• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Correction Algorithm for SAR Trajectory Errors

    2014-03-14 01:12:13legSytnik

    Оl(fā)eg V.Sytnik

    (A.Ya.Usikov Institute for Radio Physics and Electronics under the National Academy of Sciences of Ukraine,Kharkov,61085,Ukraine)

    0 Introduction

    Onboard synthetic-aperture radar(SAR)provides the tracking images of the earth surface by coherent processing of the sounding signals reflected from the surface[1-2].The amplitude and phase of the reflected signals contain information about the surface characteristics and objects placed on it.The reflected signals along the tracking trajectory are written in the memory for each strobe of the slant range and then are processed by convolution with a supporting function to produce images.Such a principle of earthtracking is very effective in aircraft-and satelliteboards radars to solve many important scientific and practical tasks.An image can be onboard produced and has a very high spatial(azimuthal and slant range)resolution.

    The supporting function of the signal processor is apriori built from the assumption that aircraft trajectory is a straight line.Aircraft deviations from the straight line,which are not taken into account in the signal processing algorithm,cause the image distortions such as defocusing in azimuth and slant coordinates,objects displacement from their real positions,a decrease in the image brightness,an increase in the side lobes of the synthesized antenna and,as a result,the appearance of the repeated targets and some other distortions.Therefore,in most cases,if the aircraft deviation occurs,then in order to obtain a good-quality image,the antenna synthesizing time interval has to be reduced.It leads to resolution degradation.

    There are many different methods to compensate those negative effects[3-8].All numerous methods can be divided in the three classes:

    a)The first class of the methods in which some information on the SAR trajectory platform position obtains from special onboard sensors of navigation systems,etc.;

    b)The second one using the information on the SAR trajectory platform position,which is extracted from the sounding signals reflected from the earth surface;

    c)The third class is a combined methods.

    The design of the SAR that is invariant to different navigation systems is attractive in term of the second group of methods.It is exactly these particular methods the present paper is devoted to.

    1 Problem Statement

    In the common case,the algorithm of antenna pattern synthesis in the SAR can be written as a convolution integral for each strobe of slant range[1]:

    where mod{·}is the modulus of function;T cis the interval of time during which you are to synthesize an antenna aperture;?x(t-τ)=?s(t-τ)+?n(t)is additive sum the signals,from surface and no coherent noise;the signal is:?s(t-τ)=A(t-τ)e-j(4πri(t)/λ);Ais the amplitude of reflected signal;r i(t)is the current value of the slant range from the phase center of the transmitting antenna to thei-th point reflector placed on a surface;λis the wavelength(the factorω0thas been omitted here);noise is:?n(t),the variance of noise isσ2and its expectation is zero;?h(t)=H(t)ej(2πv2t2/λr0)is the supporting function,whereH(t)is the weighting function which in the simplest case can beH(t)≡1;vis the ground speed of motion of the SAR carrier.

    Fig.1(curve 1)shows the antenna pattern synthesized under the ideal condition when there are no trajectory distortions,which is a result of algorithm(1)processing.

    Fig.1 The antenna pattern synthesized under the ideal condition(curve 1),the antenna pattern synthesized with ground speed and acceleration errors(curve 2)

    The curve 2 in Fig.1 illustrates the type of distortions which appear in synthesized antenna pattern under the condition of non-stationary of motion of the SAR platform.It is easy to see that errors in ground speed definition lead to displacement of the maximum of the synthesized antenna pattern or targeting errors.To form both patterns we used the Hamming weighting function[9].

    The errors in acceleration and jump(the velocity variation of acceleration)of SAR platform leads to an increase in the main lobe width of the synthesized antenna pattern and to an increase in its side lobes.As a consequence,we have geometrical distortions of the objects on an image,their defocusing,a reduced azimuthal resolution and the emergence of repeated targets on the image.

    2 Informational Signal

    The characteristic of variation in a trajectory signal on the interval of synthesisT cduring radiation of a point target on the earth surface is under the chirp law with frequencyω=4πv(t)t/(λr0).When ground velocity isv(t)=const,the chirp law is a linear function and an envelope of its Doppler spectrum is symmetrical,as see in Fig.2(curve 1).The errors in definition of platform motion lead to distortions of the Doppler spectrum symmetrical structure(Fig.2,curve 2).So it appears attractive to use the analysis of the Doppler spectrum form to correct supporting function in algorithm(1)for automatical correction of trajectory distortions.

