• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overview of global monthly surface temperature data in the past century and preliminary integration

    2014-03-20 21:37:46XUWenHuiLIQingXiangYANGSuXUYan
    Advances in Climate Change Research 2014年3期

    XU Wen-Hui*,LI Qing-Xiang,YANG Su,XU Yan

    National Meteorological Information Center,China Meteorological Administration,Beijing 100081,China

    Overview of global monthly surface temperature data in the past century and preliminary integration

    XU Wen-Hui*,LI Qing-Xiang,YANG Su,XU Yan

    National Meteorological Information Center,China Meteorological Administration,Beijing 100081,China

    This paper analyzes the status of existing resources through extensive research and international cooperation on the basis of four typical global monthly surface temperature datasets including the climate research dataset of the University of East Anglia(CRUTEM3),the dataset of the U.S.National Climatic Data Center(GHCN-V3),the dataset of the U.S.National Aeronautics and Space Administration(GISSTMP),and the Berkeley Earth surface temperature dataset(Berkeley).China's first global monthly temperature dataset over land was developed by integrating the four aforementioned global temperature datasets and several regional datasets from major countries or regions.This dataset contains information from 9,519 stations worldwide of at least 20 years for monthly mean temperature,7,073 for maximum temperature,and 6,587 for minimum temperature.Compared with CRUTEM3 and GHCN-V3,the station density is much higher particularly for South America,Africa, and Asia.Moreover,data from signi ficantly more stations were available after the year 1990 which dramatically reduced the uncertainty of the estimated global temperature trend during 1990-2011.The integrated dataset can serve as a reliable data source for global climate change research.

    Global monthly surface temperature dataset;Integration of multi-source data;Climate change

    1.Introduction

    In recent years,changes in land surface temperature on global and hemispherical scales have been most thoroughly studied through CRUTEM3[CRUTEM:dataset of the University of East Anglia](Jones,1994;Jones and Moberg, 2003),GHCN-V3[GHCN-V3:dataset of the U.S.National Climatic Data Center](Peterson and Vose,1997),and GISSTMP[GISSTMP:datasetoftheU.S.National Aeronautics and Space Administration](Hansen and Lebedeff, 1987).These three datasets have been fully developed in recent years,although each has limitations.For example, fewer stations are set up in some regions of South America, Asia,and Africa.Such stations differ in representativeness, which results in large differences in homogeneity treatment. When these datasets are applied in describing air temperature changes on the global or regional scale,inconsistencies of various degrees occur(Gong and Wang,2002;Wang et al., 2009).Furthermore,because they differ in data collection and treatment techniques as well as focus,these three datasets have distinct advantages and disadvantages during application. In recent years,the International Surface Temperature Initiative(Thorne et al.,2011)and the Berkeley[Berkeley:the Berkeley Earth surface temperature dataset]Earth surface temperature research team(Rohde et al.,2013)have conducted a large amount of research in this aspect.

    Several internationally renowned datasets of global climate including air temperature and precipitation are mainly from the U.S.,the United Kingdom,and Russia.China lags behind in the capacity of collecting and processing global data.Chinese scholars have devoted great effort in the development of homogenized climate datasets in recent years and have accumulated experience.The National Meteorological Information Center,China Meteorological Administration,released China's homogenized air temperature dataset(1951-2004)version 1.0 in December 2006(Li et al.,2004;Li and Dong,2009).Li et al.(2010)conducted homogeneity tests and correction on the air temperature series of China during the past century (1900-2006).They developed a homogenized air temperature dataset and air temperature series for China and systematically evaluated the uncertainty level of climate warming in China during the past century.Li and Yan(2010)adopted multiple analyses of series for homogenization in the homogenization and correction for daily air temperature series at more than 500 stations nationwide during 1960-2006.Cao et al.(2013) interpolated and corrected 16 long-term monthly mean air temperature series of eastern China to construct the air temperature variation series.Xu et al.(2013)performed homogeneity research of daily climate sequences and compiled a second-generation air temperature homogenized dataset for China.This dataset demonstrates great advantages when applied to extreme climate events and variations across the years.On the basis of the dataset compiled by Li et al.(2010), Wang et al.(2014)used the best unbiased method to reconstruct the air temperature sequences.Because of a lack of necessary technologies for data collection and treatment, however,Chinese experts have not commenced the development of global data products yet.With the furthering of scientific research in climate change and the growing demand for global air temperature datasets,China has made new progress in this aspect.Thus,a foundation is established for developing a new version of global air temperature dataset.In this study, the advantages of several typical datasets of global monthly air temperature are combined for some regions and countries to form China's first dataset of global monthly air temperature. Data support is provided for real-time monitoring and studying the variation of global climate.

