• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells

    2014-03-20 03:38:16QINYangYANGJianzhong

    QIN Yang,YANG Jianzhong

    (Department of Chemistry & Chemical Biology,University of New Mexico,Albuquerque NM 87131-001,U.S.A.)

    1 Introduction

    Organic solar cells have attracted tremendous attention from both academia and industry due to the promises as low-cost alternative energy sources[1-2].Research efforts in these areas have mostly been devoted to materials based on conjugated polymers[3-5],and power conversion efficiencies(PCEs) of these devices have steadily increased to approach 10% in laboratory settings[6-8].However,the intrinsic polydisperse and amorphous nature of conjugated polymers often leads to batch-to-batch variations and low materials conductivity,respectively,which can potentially impede device mass production and further improvement.On the other hand,conjugated small molecules can be highly crystalline,while having discrete and reproducible molecular structures[7-11].Bulk heterojunction(BHJ) devices employing conjugated small molecules and fullerene derivatives have been constantly improved to rival their conjugated polymer counterparts and thus shown great promises in solar cell research[12-14].

    Most small molecules applied in solar cells have linear structures containing multiple aromatic groups connected in series.Such molecules are typically highly crystalline and conductive along the π-stacking direction.However,charge migration along both long and short axes are relatively limited due to the one-dimensional nature of these molecules.Unfavorable film forming ability and grain boundaries originated from high crystallinity of linear molecules can also have detrimental effects on device performances.Thus,small molecules having conjugation extended in three-dimensions(3-D) can offer both good film forming ability and isotropic charge mobility.Tetra-substituted silanes have been a common starting core for building 3-D molecules due to the tetrahedral geometry and easy preparation.Roncali etc.,reported the synthesis of two silane-cored terthiophene armed 3-D small molecules bearing respective alkyl and thioalkyl side chains[15].Although overall solar cell performances were significantly limited by narrow absorption due to the large bandgaps,both star-shaped molecules out-performed their corresponding single-arm counterparts,proving the effectiveness of 3-D strategy.K?se etc.,recently reported low bandgap small molecules based on tetrathienyl core and benzothiadiazole containing arms,and found favorable impact of high dimensionality on charge mobility in disordered media[16].On the other hand,silicon thiophene bonds are quite unstable due to the electron richness of thienyl moieties,which can potentially complicate synthesis and reduce device lifetimes.Herein,we report the synthesis and characterization of a stable low bandgap 3-D conjugated molecule based on tetraphenylsilane core.Initial investigation of this molecule in BHJ solar cells indicates that lack of phase separation with fullerene molecules is responsible for relatively low device performance.

    2 Results and discussions

    Synthesis of the 3-D conjugated small molecule,SO,is shown in Figure 1 and synthetic details can be found in the experimental section.The compound1was prepared from commercial 1,4-dibromobenzene through lithium halogen exchange followed by reaction with SiCl4,which can be conveniently used as a common core for grafting with different arms toward 3-D molecules.After Stille coupling reaction with10followed by acetal deprotection,the tetra-aldehyde compound11was obtained.The aldehyde groups can be transformed to several strongly electron withdrawing substituents,e.g. dicyanovinyl and cyanoester groups.However,11was found to have very limited solubility in common organic solar cell processing solvents such as chlorobenzene and dichlorobenzene.We thus chose n-octyl cyanoacetate(12) to install the functionality.Indeed,after a simple condensation reaction,compoundSOwas obtained in high yields and has good solubility in a wide range of organic solvents including CHCl3,THF and chlorobenzene.All compounds are fully characterized by1H and13C NMR spectroscopy,which agree well with proposed structures.High resolution mass spectrometry(HR-MS) was applied to confirm the tetra-arm nature of our target compounds.Unfortunately,SOcould not be ionized under experimental conditions and no meaningful mass signals could be observed.Instead,HR-MS was performed on the precursor11,in which the measured molar mass(1 768.341 9[M+]) matches very well with the calculated value(1 768.341 4[M+]),confirming the tetra-arm structure.Since NMR showed full conversion of the aldehyde groups to cyanoester moieties,the compoundSOunambiguously has the proposed tetra-arm 3-D structure.