    Fig.2 The idealized envelope of the Doppler spectrum form(curve 1)and shifted envelope of Doppler’s spectra form under trajectory distortions(curve 2)

    The real reflected signal is highly noisy.As an example,Fig.3 shows(symbols “+”)the trajectory signal spectrum averaged over 128 neighborhood range strobes on the part of trajectory where an aircraft executed maneuvering.Because of high dispersion of the Doppler spectrum envelope samples,it is difficult to construct the procedure for calculating the reliable estimates of their shifts and asymmetry coefficients for correcting supporting function in algorithm(1).However,if spectral samples would be approximated by a well-known function,for example,the polynomial function,then the calculation procedure of correcting coefficients can be implemented.

    Fig.3 The spectral density of Doppler trajectory signal frequencies during the air craft maneuvering(shown by symbols“+”)and its third-degree polynomial approximation(solid line)

    The third-degree polynomial approximation of the Doppler spectrum amplitude envelope with a set of coefficients:24.469;0.024;1.656×10-5;-4.507×10-8is shown in Fig.3 by solid line.The polynomial coefficients have been calculated from the next system of equations:

    wherek=0,1,…,n+1;nis the polynom’s degree;c lis the coefficient of polynom according to its index;g(l,k,ω)=ωl+k-1is the basic function.Under the criterium of meansquare error,the value of normalized error is

    the symbol of expectation operator.In our experiments the value ofσphas been less than 0.248.

    Moreover,if one assumes that the SAR platform is not capable to execute the rapid changes in its position relative to the synthesizing interval,and the high-frequency fluctuations caused by platform vibrations are negligible,then in the Maclaurin’s expansion in to series in terms of the power exponent we can use no more than three terms of the series[6].

    Then the instantaneous value of slant ranger(t)from the phase center of the real SAR antenna relative to the point reflector on a surface is written as:

    Using formula(3),it is not difficult calculate the projection of phase errors in the supporting function for the aircraft drift along coordinatesX,Y,Z,where coordinateXcoincides with the flight direction,coordinateYcoincides with the line which is perpendicular to the flight line and coordinateZis a normal to the ground surface.

    whereΔX,ΔY,ΔZare the errors of aircraft position accordingly toX,Y,Zcoordinates;ΔX′,ΔY′,ΔZ′,ΔX″,ΔY″,ΔZ″are the corresponding derivatives of these errors;vis aircraft’s initial velocity at the momentt;θis the angle between the normal to the ground surface and direction on to the target.

    The phase error caused by the combined ambiguity of a sideslip angle and the SAR platform position are defined as a series:

    whereβ,β′,β″are the sideslip angle,the velocity of the sideslip angle and the acceleration of the sideslip angle respectively.

    The phase error caused by the combined ambiguity of angleθand the SAR platform position reads as

    Now consider in more detail the case where the SAR platform flight velocity is changing on the synthesizing interval.As shown in[4],the phase incursion of a signal from the point reflector to the antenna phase center can be written as:

    wherev0,Δv,a′is the SAR platform velocity,its acceleration and acceleration derivative respectively.

    In order to correct the signal trajectory distortions in the phase factor of the supporting function it is necessary to take into account the coefficientsΔv,a′,which are selected by comparing curve 2(Fig.3)with reference curve 1(Fig.2).To formalize this procedure one can made use of the conjugate gradient method[11].Let us designate the shifted spectral density asS2(ω).The argumentω=ω?,which corresponds to extremumω?is then calculated through iteration of the procedure

    where the optimal values of coefficientsαk,βkat each step of the iteration procedure is calculated according to the relation

    To simplify this procedure the coefficientsαk,βkare chosen in within 0<α≤1,0≤β<1.Then the conjugate gradient method(8)reduces to the heavy ball method[11].

    The coefficients Δv,a′are calculated by using procedure(8).For the case shown in Fig.1,the procedure(8)yields the synthetic antenna pattern shown in Fig.4.It takes 36 iterations only atα=0.9,β=0.2.The result is.