    2.Overview of typical global monthly air temperature datasets

    Global historical climatology network is the first version of the monthly air temperature dataset developed by the U.S.NationalClimaticDataCentersinceearly1990s(Voseetal.,1992). GHCN-V3 was released in 2011,with proper quality control on repetitive data,climate anomalies,and spatial inconsistency (Durre et al.,2007).Homogeneity testing and correction for the temperature series were conducted by automatic paired alignment(Menne and Williams,2009).GHCN-V3 consists of two typesofdata.Thefirstisoriginaldata,whichareusuallyusedas the fundamental data for other datasets such as GISSTMP;the second is the homogenized CRUTEM(Jones,1994;Jones and Moberg,2003),which is widely used in the study on air temperature changes and trends.In particular,CRUTEM2 uses thehomogenized dataofmanycountriesanddistrictswithgood qualitycontrol.Thedatasetisofgoodspatialrepresentativeness, high stability,and the widest application.With further improvement on quality control method,CRUTEM3 was released(Brohan et al.,2006).Fig.1 shows the spatial distribution of stations included in the two datasets.Although the number of stations differs between GHCN-V3 and CRUTEM3, the long-term data series are mainly distributed in North America and Europe.Furthermore,the data length of CRUTEM3 is much longer than that of GHCN-V3.South America, Asia,and Africa have fewer stations and shorter time span.At most stations,the data length is less than 50 years.

    In addition to the two datasets,GISSTMP(Hansen et al., 1999)introduced the data from several stations in Antarctica and combined the homogenized U.S.Historical Climatology Network data from more than 1,200 stations.The data from the stations located in cities with populations of more than 50,000 were homogenized.Because this dataset was developed on the basis of the original data of GHCN-V2,the two datasets are consistent in data sources.In recent years,the Berkeley Earth surface air temperature research team combined 1.6 billion data series in 16 datasets to build an integrated dataset of global monthly air temperature.A new algorithm was developed that utilizes some short or discontinuous data.After the removal of repetitive records,Berkeley covers 36,000 stations(Rohde et al.,2013).

    3.Collection and integration of multi-source data

    3.1.Regional datasets

    Through international cooperation,global datasets such as CRUTEM3 and GHCN-V3 were collected along with the regional datasets released or exchanged by typical regions or countries.The supplementary datasets fall into the following categories.

    (1)Individual countries or typical regions have released homogenized datasets.In the past decade,the method for air temperature data homogenization has been fully developed.Some countries with expansive territories have developed homogenized climate datasets on a regional scale including the U.S.(Vose et al.,2003), Canada(Vincent et al.,2012),Australia(Trewin,2013), and China(Li et al.,2004,2010;Li and Dong,2009; Cao et al.,2013;Xu et al.,2013;Wang et al.,2014). Despite the various statistical methods used,all of the datasets consider metadata.Chimani et al.(2012) established a long-term homogenized monthly air temperature dataset across the Greater Alpine Region of Europe(43°-49°N,4°-19°E).The European Climate Assessment&Dataset project has undertaken the task of strict quality control(Klein Tank et al.,2002)and homogenization(Wijngaard et al.,2003)for daily air temperature data since the 20th century.A high-quality dataset of daily climate for Europe has been formed.

    (2)Severalnationalmeteorologicaldepartmentshave released original datasets.Russia and Japan share quality-controlledoriginaldatasetsthroughonline transmission.The length of most series is more than 50 years.Theses series provide important data sources for global datasets such as GHCN-V3.The series of GHCNV3 stations are mostly updated to approximately the year 1990;however,the data shared online are updated to 2009.Thus,Japan has achieved real-time updating, which greatly increases the length and integrity of the data series.Korea and Vietnam have been exchanging daily air temperature and precipitation data of 76 and 25 stations,respectively,with China since 1960.

    (3)Data of the Antarctica Scientific Committee on Antarctic Research has released air temperature data of Antarctica since 1980,providing first-hand data of Antarctic air temperature.CRUTEM3 uses the dataset of Antarctic land surface and air pressure developed by Jones and Reid(2001),which mainly covers 1950s through the 1970s.

    3.2.Preliminary integration of multi-source data

    GHCN-V3 has relatively stable data sources,and the nonhomogenized original data can serve as basic data for building a new air temperature dataset.When integrating multisource data,the stations covered by both GHCN-V3 and other datasets should be identified.The following principles apply to the identification of repetitive stations:(a)each station of GHCN-V3 is taken as the station to be inspected,and the stations in other datasets within 0.25°from the inspected station are the candidate stations;(b)if the candidate station and the inspected station have the same station number as specified by World Meteorological Organization,the two stations are considered as the same station;(c)if the candidatestation and the inspected station have the same name,the two are also considered as the same.With the repetitive stations determined,the priority of other data sources and GHCN-V3 needs to be determined.Data sources belonging to(1)and (3)in Section 3.1 are the homogenized datasets and first-hand data of individual countries of districts and have a higher priority than GHCN-V3.Therefore,when integrating the data sources belonging to(1)and(3),the repetitive stations in GHCN-V3 are replaced by these two data sources,and the stations not found in GHCN-V3 are supplemented.The data sources belonging to(2)in Section 3.1 are the original datasets released by the meteorological departments of various countries.The differences in data at repetitive stations in GHCNV3 and during the overlapping period are calculated.The priority is determined by the data length and integrity.If the consistency of data in the overlapping period is over 95%, priority is given to that with longer length.The data absent in the priority data source are supplemented by other data sources.If the consistency of data is below 95%,the data source with longer data length is selected,and no supplementation is needed.After integrating the above three data sources,CRUTEM3 and Berkeley datasets are used to supplement the data of Africa,Asia,and South America to increase the density of stations in these areas.