    The electronic properties ofSOwere first investigated by UV-Vis absorption spectroscopy in both diluted solutions and as thin films as shown in Figure 2.A structureless absorption profile with aλmax=478 nm was observed in solution,originated from intra-molecular charge transfer interactions.From the absorption onset at ca.560 nm,a solution optical bandgap of ca.2.2 eV is calculated.Significant red-shift ofλmaxto 575 nm was observed in the thin film ofSOand the absorption profile became more structured,indicating aggregation and enhanced crystallinity in the solid state.From the absorption onset at ca.650 nm,the solid-state bandgap ofSOis estimated to be ca.1.9 eV that is comparable to that of the most commonly applied conjugated polymer,poly(3-hexylthiophene)(P3HT).In order to further quantify the frontier energy levels,cyclic voltammetry(CV) measurements were performed onSOthin films drop cast onto the glassy carbon working electrode.A Ag/AgCl reference and a Pt wire counter electrodes were used,and 0.1 mol/L tetrabutylammonium hexafluorophosphate in acetonitrile was used as the supporting electrolytes.Two quasi-reversible oxidation peaks at 0.9 V and 1.3 V and one irreversible reduction peak at -1.0 V(all values are onsets) were observed.When calibrated externally with ferrocene redox couple(-4.8 eV below vacuum,0.4 V vs.Ag/AgCl),a HOMO energy level of -5.3 eV and a LUMO energy level of -3.4 eV were calculated.This leads to an electrochemical bandgap of 1.9 eV,agreeing very well with the film′s optical bandgap.

    Figure 1 Synthesis of the compound SO

    Figure 2 UV-Vis absorption spectra of SO in diluted chlorobenzene solution(10-5 mol/L,dashed line) and as thin film drop cast onto glass substrate

    The absorption spectra indicate certain crystallinity ofSO,which was further studied by thin film X-ray scattering and differential scanning calorimetry(DSC) measurements.As shown in Figure 3A,the out-of-plane scattering profile clearly contains four distinct peaks at 2θvalues of 3.9°,5.6°,8.1° and 12.2°,corresponding to d-spacings of 2.3,1.6,1.1 and 0.7 nm,respectively.Due to the film′s small thickness,the signal-to-noise ratio of scattering profiles is not high enough to unambiguously assign the nature of each of these peaks.More detailed studies will be performed on high-power synchrotron sources and the results will be reported in due courses.Crystallinity ofSOwas further confirmed by DSC studies(Figure 3B).The 2ndheating curve showed a glass transition with an onset of 43 ℃ and a crystallization event peaked at 114 ℃.Two closely spaced melting transitions peaked at 180 ℃ and 187 ℃ were detected.These observations confirm crystallinity of theSOcompound.

    Figure 3 Out-of-plane X-ray scattering profiles of SO thin film drop cast on glass substrate(A) and differential scanning calorimetry(DSC) histogram of SO powder(2nd heating,10 ℃/min)(B)

    Solar cell devices were fabricated using conventional structures: ITO glass/MoO3(10 nm)/active layer(100 nm)/Al(100 nm).Mixtures ofSOand phenyl-C61-butyric acid methyl ester(PCBM) at various weight ratios in chlorobenzene were spun cast to form the active layer.Thermal annealing at various temperatures was found to deteriorate device performance and the best power conversion efficiencies(PCEs) were found in as cast devices employingSO/PCBM at a weight ratio of 1/3.Figure 4 shows the current density-voltage(I-V) curves of the best performing device both in dark and under simulated sunlight(100 mW/cm2).From the graph,an open circuit voltage(VOC) of 0.85 V and a short circuit current(JSC) of 1.1 mA/cm2were found and the fill factor(FF) is calculated to be 25%.Device performances suffer greatly from the low FFs and JSC′s.Large current at negative bias was observed in all devices,indicating severe geminate charge recombination commonly caused by lack of proper phase separation.We have thus performed optical microscopy measurements on thin films ofSOand its corresponding blends with PCBM at a 1/3 weight ratio.As shown in Figure 5,optical micrograph ofSOthin film shows weak crystalline domains(darker areas,A) which becomes significantly enhanced after thermal annealing at 150 ℃ for 10 min(B).This observation is consistent with high crystallinity of the compound.On the other hand,both as cast and thermally annealed thin films ofSO/PCBM blends(1/3 by weight) showed no macroscopic phase separation,despite the large excess of PCBM molecules.Certain type of inter-molecular forces betweenSOand PCBM molecules are strong enough to prevent phase segregation,the nature of which is currently under investigation.