    As see from Fig.4,the main lobes of both corrected and ideal patterns are equal,but side lobes are not.One can find the residual approximation error at the level minus 50 dB.This error results from the calculation errors of correcting coefficients.This is quite sufficient for most of practical applications.

    Fig.4 The corrected synthetic antenna pattern(curve 1),ideal synthetic antenna pattern(curve 2)

    An effect of using the adaptive correction of an image acquired in synthesizing a hologram of the decimetric-band SAR(λ=0.23 m)is visible when comparing the images shown in Figs 5 and 6.

    Fig.5 The fragment of the uncorrected synthesized image during aircraft maneuvering

    Fig.6 The fragment of the corrected synthesized image during aircraft maneuvering

    Specifically,as a result of adaptive correction of the supporting function in(1)the repeated object 1 in Fig.5 has been removed(see Fig.6).The periodical structure on both images(marked by digit 2 in Figs 5 and 6)was unchanged.It is evident that this object is real.To calculate the correction coefficients we used the estimates of Doppler spectrum has shown in Fig.3.

    In Figs 7 and 8 has shown the results of signal processing by the proposed method for metric-band SAR(λ=1.8 m).In Figs 5-8 the azimuthal direction is shown from top to bottom,and the direction along the slant range—from left-hand to right-hand.The slant range resolution for the decimetric-band SAR is 22.5 m,and in the azimuthal direction—10 m.The resolution sell for images was 15×37.5 m in Figs 7 and 8.

    Fig.7 The fragment of the uncorrected synthesized image during aircraft maneuvering

    Fig.8 The fragment of the corrected synthesized image during aircraft maneuvering

    In Fig.7 one can see the defocused-in-azimuth plane dots which are the columns(marked by digit 1)of electricity transmission lines.In Fig.8 shown that after correcting the synthesized image the same strip has objects like normal targets(marked by digit 2).Besides,the bright solid lines that correspond to the forest belts are well-defined in Fig.8 and appear to the more detailed as compare to Fig.7.

    Apart from the visual estimate of quality correction of the synthesized images the quantitative criterium can be used for image analysis.As a criterium we suggested using the comparative analysis of radar’s contrasts along the data row during the flight.For instance,Fig.9 presents the results obtained from synthesizing one row of azimuth uncorrected data and in Fig.10 the result of synthesis of the same data using the proposed a correction algorithm.

    Fig.9 The result from synthesizing one row of uncorrected azimuth data

    Fig.10 The result from synthesizing one row of corrected azimuth data

    For convenience of comparison,the scale of amplitudes of response from target along the ordinate axis in Fig.9 and 10 is linear,whereas the amplitudes of responses are normalized to maximum in Fig.10.

    The total time of data recording was 300 seconds at flight velocity of 487 km/h.The slant range to a strobe was 13 680 m,and the synthesizing interval was 1.8 seconds.

    The adaptive correction algorithm was used during the whole flight and,as a result,one can see the growth of image contrasts,in the average,approximately at 10%~20%,and for a separate target(for example,the target within on interval 70 and 90 seconds,see Fig.10)the response amplitude has increased by a factor of almost 1.5.

    The generalized block diagram of the adaptive correction algorithm is shown in Fig.11.The procedure for processing the distorted parts of ground surface image is as follows.The initial coherent trajectory signal data is pre-processed by Fourier transform and the trajectory signal samples are concurrently stored on a shift registers.

    Fig.11 The generalized block diagram of the adaptive correction algorithm

    Averaging over several adjacent slant range strobes is used to reduce the dispersion of spectrum samples.The spectral estimate thus obtained is polynomially approximated.The resulting polynom is investigated on an extremum by means of the recursive two-step procedure.This procedure has been chosen in an effort to find a compromise between the convergence rate and the computations per step of one iteration.

    3 Conclusion

    Thus,we have succeeded in building the adaptive correction algorithm for trajectory errors caused by maneuvering the SAR platform.As a consequence,we had to augment the computations(approximately by 30%per each synthesizing interval).