    Table 1 is the basic information on the fusion of various data sources with GHCN-V3.For the U.S.,Canada,and Australia,the homogenized datasets released by the meteorological departments are assigned with higher priority.Before the 1950s,China had only 192 stations,which rapidly increased after the 1950s and reached 825 in 2005.Currently, GHCN-V3 includes approximately 416 Chinese stations,with alloriginaldata.Thus,whenintegratingChina'sair temperature data,the data homogenized by Xu et al.(2013) from 633 stations built after 1950 were used.For the 192 stations built before 1950,data homogenized by Li et al. (2010)were used.Regarding China's neighboring countries, the Japan Meteorological Agency updates the data of 151 stations on a monthly basis.The air temperature data of 76 Korean stations and 25 Vietnamese stations since 1960 that were obtained through exchange are all original data with strict quality control.Russia has released historical climate series at 518 stations since its founding.The metadata on operation,shutdown,and dislocation of the stations is also provided.By comparison with repetitive stations in GHCNV3,the data from 426 stations with higher integrity and longer time span are assigned higher priority.

    Excluding Russia,the European region uses two major sources of homogenized data including that for the Greater Alpine Region(Chimani et al.,2012)and the European Climate Assessment&Dataset(Klein Tank et al.,2002).The stations in these two datasets are assigned with higher priority, and there are 600 non-repetitive stations.GHCN-V3 supplements data at 1,155 stations in the European region,and CRUTEM3 and Berkeley combined supplement data at 347 stations.For South America and Africa with sparsely distributed stations,almost no other data sources are used except GHCN-V3,CRUTEM3,and Berkeley.Thus,for South America,the data of 353 stations are from GHCN-V3,the data of 80 stations are from CRUTEM3,and the data of 311 stations are from Berkeley.In Africa,the data of 751 stations are from GHCN-V3,the data of 70 stations are from CRUTEM3, and the data of 277 stations are from Berkeley.For the Antarctic region,the Scientific Committee on Antarctic Research dataset covers 46 stations on land.The time span of mostseries is 1950-2012,and the longest is approximately 50 years.

    4.Quality control and overview of integrated dataset

    4.1.Quality control

    Despite quality control,the use of various methods will lead to quality problems in integrated dataset.The quality control method used for GHCN-V3 implements a three-step quality control process for the integrated dataset.

    Step 1:check for climate anomalies.Anomalies higher than five times the standard deviation of the monthly mean at each station are checked.Fifty-four,39,and 129 stations have higher anomalies in monthly mean temperature,maximum temperature,and minimum temperature,respectively.These anomalies are treated as default.

    Step 2:check for spatial consistency.The standard is as follows(the formula should not be represented graphically):

    whereZiis the normalized air temperature at the target station;Zijis the normalized air temperature at the neighboring stations(not exceeding 20)within 500 km from the target station;is the mean of normalized air temperature at the neighboring station;σijis the standard deviation of normalized air temperature at the neighboring station.The test showed that monthly mean air temperature,maximum temperature,and minimum temperature have spatial inconsistency problems at 349,170,and 505 stations,respectively.These values are treated as default.

    Step 3:check for internal consistency.Most data sources contain monthly mean temperature,maximum temperature, and minimum temperature simultaneously.The mean temperature is the value of a fixed time or a result of a weather forecast and is usually not the average between the maximum and the minimum.Therefore,internal inconsistency may arise such as mean temperature lower than the minimum temperature or higher than the maximum temperature.The test showed that internal inconsistency occurs in approximately 1,544 stations.The remedy is to take the average of the maximum and the minimum temperature.