    3 Conclusions

    We have successfully prepared a tetraphenylsilane cored 3-D small molecule possessing high crystallinity and low bandgap.Solar cell devices employing such molecule showed lackluster performance due to absence of appreciable phase separation.We are currently optimizing solar cell devices through solvent additives and molecular structural variation in order to gain further insight on the nature of strong interactions of such 3-D molecules with fullerene acceptors.

    Figure 4 I-V curves of solar cell device employing SO and PCBM at a 1/3 weight ratio as the active layer in dark(dashed line) and under simulated white light(100 mW/cm2)

    Figure 5 Optical microscopy images(40X zoom) of as cast thin film of SO(A) and SO/PCBM 1/3 blends(C),and thermally annealed(150 °C,10 min) thin films of SO(B) and SO/PCBM 1/3 blends(D)(Scale bar: 20 μm)

    4 Experimental section

    MaterialsandGeneralMethodsAll reagents and solvents were used as received from Sigma-Aldrich or Alfa Aesar unless otherwise noted.THF was distilled from Na/benzophenone prior to use.300.13 MHz1H and 75.48 MHz13C NMR spectra were recorded on a Bruker Avance III Solution 300 spectrometer.2-Tributylstannylthiophene(3)[17], 2,2′-bithiophene-5-carbaldehyde(4)[18],5′-bromo-(2,2′-bithiophene)-5-carbaldehyde(5)[18],2-bromo-3-hexylthiophene(6)[19], 3-hexyl-2-trimethylstannylthiophene(7)[20], were prepared to literature procedures.All solution1H and13C NMR spectra were referenced internally to solvent signals.Ultraviolet-Visible(UV-Vis) absorption spectra were recorded on a Shimadzu UV-2401 PC spectrometer over a wavelength range of 240-1 100 nm.Fluorescence emission spectra were obtained using a Varian Cary Eclipse fluorimeter.Time-of-flight mass spectrometry(TOF MS) was performed on a Waters/Micromass LCT Premier system operating under atmospheric pressure photoionization(APPI+) mode.Cyclic voltammetry was performed at 25 ℃ on a CH Instrument CHI604xD electrochemical analyzer using a glassy carbon working electrode,a platinum wire counter electrode,and a Ag/AgCl reference electrode calibrated using ferrocene redox couple(4.8 eV below vacuum).

    SolarCellFabricationandTestingSolar cell devices adopt a structure of ITO/MoO3/active layer/Al.Thin films of active layers were spun-cast from blend solutions prepared by dissolvingSOand PCBM(American Dye Source,Inc.) at predetermined weight ratios in chlorobenzene(CB) and stirred at 80 ℃ for 10 h in a nitrogen glove box(Innovative Technology,model PL-He-2 GB,O2<10-7,H2O<10-7) before device fabrication.Solar cell devices were fabricated according to the following procedure:ITO-coated glass substrates(China Shenzhen Southern Glass Display.Ltd) were cleaned by ultrasonication sequentially in detergent,DI water,acetone and isopropyl alcohol,each for 15 min.These ITO-coated glass substrates were further treated by UV-ozone(PSD Series,Novascan) for 45 min before transferred into a nitrogen glove box(Innovative Technology,model PL-He-4GB-1800,O2<10-7,H2O<10-7) for MoO3deposition.MoO3(10 nm) was deposited using an Angstrom Engineering ?mod deposition system at a base vacuum level<7×10-8Torr.The blend solution was first filtered through a 0.45 μm PTFE filter and spin-coated on top of the MoO3layer at preset speeds for 30 s.Typical thickness of organic layers was ca.100 nm.Al(100 nm) was finally thermally evaporated through patterned shadow masks as anodes.Current-voltage(I-V) characteristics were measured by a Keithley 2 400 source-measuring unit under simulated AM1.5 G irradiation(100 mW/cm2) generated by a Xe arc-lamp based Newport 67005 150-W solar stimulator equipped with an AM1.5 G filter.The light intensity was calibrated by a Newport thermopile detector(model 818P-010-12) equipped with a Newport 1916-C Optical Power Meter.

    5 Acknowledgment

    The authors would like to acknowledge University of New Mexico for financial support for this research.National Science Foundation(NSF) is acknowledged for supporting the NMR facility at UNM through grants CHE-0840523 and 0946690.

    :

    [1] HOPPE H,SARICIFTCI N S.Organic solar cells:An overview[J].J Mater Res,2004,19(7):1924-1945.