    Theory and practice of using this adaptive algorithm has shown that azimuth resolution on separate areas of SAR images can be increased twice and the amplitudes of responses from some targets have grown by a factor of 1.5.The convergence rate of the recurrent procedure is proportional to geometric progression,and in each case it depends upon the initial shifts from an extremum and the value of fluctuation component Doppler spectrum dispersion.The algorithm allowed calculates the appropriate estimates of flight velocity errors and aircraft acceleration for 30~40 iterations for a real row of data presented in this paper.To accelerate the calculation rate of is made possible by optimizing the parametersαk,βkin procedure(8).

    [1]Goryainov V.Radars with Digital Synthesis of Antenna Aperture[M].Moscow:[s.n.],1988.

    [2]Tomiyasu K.Tutorial Review of Synthetic Aperture Radar(SAR)with Applications to Imaging of the Ocean Surface[J].Proceedings of the IEEE,1978,66(5):563-583.

    [3]Itshoky Y,Sazonov N,Tolstov Y.Main Characteristics of SAR under Arbitrary Platform Motion[J].Radiotehnika and Electronica,1984,29(11):2164-2172.

    [4]Hounam D.Motion Errors and Compensation Possibilities[C]∥AGARD Lecture Series 182.Fundamentals and Special Problems of Synthetic Aperture Radar(SAR),[s.l.]:[s.n.],1992:31-42.

    [5]Moreira J A.A New Method of Aircraft Motion Error Extraction from Radar Raw Data for Real Time Motion Compensation[J].IEEE Trans on Geoscience and Remote Sensing,1990,28(4):620-626.

    [6]Sytnik O.The Criteria of Image Quality of Coherent Radars[J].Kosmitchnanauka and Technology,2002,8(2/3):287-288.

    [7]Cumming I,Wong F,Hawkins R.RADARSAT-1 Doppler Centroid Estimation Using Phase-Based Estimators[C]∥CEOS SAR Workshop,Toulouse,France:[s.n.],1999,159-165.

    [8]Sharif A H A,Cumming I.Centroid Estimation for Azimuth-Offset SARs[C]∥Proceedings of the IEEE National Aerospace and Electronics Conference,Dayton,Ohio:[s.n.],1995:134-139.

    [9]Lawrence M S,William M C.Digital Spectral Analysis with Applications[J].The Journal of the Acoustical Society of America,1989,86(5):2043.

    [10]Korn G A,Korn T M.Mathematical Handbook for Scientists and Engineers(2nd ed)[M].New York:Courier Dover Publications,2000.

    [11]Polyak B.Introduction in Optimization Theory[M].Moscow:[s.n.],1983.