    4.2.Overview of data integration

    The integrated dataset includes 9,519,7,073,and 6,587 stations with lengths of monthly mean air temperature, monthly maximum and minimum temperature series of at least 20 years.Fig.2 shows the spatial distribution of 9,519 stations included in the monthly mean dataset.The station density in the integrated dataset is higher than that in GHCN-V3 or CRUTEM3,particularly in South America,Africa,and Asia. The length of data series increases most obviously in the U.S., China,and the adjacent regions.As indicated by the number of stations with various time span(Fig.3),the number of stations at each time span interval in the integrated dataset is signif icantly higher than that in GHCN-V3 and CRUTEM3.Thirtynine stations cover more than 200 years.Except for one station in the U.S.,all stations are located in central Europe.There are 6,121stationscovering50-200years,accountingfor approximately 64%of the total.These stations are mainly distributed in the U.S.,Europe,Asia,and Australia.Approximately 3,359 stations have time span of 20-50 years,accounting for 35%of the total.They are distributed sparsely in South America and Africa.As shown by the changes in number of stations in 1900-2011(Fig.4),the yearly number of stations in the integrated dataset is significantly greater compared with that in GHCN-V3 and CRUTEM3.After the 1990s the number of stations is significantly higher in the integrated dataset than that in the other two datasets.Theyearly changes in station numbers of GHCN-V3 and CRUTEM3 in 1900-2011 indicate that the station number increased since 1900 with higher value in 1960-1990.After 1990,the number of stations decreased sharply.By 2011,the numbersofGHCN-V3andCRUTEM3stationswere approximately only 3,000 and 1,600,respectively.These additional stations will decrease the uncertainty in estimation of the global air temperature trend since 1990.

    5.Application aspects of dataset and future plans

    The features of several typical datasets of global monthly mean were analyzed,and the regional datasets for major countries or regions were combined.In addition,a new dataset of global long-term monthly air temperature for land was created.The station density in the integrated dataset increased in each interval in various regions in the world.Fig.5 shows a comparison of land surface annual mean temperature anomaly in the integrated dataset,GHCN-V3,and CRUTEM3.The three datasets describe a similar overall trend of global land surface mean temperature.In the period 1972-1985,the three series nearly coincide.In other periods,certain differences are apparent.For example,the integrated dataset was much closer to CRUTEM3 in 1900-1910,between CRUTEM3 and GHCN-V3 in 1920-1970,while closer to GHCN-V3 after 1990.

    For various periods(Table 2),the integrated dataset underestimated annual mean temperature in 1900-1950 compared with CRUTEM3 and GHCN-V3.In 1951-2011,the integrated dataset estimation was between that of the other two datasets.Over the entire period(1900-2011),the global annual mean temperature estimated by the integrated dataset was slightly lower than that of GHCN-V3 but slightly higher than that of CRUTEM3.These results indicate that the integrated dataset can estimate the global mean air temperature trend similar to that estimated by CRUTEM3 and GHCN-V3. With the involvement of additional stations,the differences in long-term variation trend of air temperature appeared to diminish,which was expected.Fig.5 shows the global annual mean temperature anomalies in 1900-2011 relative to the 1961-1990 means.

    Although some countries or regions have released homogenized datasets,more countries do not conduct homogenization treatment.As a result,the datasets of many regions contain the influences of non-natural factors.Therefore,it is highly important to remove the errors related to the lack ofhomogenization treatment or at least to determine the range of relevant errors.Thus,future work will focus on data homogenization and correction,and a homogenized,real-time dataset of global air temperature will be established.This study provides a crucial basis for improving China's monitoring and understanding of global climate change and the mechanism of climate change in Asian countries.

    Acknowledgements

    Deepest gratitude goes to Prof.Philip D.JONES from University of East Anglia,Prof.Manfred from Austria,and REN Yu-Yu from the National Climate Center,China Meteorological Administration for their assistance in data collection.This paper is supported by the China Meteorological AdministrationSpecialPublicWelfareResearchFund (GYHY201206012,GYHY201406016)andtheClimate Change Foundation of the China Meteorological Administration(CCSF201338).

    Brohan,P.,Kennedy,J.J.,Harris,I.,et al.,2006.Uncertainty estimates in regional and global observed temperature changes:a new dataset from 1850.J.Geophys.Res.Atmos.111http://dx.doi.org/10.1029/ 2005JD006548.

    Cao,L.-J.,Zhao,P.,Yan,Z.-W.,et al.,2013.Instrumental temperature series in eastern and central China back to the 19th century.J.Geophys.Res. Atmos.118(15),8197-8207.

    Chimani,B.,Matulla,C.,Bohm,R.,et al.,2012.A new high resolution absolute temperature grid for the greater alpine region back to 1780.Int.J. Climatol.33(9),2129-2141.

    Durre,I.,Menne,M.J.,Vose,R.S.,2007.Strategies for evaluating quality assurance procedures.In:87th AMS Annual Meeting.http://dx.doi.org/ 10.1175/2007JAMC1706.1.

    Gong,D.-Y.,Wang,S.-W.,2002.Uncertainties in the global warming studies. Earth Sci.Front.9(2),371-376(in Chinese).

    Hansen,J.E.,Lebedeff,S.,1987.Global trends of measured surface air temperature.J.Geophys.Res.92,13345-13372.

    Hansen,J.,Ruedy,R.,Glascoe,J.,et al.,1999.GISS analysis of surface temperature change.J.Geophys.Res.104,30997-31022.

    Jones,P.D.,1994.Hemispheric surface air temperature variations:a reanalysis and an update to 1993.J.Clim.7,1794-1802.

    Jones,P.D.,Reid,P.A.,2001.A Databank of Antarctic Surface Temperature and Pressure Data.ORNL/CDIAC-27,NDP-032.Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,Oak Ridge. http://dx.doi.org/10.3334/CDIAC/cli.ndp032.