    [2] SPANGGAARD H,KREBS F C.A brief history of the development of organic and polymeric photovoltaics[J].Sol Energy Mater Sol Cells,2004,83(2-3):125-146.

    [3] THOMPSON B C,FRéCHET J M.Polymer-fullerene composite solar cells[J].Angew Chem Int Ed,2008,47(1):58-77.

    [4] DENNLER G,SCHARBER M C,BRABEC C.Polymer-fullerene bulk-heterojunction solar cells[J].Adv Mater,2009,21(13):1323-1338.

    [5] CHENGY J,YANG S H,HSU C S.Synthesis of conjugated polymers for organic solar cell applications[J].Chem Rev,2009,109(11):5868-5923.

    [6] HE Z,ZHONG C,SU S,et al.Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J].Nat Photon,2012,6:591-595.

    [7] YOU J,DOU L,YOSHIMURA K,et al.A polymer tandem solar cell with 10.6% power conversion efficiency[J].Nat Commun,2013,4,doi:10.1036/n Comms 2411.

    [8] YOU J,CHEN C C,HONG Z,et al.10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells[J].Adv Mater,2013,25(29):3973-3978.

    [10] WALKER B,KIM C,NGUYEN T Q.Small molecule solution-processed bulk heterojunction solar cells[J].Chem Mater,2011,23(3):470-482.

    [11] CHEN Y,WAN X,LONG G.High performance photovoltaic applications using solution-processed small molecules[J].Acc Chem Res,2013,46(11):2645-2655.

    [12] STEINMANN V,KRONENBERG N M,LENZE M R,et al.Simple,highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes[J].Adv Energy Mater,2011,1(5):888-893.

    [13] SUN Y,WELCH G C,LEONG W,et al.Solution-processed small-molecule solar cells with 6.7% efficiency[J].Nat Mater,2012,11:44-48.

    [14] LIU X,SUN Y,PEREZ L A,et al.Narrow-band-gap conjugated Chromophores with Extended Molecular Lengths[J].J Am Chem Soc,2012,134(51):20609-20612.

    [15] ROQUET S,DE B R,LERICHE P,et al.Three-dimensional tetra(oligothienyl)silanes as donor material for organic solar cells[J].J Mater Chem,2006,16:3040-3045.

    [16] LIN Z,BJORGAARD J,YAVUZ A G,et al.Low band gap star-shaped molecules based on benzothia(oxa)diazole for organic photovoltaics[J].J Phys Chem C,2011,115:15097-15108.

    [17] PU S,ZHENG C,SUN Q,et al.Enhancement of cyclization quantum yields of perfluorodiarylethenes via weak intramolecular interactions[J].Chem Commun,2013,49:8036-8038.

    [18] GRISORIO R,DE M L,ALLEGRETTA G,et al.Anchoring stability and photovoltaic properties of new D(-π-A)2dyes for dye-sensitized solar cell applications[J].Dyes Pigments,2013,98(2):221-231.

    [19] AMIR E,SIVANANDAN K,COCHRAN J E,et al.Synthesis and characterization of soluble low-bandgap oligothiophene-[all]-S,S-dioxides-based conjugated oligomers and polymers[J].J Polym Sci A Polym Chem,2011,49(9):1933-1941.

    [20] CROUCH D J,SPARROWE D,HEENEY M,et al.Polyterthiophenes Incorporating 3,4-Difluorothiophene Units: Application in Organic Field-Effect Transistors[J].J Macromol Chem Phys,2010,211(24):2642-2648.