    久久精品91蜜桃| av视频免费观看在线观看| 国产一区二区在线av高清观看| 男女下面插进去视频免费观看| 69精品国产乱码久久久| 国产在线精品亚洲第一网站| av免费在线观看网站| 国产精品影院久久| 变态另类丝袜制服| 一进一出抽搐动态| 热re99久久国产66热| 亚洲精品中文字幕在线视频| 99精品欧美一区二区三区四区| 欧美成人性av电影在线观看| 精品欧美一区二区三区在线| 一本综合久久免费| 亚洲欧美日韩无卡精品| 亚洲av第一区精品v没综合| 极品人妻少妇av视频| 看免费av毛片| 亚洲专区中文字幕在线| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 欧美久久黑人一区二区| 999精品在线视频| 国产私拍福利视频在线观看| 91国产中文字幕| 国产高清videossex| 欧美不卡视频在线免费观看 | 午夜激情av网站| 亚洲国产精品sss在线观看| 亚洲精品粉嫩美女一区| 国内精品久久久久久久电影| 香蕉久久夜色| 午夜免费成人在线视频| 午夜福利免费观看在线| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 久久久水蜜桃国产精品网| 国产色视频综合| 色av中文字幕| 亚洲国产精品合色在线| 久久亚洲精品不卡| 1024视频免费在线观看| 精品第一国产精品| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久| 欧美日韩精品网址| 国产又色又爽无遮挡免费看| 久久精品91无色码中文字幕| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 露出奶头的视频| 18禁黄网站禁片午夜丰满| 一级毛片精品| 村上凉子中文字幕在线| 69av精品久久久久久| 人妻久久中文字幕网| 亚洲最大成人中文| 国产一区在线观看成人免费| 免费搜索国产男女视频| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| av视频免费观看在线观看| 亚洲精品久久国产高清桃花| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 欧美激情 高清一区二区三区| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 大码成人一级视频| 一级a爱视频在线免费观看| 午夜福利一区二区在线看| 久久精品91无色码中文字幕| 国产99久久九九免费精品| 黄色 视频免费看| 亚洲熟妇熟女久久| 午夜老司机福利片| 91精品国产国语对白视频| 大型黄色视频在线免费观看| 免费看美女性在线毛片视频| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 欧美激情 高清一区二区三区| 午夜精品在线福利| 黄色毛片三级朝国网站| 亚洲国产精品999在线| а√天堂www在线а√下载| 人妻久久中文字幕网| 欧美精品亚洲一区二区| 亚洲熟妇中文字幕五十中出| www.www免费av| 天堂影院成人在线观看| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| 国产精品美女特级片免费视频播放器 | 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 久久久国产成人免费| 日日爽夜夜爽网站| 丁香欧美五月| 一边摸一边抽搐一进一小说| 免费一级毛片在线播放高清视频 | 高清在线国产一区| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产色婷婷电影| 亚洲人成网站在线播放欧美日韩| 90打野战视频偷拍视频| 性欧美人与动物交配| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 欧美乱妇无乱码| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 国产精品乱码一区二三区的特点 | 日本免费a在线| 国产国语露脸激情在线看| 精品一区二区三区av网在线观看| 99国产精品一区二区三区| 国产一区二区三区视频了| 亚洲国产精品999在线| 国产一区二区三区综合在线观看| 日韩av在线大香蕉| 久久香蕉激情| 日本在线视频免费播放| 欧美一级a爱片免费观看看 | 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| 一本综合久久免费| 亚洲一区二区三区色噜噜| 亚洲自拍偷在线| 在线天堂中文资源库| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| ponron亚洲| 国产精品av久久久久免费| 精品日产1卡2卡| 黑人巨大精品欧美一区二区mp4| 99精品欧美一区二区三区四区| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器 | 欧美老熟妇乱子伦牲交| 亚洲成a人片在线一区二区| 女性被躁到高潮视频| 18禁国产床啪视频网站| 精品国产一区二区久久| 久久国产精品影院| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 99久久99久久久精品蜜桃| 男女下面进入的视频免费午夜 | 性少妇av在线| 国产亚洲av高清不卡| 在线天堂中文资源库| 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 久久精品影院6| 首页视频小说图片口味搜索| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 热99re8久久精品国产| 欧美性长视频在线观看| 日韩三级视频一区二区三区| 欧美国产日韩亚洲一区| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| av天堂久久9| ponron亚洲| 日日干狠狠操夜夜爽| 久久午夜综合久久蜜桃| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品一区二区www| 丰满的人妻完整版| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清 | 两性夫妻黄色片| 精品国产国语对白av| av视频免费观看在线观看| 久99久视频精品免费| 不卡av一区二区三区| 黄片小视频在线播放| x7x7x7水蜜桃| 在线观看免费视频日本深夜| 亚洲狠狠婷婷综合久久图片| 久久久久久久久免费视频了| 久久国产乱子伦精品免费另类| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频| 亚洲中文av在线| 午夜福利成人在线免费观看| 韩国精品一区二区三区| 香蕉国产在线看| 美国免费a级毛片| 一进一出好大好爽视频| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频 | 国产精品电影一区二区三区| 美女午夜性视频免费| tocl精华| 国产精品98久久久久久宅男小说| 大陆偷拍与自拍| 国产高清videossex| av中文乱码字幕在线| 日韩大码丰满熟妇| www日本在线高清视频| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 男男h啪啪无遮挡| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 