    Jones,P.D.,Moberg,A.,2003.Hemispheric and large-scale surface air temperature variations:an extensive revision and an update to 2001.J.Clim. 16,206-223.

    Klein Tank,A.M.G.,Wijngaard,J.B.,Konnen,G.P.,et al.,2002.Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment.Int.J.Climatol.22,1441-1453.

    Li,Q.-X.,Dong,W.-J.,2009.Detection and adjustment of undocumented discontinuities in Chinese temperature series using a composite approach. Adv.Atmos.Sci.26(1),143-153.

    Li,Q.-X.,Liu,X.,Zhang,H.,et al.,2004.Detecting and adjusting on temporal inhomogeneity in Chinese mean surface air temperature datasets.Adv. Atmos.Sci.21,260-268.

    Li,Q.-X.,Li,W.,Si,P.,et al.,2010.Assessment of surface air warming in Northeast China,with emphasis on the impacts of urbanization.Theor. Appl.Climatol.http://dx.doi.org/10.1007/s00704-009-0155-4.

    Li,Z.,Yan,Z.-W.,2010.Application of multiple analysis of series for homogenization(MASH)to Beijing daily temperature series 1960-2006. Adv.Atmos.Sci.27(4),777-787.

    Menne,M.J.,Williams,J.R.,2009.Homogenization of temperature series via pairwise comparisons.J.Clim.22,1700-1717.

    Peterson,T.C.,Vose,R.S.,1997.An overview of the global historical climatology network temperature data base.Bull.Am.Meteorol.Soc.78, 2837-2849.

    Rohde,R.,Muller,R.A.,Jacobsen,R.,et al.,2013.A new estimate of the average earth surface land temperature spanning 1753 to 2011.Geoinfor Geostat Overv.http://dx.doi.org/10.4172/gigs.1000101.

    Thorne,P.W.,Willett,K.M.,Allsn,R.J.,et al.,2011.Guiding the creation of a comprehensive surface temperature resource for Twenty-First-Century climate science.Bull.Am.Meteorol.Soc.92,ES40-ES47.

    Trewin,B.C.,2013.A daily homogenized temperature data set for Australia. Int.J.Climatol.33,1510-1529.

    Vincent,L.A.,Wang,X.L.,Milewska,E.J.,et al.,2012.A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis.J.Geophys.Res.117,D18110.http://dx.doi.org/10.1029/ 2012JD017859.

    Vose,R.S.,Schmoyer,R.L.,Steurer,P.M.,et al.,1992.The Global Historical Climatology Network:Long-term Monthly Temperature,Precipitation, Sea Level Pressure,and Station Pressure Data.ORNL/CDIAC-53,NDP-041.Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,Oak Ridge,pp.1-325.

    Vose,R.S.,Williams,J.R.,Peterson,T.C.,et al.,2003.An evaluation of the time of observation bias adjustment in the U.S.historical climatology network.Geophys.Res.Lett.30,2046.http://dx.doi.org/10.1029/ 2003GL018111.

    Wang,F.,Ge,Q.-S.,Chen,P.-Q.,2009.Uncertainties of temperature observation data in IPCC assessment report.Acta.Geogr.Sin.64(7),828-838 (in Chinese).

    Wang,J.,Xu,C.,Hu,M.,et al.,2014.A new estimate of the China temperature anomaly series and uncertainty assessment in 1900-2006.J.Geophys.Res.Atmos.119 http://dx.doi.org/10.1002/2013JD020542.

    Wijngaard,J.B.,Klein Tank,A.M.G.,Konnen,G.P.,et al.,2003.Homogeneity of 20th century European daily temperature and precipitation series.Int.J. Climatol.23,679.

    Xu,W.-H.,Li,Q.-X.,Wang,X.-L.,et al.,2013.Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices.J.Geophys.Res.Atmos.118(17),9708-9720.

    Received 18 February 2014;revised 27 March 2014;accepted 29 April 2014

    Available online 8 November 2014

    *Corresponding author.

    E-mail address:xuwenhui@cma.gov.cn(XU W.-H.).

    Peer review under responsibility of National Climate Center(China Meteorological Administration).

    http://dx.doi.org/10.1016/j.accre.2014.11.003

    1674-9278/Copyright?2014,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    This is an English translational work of an article originally published in Advances in Climate Change Research(Chinese).The original article can be found at:10.3969/j.issn.1673-1719.2014.05.007.