    男的添女的下面高潮视频| 亚洲欧美清纯卡通| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 狂野欧美激情性bbbbbb| 人妻 亚洲 视频| 全区人妻精品视频| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 国产精品 国内视频| 精品久久蜜臀av无| 精品一区二区三区视频在线| 在线观看一区二区三区激情| 国产成人精品无人区| 日韩大片免费观看网站| 高清不卡的av网站| 晚上一个人看的免费电影| 国产毛片在线视频| 欧美人与性动交α欧美精品济南到 | 国产黄色视频一区二区在线观看| 天天影视国产精品| 国产精品久久久久久久电影| 国产成人精品婷婷| 精品人妻熟女av久视频| 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 桃花免费在线播放| 国模一区二区三区四区视频| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 久久久久久伊人网av| 亚洲高清免费不卡视频| 十八禁高潮呻吟视频| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 一本一本综合久久| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃 | 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 久久久久国产精品人妻一区二区| 色5月婷婷丁香| 超色免费av| 青春草亚洲视频在线观看| 狂野欧美白嫩少妇大欣赏| 午夜免费观看性视频| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看| 春色校园在线视频观看| h视频一区二区三区| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 国产亚洲精品久久久com| 老女人水多毛片| 美女脱内裤让男人舔精品视频| 亚洲国产精品专区欧美| 日本欧美国产在线视频| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 日本爱情动作片www.在线观看| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 中文字幕制服av| 国产成人精品福利久久| 亚洲怡红院男人天堂| 久久97久久精品| 国产爽快片一区二区三区| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频 | 啦啦啦视频在线资源免费观看| 中文字幕制服av| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 亚洲怡红院男人天堂| 一本久久精品| 亚洲人成网站在线观看播放| 观看av在线不卡| 91精品国产国语对白视频| 久久久久久人妻| 免费av不卡在线播放| 七月丁香在线播放| av女优亚洲男人天堂| 国产av一区二区精品久久| 最新的欧美精品一区二区| 黄片播放在线免费| 97在线人人人人妻| 中文字幕精品免费在线观看视频 | 全区人妻精品视频| 伦理电影免费视频| 亚洲人成网站在线播| 国产免费现黄频在线看| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 熟女av电影| 欧美日韩在线观看h| 国精品久久久久久国模美| 蜜桃国产av成人99| 日韩精品免费视频一区二区三区 | 青春草国产在线视频| 乱码一卡2卡4卡精品| a级片在线免费高清观看视频| 亚洲成色77777| 久久99精品国语久久久| 中国三级夫妇交换| 一级二级三级毛片免费看| 国内精品宾馆在线| 18禁观看日本| 精品人妻在线不人妻| 久久久久久久久久人人人人人人| 男女啪啪激烈高潮av片| 国产成人免费观看mmmm| 一二三四中文在线观看免费高清| 建设人人有责人人尽责人人享有的| 伦精品一区二区三区| 成人国产麻豆网| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 国产亚洲最大av| 91精品国产九色| 国产精品一区二区在线观看99| 中国三级夫妇交换| 秋霞在线观看毛片| 99精国产麻豆久久婷婷| 黑人欧美特级aaaaaa片| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 成年美女黄网站色视频大全免费 | 欧美激情极品国产一区二区三区 | 国内精品宾馆在线| 国产一区二区三区综合在线观看 | 99久久精品国产国产毛片| 考比视频在线观看| 欧美日韩精品成人综合77777| 一级毛片我不卡| 天天影视国产精品| 3wmmmm亚洲av在线观看| 久久久久精品性色| 不卡视频在线观看欧美| 九色成人免费人妻av| 国产69精品久久久久777片| 久久女婷五月综合色啪小说| 久久影院123| 三上悠亚av全集在线观看| 精品国产一区二区三区久久久樱花| 精品久久久久久久久av| 久久精品国产亚洲av天美| 永久免费av网站大全| 美女xxoo啪啪120秒动态图| 99热这里只有精品一区| 久久热精品热| 99九九在线精品视频| 成年女人在线观看亚洲视频| 亚洲欧洲国产日韩| 一级黄片播放器| 久久精品人人爽人人爽视色| 国产日韩一区二区三区精品不卡 | 成人黄色视频免费在线看| 插阴视频在线观看视频| 伊人久久精品亚洲午夜| 欧美另类一区| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 国产精品一二三区在线看| 国产免费现黄频在线看| 黑人欧美特级aaaaaa片| 免费人成在线观看视频色| 如日韩欧美国产精品一区二区三区 | 老熟女久久久| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频 | 男人操女人黄网站| 国产 精品1| 九草在线视频观看| 久久ye,这里只有精品| 内地一区二区视频在线| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 欧美97在线视频| 九九在线视频观看精品| 在线观看国产h片| 亚洲图色成人| 91国产中文字幕| 国产在视频线精品| 国产精品一区二区三区四区免费观看| av天堂久久9| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| av不卡在线播放| 伊人久久精品亚洲午夜| 大片电影免费在线观看免费| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 青青草视频在线视频观看| 亚洲av成人精品一区久久| 