线观看| 人人妻,人人澡人人爽秒播 | 欧美乱码精品一区二区三区| 大香蕉久久成人网| 亚洲国产毛片av蜜桃av| 国产99久久九九免费精品| 母亲3免费完整高清在线观看| 99久久人妻综合| 成人18禁高潮啪啪吃奶动态图| 国产伦人伦偷精品视频| 久久久久久人人人人人| 丰满乱子伦码专区| 国产av码专区亚洲av| 婷婷色av中文字幕| 日本猛色少妇xxxxx猛交久久| 日韩熟女老妇一区二区性免费视频| 在线免费观看不下载黄p国产| 十分钟在线观看高清视频www| 十八禁网站网址无遮挡| 9热在线视频观看99| 午夜老司机福利片| 亚洲男人天堂网一区| 国产老妇伦熟女老妇高清| 在线观看免费午夜福利视频| 免费看不卡的av| 2021少妇久久久久久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| av视频免费观看在线观看| 最近手机中文字幕大全| 观看av在线不卡| 国产精品国产av在线观看| 高清欧美精品videossex| 99精品久久久久人妻精品| 久久毛片免费看一区二区三区| 又黄又粗又硬又大视频| 少妇被粗大猛烈的视频| 蜜桃在线观看..| 女性被躁到高潮视频| 成人国产麻豆网| 欧美黄色片欧美黄色片| 中文字幕精品免费在线观看视频| 色精品久久人妻99蜜桃| 另类精品久久| 欧美日韩综合久久久久久| 亚洲国产中文字幕在线视频| 热99久久久久精品小说推荐| 91老司机精品| 亚洲av日韩精品久久久久久密 | 女人精品久久久久毛片| 国产精品香港三级国产av潘金莲 | 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站|