    久久久国产一区二区| 一级毛片黄色毛片免费观看视频| 尾随美女入室| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 国产精品久久久久久av不卡| 亚洲人成网站在线播| 色5月婷婷丁香| 久久久亚洲精品成人影院| av又黄又爽大尺度在线免费看| 最近中文字幕高清免费大全6| 国产日韩欧美视频二区| 久久久欧美国产精品| 国产免费一级a男人的天堂| 亚洲欧洲国产日韩| 卡戴珊不雅视频在线播放| 下体分泌物呈黄色| 亚洲三级黄色毛片| 日韩欧美 国产精品| 久久久久视频综合| 亚洲精品国产av成人精品| 国产深夜福利视频在线观看| 色网站视频免费| 免费播放大片免费观看视频在线观看| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美 | 欧美激情国产日韩精品一区| 国产欧美亚洲国产| 久热这里只有精品99| 伊人亚洲综合成人网| 男女边吃奶边做爰视频| 国产亚洲5aaaaa淫片| 国产精品欧美亚洲77777| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 亚洲av二区三区四区| 国产精品福利在线免费观看| 国产极品粉嫩免费观看在线 | 亚洲精品一二三| 日本欧美国产在线视频| 男人和女人高潮做爰伦理| 黑人巨大精品欧美一区二区蜜桃 | 18+在线观看网站| 天天操日日干夜夜撸| 777米奇影视久久| 大香蕉97超碰在线| a级一级毛片免费在线观看| 午夜福利在线观看免费完整高清在| 日本vs欧美在线观看视频 | 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 在线观看av片永久免费下载| av天堂久久9| 少妇熟女欧美另类| 国产探花极品一区二区| 看非洲黑人一级黄片| av在线播放精品| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99| 少妇人妻 视频| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 久久国产精品大桥未久av | 国产精品国产av在线观看| 男女边摸边吃奶| 亚洲精品国产成人久久av| 99热全是精品| 欧美老熟妇乱子伦牲交| 国产精品无大码| 嫩草影院新地址| 香蕉精品网在线| 观看美女的网站| 乱系列少妇在线播放| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 边亲边吃奶的免费视频| 大片电影免费在线观看免费| 嫩草影院入口| 免费在线观看成人毛片| 亚洲四区av| 国产美女午夜福利| 男人爽女人下面视频在线观看| 国产欧美日韩一区二区三区在线 | 亚洲av中文av极速乱| 国产精品一区二区在线不卡| 国产91av在线免费观看| 人体艺术视频欧美日本| 国产精品三级大全| 天堂俺去俺来也www色官网| 欧美+日韩+精品| 日韩伦理黄色片| 嫩草影院入口| 国产免费又黄又爽又色| 国产亚洲5aaaaa淫片| 亚洲精品久久午夜乱码| 老女人水多毛片| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 久久久国产一区二区| 在线免费观看不下载黄p国产| 亚洲无线观看免费| 久久精品国产自在天天线| 亚洲成人手机| 成人美女网站在线观看视频| 如日韩欧美国产精品一区二区三区 | 女性生殖器流出的白浆| 亚洲美女黄色视频免费看| 欧美另类一区| av天堂久久9| 91精品国产国语对白视频| a级毛色黄片| 人妻一区二区av| 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 欧美xxⅹ黑人| 免费观看性生交大片5| 乱人伦中国视频| 中文字幕人妻丝袜制服| 日韩强制内射视频| 99久久人妻综合| 国产午夜精品一二区理论片| 亚洲av欧美aⅴ国产| 国产男人的电影天堂91| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 我要看日韩黄色一级片| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 国产极品粉嫩免费观看在线 | 人妻系列 视频| 成年人免费黄色播放视频 | 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 国产av精品麻豆| 另类亚洲欧美激情| 一级毛片aaaaaa免费看小| 纯流量卡能插随身wifi吗| 少妇 在线观看| 人妻制服诱惑在线中文字幕| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 日韩三级伦理在线观看| 婷婷色av中文字幕| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区| 成年av动漫网址| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 香蕉精品网在线| 全区人妻精品视频| 18禁在线播放成人免费| 日本欧美视频一区| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 在线播放无遮挡| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 极品少妇高潮喷水抽搐| 日本免费在线观看一区| 精品熟女少妇av免费看| 日韩欧美 国产精品| 国产亚洲5aaaaa淫片| 噜噜噜噜噜久久久久久91| 中文字幕亚洲精品专区| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 自拍偷自拍亚洲精品老妇| 大片免费播放器 马上看| 成人综合一区亚洲| 久久精品国产自在天天线| 色婷婷久久久亚洲欧美| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 另类精品久久| 国产免费一级a男人的天堂| 人人妻人人添人人爽欧美一区卜| 黄色欧美视频在线观看| 少妇丰满av| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 十分钟在线观看高清视频www | 18+在线观看网站| 亚洲国产av新网站| 午夜激情福利司机影院| 全区人妻精品视频| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 韩国高清视频一区二区三区| 97在线视频观看| 国产日韩欧美视频二区| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 