午夜av观看不卡| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 欧美国产精品一级二级三级| av黄色大香蕉| 欧美bdsm另类| 韩国高清视频一区二区三区| a级毛片在线看网站| 丝袜美足系列| 18+在线观看网站| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久久大奶| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区在线观看99| 伦理电影免费视频| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 久久人人爽人人片av| 99国产综合亚洲精品| 久久久久人妻精品一区果冻| 超碰97精品在线观看| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 免费少妇av软件| 国产欧美日韩综合在线一区二区| 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 成人午夜精彩视频在线观看| 精品久久蜜臀av无| 高清在线视频一区二区三区| 视频区图区小说| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 国产极品粉嫩免费观看在线 | 欧美3d第一页| 99国产精品免费福利视频| 国产国拍精品亚洲av在线观看| 在线亚洲精品国产二区图片欧美 | 自线自在国产av| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 亚洲在久久综合| 2018国产大陆天天弄谢| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 99热全是精品| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 亚洲,一卡二卡三卡| 各种免费的搞黄视频| 熟女人妻精品中文字幕| 永久免费av网站大全| videossex国产| 亚洲在久久综合| 久久久精品94久久精品| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 婷婷成人精品国产| 国产午夜精品久久久久久一区二区三区| 下体分泌物呈黄色| 我的老师免费观看完整版| 精品卡一卡二卡四卡免费| 久久av网站| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美亚洲二区| 美女主播在线视频| 婷婷成人精品国产| 如日韩欧美国产精品一区二区三区 | 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻不卡中文字幕| 99热国产这里只有精品6| 日本黄色片子视频| 免费高清在线观看视频在线观看| 秋霞在线观看毛片| 国产黄色免费在线视频| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| 人成视频在线观看免费观看| 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 美女福利国产在线| 91精品三级在线观看| 狂野欧美激情性xxxx在线观看| 欧美97在线视频| 成人国产av品久久久| 中文天堂在线官网| 国产精品熟女久久久久浪| 老司机影院毛片| 亚洲精品av麻豆狂野| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 久久人人爽人人爽人人片va| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 国产一级毛片在线| av免费观看日本| 啦啦啦啦在线视频资源| 国产黄频视频在线观看| 丰满饥渴人妻一区二区三| 精品人妻偷拍中文字幕| 久久精品夜色国产| 国产精品国产三级专区第一集| 欧美精品亚洲一区二区| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区欧美精品| 日韩一区二区三区影片| 日本与韩国留学比较| 少妇熟女欧美另类| av在线观看视频网站免费| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 日韩一区二区三区影片| 中文欧美无线码| 99热这里只有是精品在线观看| 亚洲一区二区三区欧美精品| 麻豆精品久久久久久蜜桃| 一级,二级,三级黄色视频| 欧美日韩av久久| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| av电影中文网址| 大陆偷拍与自拍| av卡一久久| 大香蕉久久网| 免费观看无遮挡的男女| 成人亚洲精品一区在线观看| 日韩欧美精品免费久久| 国产有黄有色有爽视频| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 午夜福利影视在线免费观看| 大话2 男鬼变身卡| 简卡轻食公司| 日韩一本色道免费dvd| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 人妻系列 视频| 亚洲av国产av综合av卡| 少妇 在线观看| 亚洲一区二区三区欧美精品| 欧美丝袜亚洲另类| 最黄视频免费看| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 亚洲不卡免费看| 亚洲欧洲国产日韩| 91成人精品电影| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲 | 亚洲欧美中文字幕日韩二区| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 如日韩欧美国产精品一区二区三区 | 亚洲,欧美,日韩| 视频中文字幕在线观看| 性高湖久久久久久久久免费观看| 好男人视频免费观看在线| .国产精品久久| 最后的刺客免费高清国语| 国产有黄有色有爽视频| 亚洲国产色片| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 成人手机av| 亚洲国产欧美日韩在线播放| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 久久久久视频综合| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 免费看光身美女| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| videossex国产| av.