久久精品久久久久久久性| 高清午夜精品一区二区三区| 久久97久久精品| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 欧美精品亚洲一区二区| 国产av码专区亚洲av| 久久影院123| 乱人伦中国视频| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 不卡视频在线观看欧美| 伦理电影免费视频| 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看| 99热6这里只有精品| av有码第一页| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 99热全是精品| 美女国产视频在线观看| 一级,二级,三级黄色视频| 日日啪夜夜撸| 国产精品无大码| 人人妻人人澡人人看| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 精品久久国产蜜桃| 亚洲国产毛片av蜜桃av| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 亚洲精品aⅴ在线观看| av在线播放精品| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 国模一区二区三区四区视频| 久久久久国产网址| 成人18禁高潮啪啪吃奶动态图 | 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 99视频精品全部免费 在线| 午夜免费鲁丝| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线 | 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 九九久久精品国产亚洲av麻豆| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av成人精品| 看免费成人av毛片| 久久人人爽av亚洲精品天堂| 蜜桃在线观看..| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久久久免| 亚洲精品乱码久久久久久按摩| 精品少妇内射三级| 日本91视频免费播放| 国产精品国产三级专区第一集| 91aial.com中文字幕在线观看| 国产在线男女| 国产高清三级在线| 亚洲精品一二三| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 美女中出高潮动态图| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 综合色丁香网| 最近的中文字幕免费完整| av专区在线播放| 亚洲欧洲国产日韩| 久久精品夜色国产| 熟女av电影| 人人妻人人澡人人爽人人夜夜| 日日撸夜夜添| 人人澡人人妻人| 国产日韩欧美亚洲二区| 成人免费观看视频高清| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 另类亚洲欧美激情| 亚洲国产av新网站| 久久午夜福利片| 久久久国产欧美日韩av| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| .国产精品久久| 久久久精品免费免费高清| 人人妻人人澡人人爽人人夜夜| 亚洲自偷自拍三级| 国产日韩欧美视频二区| 这个男人来自地球电影免费观看 | 18禁动态无遮挡网站| 日产精品乱码卡一卡2卡三| 久久久久网色| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 女性生殖器流出的白浆| 美女福利国产在线| 久久女婷五月综合色啪小说| 久久精品久久精品一区二区三区| 国产成人freesex在线| 久久午夜综合久久蜜桃| 熟女av电影| 国产视频首页在线观看| 欧美高清成人免费视频www| 日韩av免费高清视频| 久久久久久久亚洲中文字幕| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 蜜桃久久精品国产亚洲av| 69精品国产乱码久久久| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 超碰97精品在线观看| 日日啪夜夜撸| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 如何舔出高潮| 久久久久精品久久久久真实原创| 成年av动漫网址| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 国产极品粉嫩免费观看在线 | 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 亚洲人成网站在线播| 欧美bdsm另类| 欧美高清成人免费视频www| √禁漫天堂资源中文www| 成年女人在线观看亚洲视频| √禁漫天堂资源中文www| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 午夜视频国产福利| 久久久久人妻精品一区果冻| 人妻一区二区av| 久久综合国产亚洲精品| 国产在线视频一区二区| 美女福利国产在线| 九九在线视频观看精品| 亚洲四区av| 大话2 男鬼变身卡| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 午夜激情福利司机影院| 亚洲美女黄色视频免费看| 啦啦啦啦在线视频资源| 一区在线观看完整版| 亚洲国产欧美日韩在线播放 | 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 国产欧美日韩综合在线一区二区 | 国产黄频视频在线观看| 另类精品久久| 视频区图区小说| 高清毛片免费看| 国产一区二区在线观看av| av黄色大香蕉| 亚洲国产欧美在线一区| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 亚洲精品一二三| 久久综合国产亚洲精品| 亚洲中文av在线| 91精品国产国语对白视频| 亚洲av二区三区四区| 一区二区三区乱码不卡18| 国产成人精品福利久久| 丰满少妇做爰视频| 精品熟女少妇av免费看| 日韩 亚洲 欧美在线| 国产精品国产三级专区第一集| 欧美丝袜亚洲另类| 看非洲黑人一级黄片| 亚洲图色成人| 777米奇影视久久| 久久婷婷青草| 18禁在线播放成人免费| 亚洲中文av在线| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 久久久久国产精品人妻一区二区| 亚洲欧美精品专区久久| 中文字幕免费在线视频6| 九九久久精品国产亚洲av麻豆| 丁香六月天网| 午夜久久久在线观看| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| h日本视频在线播放| 国模一区二区三区四区视频| 永久免费av网站大全| 国产成人aa在线观看| av在线观看视频网站免费| 美女视频免费永久观看网站| 草草在线视频免费看| 丝袜喷水一区| 成人特级av手机在线观看| 久久亚洲国产成人精品v| 91在线精品国自产拍蜜月| h日本视频在线播放| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 97精品久久久久久久久久精品| 在线观看免费日韩欧美大片 | 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 高清午夜精品一区二区三区| 男男h啪啪无遮挡| 国产淫语在线视频| 国产精品人妻久久久久久| 草草在线视频免费看| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 亚洲成人手机| 国产伦在线观看视频一区| 精品午夜福利在线看| 亚洲图色成人| 在线观看免费日韩欧美大片 | 久久国产乱子免费精品| 一本一本综合久久| 国产成人精品福利久久| 精品亚洲成国产av| 亚洲精品日韩av片在线观看| 国产视频内射| 久久免费观看电影| 在现免费观看毛片| 国产av码专区亚洲av| 91精品国产国语对白视频| 免费看不卡的av| av又黄又爽大尺度在线免费看| av线在线观看网站| 哪个播放器可以免费观看大片| 秋霞在线观看毛片| 中文天堂在线官网| 日本欧美国产在线视频| 熟女电影av网| 美女cb高潮喷水在线观看| 22中文网久久字幕| 亚洲国产欧美日韩在线播放 | 亚洲成人一二三区av| 精品久久久久久电影网| 日韩欧美一区视频在线观看 | 高清午夜精品一区二区三区| 最近的中文字幕免费完整| 五月伊人婷婷丁香| 久久久国产欧美日韩av| 国产高清国产精品国产三级| 亚洲经典国产精华液单| 久久久久网色| av免费观看日本| 乱码一卡2卡4卡精品| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 精品国产国语对白av| 伊人亚洲综合成人网| 久热久热在线精品观看| 国产精品国产三级国产av玫瑰| 人人妻人人看人人澡| 久久国产亚洲av麻豆专区| 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 极品人妻少妇av视频| 午夜免费观看性视频| 综合色丁香网| 日本-黄色视频高清免费观看| 99热全是精品| 精品一区二区免费观看| 午夜视频国产福利| 91精品伊人久久大香线蕉| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 久久久久久久久大av| 久热这里只有精品99| 日日摸夜夜添夜夜爱| 高清黄色对白视频在线免费看 | 女人精品久久久久毛片| 国产精品国产av在线观看| 少妇猛男粗大的猛烈进出视频| 国产免费一级a男人的天堂| 亚洲成人一二三区av| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 美女内射精品一级片tv| 亚洲精品自拍成人| 熟妇人妻不卡中文字幕| 免费久久久久久久精品成人欧美视频 | 91精品国产国语对白视频| 人妻夜夜爽99麻豆av| 亚洲精品中文字幕在线视频 | 伦理电影免费视频| 欧美激情极品国产一区二区三区 | 99九九在线精品视频 | 狠狠精品人妻久久久久久综合| 国产亚洲91精品色在线| 日本黄色日本黄色录像| 99九九在线精品视频 | 一级av片app| 日韩三级伦理在线观看| a级片在线免费高清观看视频| 久久国产亚洲av麻豆专区| 交换朋友夫妻互换小说| 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| av有码第一页| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 国产精品无大码| 在线亚洲精品国产二区图片欧美 | 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 亚洲精品乱久久久久久| 欧美97在线视频| 国产精品三级大全| 欧美高清成人免费视频www| 18禁在线播放成人免费| 国产探花极品一区二区| 黄色毛片三级朝国网站 | 精品卡一卡二卡四卡免费| 国产高清不卡午夜福利| 麻豆乱淫一区二区| 十分钟在线观看高清视频www | 欧美国产精品一级二级三级 | 久久久久国产精品人妻一区二区| 国产一区二区在线观看av| 97超碰精品成人国产| 最后的刺客免费高清国语| 一区二区三区精品91| 国产高清三级在线| 久久青草综合色| 中文天堂在线官网| av线在线观看网站| 成人漫画全彩无遮挡| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 国产白丝娇喘喷水9色精品| 在线免费观看不下载黄p国产| 女人精品久久久久毛片| 99国产精品免费福利视频| 老司机影院成人| 国内揄拍国产精品人妻在线| 亚洲人成网站在线观看播放| 一本久久精品| 日本午夜av视频| 日韩视频在线欧美| 午夜福利视频精品| 国产极品天堂在线| 一级爰片在线观看| 国产高清有码在线观看视频| 天天操日日干夜夜撸| 99久久人妻综合| 国产精品女同一区二区软件| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片| 伦理电影免费视频| 日本-黄色视频高清免费观看| 97精品久久久久久久久久精品| 成人国产av品久久久| 天天操日日干夜夜撸| 丝瓜视频免费看黄片| 一级二级三级毛片免费看| 99视频精品全部免费 在线| 亚洲精品456在线播放app| 一级a做视频免费观看| .国产精品久久| 欧美3d第一页| 一级a做视频免费观看| 国产av精品麻豆| 丝袜在线中文字幕| 一级毛片电影观看| 日本免费在线观看一区| 亚洲精品国产av蜜桃| 国产亚洲最大av| 国产精品久久久久久久电影| 嘟嘟电影网在线观看| √禁漫天堂资源中文www| 国产av精品麻豆| 欧美 日韩 精品 国产| 亚洲精品国产色婷婷电影| 午夜福利在线观看免费完整高清在| 亚洲人成网站在线播| 欧美性感艳星| 久久99一区二区三区| 国产精品蜜桃在线观看| 搡老乐熟女国产|