在线天堂| 精品一区二区三区视频在线| 这个男人来自地球电影免费观看 | 能在线免费看毛片的网站| 大陆偷拍与自拍| 我要看黄色一级片免费的| 满18在线观看网站| 亚洲五月色婷婷综合| 最新的欧美精品一区二区| 另类精品久久| 久久久久精品久久久久真实原创| 老女人水多毛片| 啦啦啦在线观看免费高清www| 日韩电影二区| 亚洲国产精品一区三区| 女人久久www免费人成看片| 国模一区二区三区四区视频| 免费大片黄手机在线观看| 中国国产av一级| 午夜影院在线不卡| av在线观看视频网站免费| 99久国产av精品国产电影| 欧美激情极品国产一区二区三区 | 成人漫画全彩无遮挡| 天天影视国产精品| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 久久久午夜欧美精品| 亚洲精品日本国产第一区| 99视频精品全部免费 在线| 久久97久久精品| 国产毛片在线视频| 男女高潮啪啪啪动态图| 天天影视国产精品| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 这个男人来自地球电影免费观看 | 国产在线免费精品| 日日爽夜夜爽网站| 欧美三级亚洲精品| 一级黄片播放器| 日本午夜av视频| 97在线人人人人妻| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 亚洲成人手机| 交换朋友夫妻互换小说| 免费看av在线观看网站| 精品一区二区免费观看| 成人综合一区亚洲| 免费大片18禁| 国产高清不卡午夜福利| 国产精品99久久99久久久不卡 | 国产色爽女视频免费观看| 国产精品免费大片| 伊人久久精品亚洲午夜| 日韩免费高清中文字幕av| 22中文网久久字幕| 国产精品久久久久久精品古装| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 成人18禁高潮啪啪吃奶动态图 | 观看美女的网站| 夫妻性生交免费视频一级片| 免费日韩欧美在线观看| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线 | 97超碰精品成人国产| 久久 成人 亚洲| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 国产精品一区二区在线不卡| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 日本与韩国留学比较| av线在线观看网站| 高清av免费在线| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 亚洲精品aⅴ在线观看| 另类精品久久| 亚洲一级一片aⅴ在线观看| 久久久欧美国产精品| 亚洲精品av麻豆狂野| 永久网站在线| 婷婷色av中文字幕| 国产成人免费观看mmmm| 国产不卡av网站在线观看| 国产成人a∨麻豆精品| 满18在线观看网站| 999精品在线视频| 国产成人免费观看mmmm| 97超碰精品成人国产| 大片免费播放器 马上看| 中文天堂在线官网| 中文字幕制服av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲性久久影院| 午夜老司机福利剧场| 母亲3免费完整高清在线观看 | 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区黑人 | 国产日韩一区二区三区精品不卡 | 一本大道久久a久久精品| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 美女国产高潮福利片在线看| 国产免费一级a男人的天堂| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 欧美 亚洲 国产 日韩一| 在线天堂最新版资源| 婷婷色综合www| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 熟女电影av网| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| 五月天丁香电影| 91久久精品电影网| 丝袜脚勾引网站| 一级,二级,三级黄色视频| 欧美xxxx性猛交bbbb| 2022亚洲国产成人精品| 精品亚洲成a人片在线观看| 久久久久人妻精品一区果冻| 插逼视频在线观看| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看| kizo精华| 国产在视频线精品| 日本av免费视频播放| 欧美精品高潮呻吟av久久| 青青草视频在线视频观看| 午夜福利在线观看免费完整高清在| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 免费大片黄手机在线观看| 人妻少妇偷人精品九色| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验| 亚洲精品国产av成人精品| 日本av免费视频播放| 夜夜爽夜夜爽视频| 日日爽夜夜爽网站| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 精品一区在线观看国产| 一个人看视频在线观看www免费| 亚洲精品av麻豆狂野| 人体艺术视频欧美日本| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 91精品一卡2卡3卡4卡| 国产成人a∨麻豆精品| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 男女边摸边吃奶| 国产一级毛片在线| 一本色道久久久久久精品综合| 热99久久久久精品小说推荐| 久久 成人 亚洲| 你懂的网址亚洲精品在线观看| 丝袜脚勾引网站| 日本av免费视频播放| 久久精品国产亚洲av天美| 777米奇影视久久| 中国美白少妇内射xxxbb| av在线播放精品| 成人亚洲欧美一区二区av| 国产精品熟女久久久久浪| 亚洲精品亚洲一区二区| 超碰97精品在线观看| 草草在线视频免费看| 国产日韩欧美在线精品| 国产视频首页在线观看| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 91久久精品电影网| 国产无遮挡羞羞视频在线观看| 国产精品一国产av| 熟妇人妻不卡中文字幕| av又黄又爽大尺度在线免费看| 少妇的逼水好多| 日日爽夜夜爽网站| 美女脱内裤让男人舔精品视频| 丝袜脚勾引网站| av免费观看日本| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| 91精品三级在线观看| 午夜福利影视在线免费观看| 蜜臀久久99精品久久宅男| 欧美97在线视频| 99九九在线精品视频| 婷婷色综合大香蕉| 97超碰精品成人国产|