久热爱精品视频在线9| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 午夜福利视频1000在线观看 | 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 18禁国产床啪视频网站| 多毛熟女@视频| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 国产视频一区二区在线看| 久久人妻福利社区极品人妻图片| 精品高清国产在线一区| 免费av毛片视频| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区 | 十分钟在线观看高清视频www| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 校园春色视频在线观看| 午夜福利18| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影 | 九色亚洲精品在线播放| 精品乱码久久久久久99久播| 欧美色视频一区免费| 九色国产91popny在线| 国产免费男女视频| 久久久久久人人人人人| 在线免费观看的www视频| 中国美女看黄片| 久久国产精品人妻蜜桃| 亚洲熟女毛片儿| 亚洲激情在线av| 国产精品 国内视频| 久9热在线精品视频| 精品一区二区三区av网在线观看| 老熟妇仑乱视频hdxx| 在线永久观看黄色视频| 99riav亚洲国产免费| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| tocl精华| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 久久伊人香网站| 亚洲美女黄片视频| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 久久久久久久久久久久大奶| 曰老女人黄片| 欧美在线一区亚洲| 欧美 亚洲 国产 日韩一| 久久久久久国产a免费观看| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 国产成人系列免费观看| 狂野欧美激情性xxxx| 久久久久亚洲av毛片大全| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看 | 亚洲av美国av| 久久久久久久精品吃奶| www.精华液| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 久久狼人影院| 禁无遮挡网站| 9热在线视频观看99| 他把我摸到了高潮在线观看| 后天国语完整版免费观看| 一级毛片高清免费大全| 午夜视频精品福利| 国产成人精品在线电影| 狂野欧美激情性xxxx| 美女国产高潮福利片在线看| 男女做爰动态图高潮gif福利片 | svipshipincom国产片| 国产精品一区二区精品视频观看| 男人舔女人下体高潮全视频| 亚洲人成电影观看| 最近最新中文字幕大全电影3 | 日韩精品中文字幕看吧| 国产精品,欧美在线| 97超级碰碰碰精品色视频在线观看| 日韩免费av在线播放| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 国产精品乱码一区二三区的特点 | 国产亚洲精品久久久久久毛片| 大型av网站在线播放| 免费在线观看视频国产中文字幕亚洲| 极品教师在线免费播放| 国产成+人综合+亚洲专区| 日韩视频一区二区在线观看| 色综合婷婷激情| 国产一区二区激情短视频| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 国产日韩一区二区三区精品不卡| 亚洲美女黄片视频| 日韩大码丰满熟妇| 中文字幕最新亚洲高清| 人妻久久中文字幕网| 女人精品久久久久毛片| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 亚洲第一电影网av| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩高清在线视频| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 搞女人的毛片| 成人免费观看视频高清| 久久伊人香网站| 村上凉子中文字幕在线| 中文字幕人妻熟女乱码| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 日韩一卡2卡3卡4卡2021年| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费一区二区三区在线| 欧美日韩一级在线毛片| netflix在线观看网站| 99国产极品粉嫩在线观看| 色老头精品视频在线观看| 在线免费观看的www视频| 可以在线观看的亚洲视频| 不卡av一区二区三区| 99热只有精品国产| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看| 久久午夜亚洲精品久久| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| www国产在线视频色| 国产又爽黄色视频| 日本在线视频免费播放| 一进一出好大好爽视频| 怎么达到女性高潮| 午夜福利免费观看在线| 欧美乱色亚洲激情| 大型av网站在线播放| 国产乱人伦免费视频| 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| 日韩一卡2卡3卡4卡2021年| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| 午夜久久久在线观看| 精品人妻在线不人妻| 成人18禁在线播放| 免费在线观看完整版高清| 久久久久久久久免费视频了| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 老鸭窝网址在线观看| 国产精品免费视频内射| 后天国语完整版免费观看| 午夜福利高清视频| 性少妇av在线| avwww免费| 久久伊人香网站| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 国产精品av久久久久免费| 欧美国产精品va在线观看不卡| av视频在线观看入口| av免费在线观看网站| 一区二区三区精品91| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| 国产精品电影一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美日韩精品网址| 国产av又大| 日韩免费av在线播放| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 国产成人精品在线电影| 亚洲国产日韩欧美精品在线观看 | 亚洲男人的天堂狠狠| 日日爽夜夜爽网站| 色综合亚洲欧美另类图片| √禁漫天堂资源中文www| 国产三级在线视频| 91国产中文字幕| 中文字幕高清在线视频| www.自偷自拍.com| 成年人黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 9191精品国产免费久久| 天堂√8在线中文| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 亚洲欧美激情在线| a级毛片在线看网站| 欧美性长视频在线观看| 俄罗斯特黄特色一大片| 免费观看精品视频网站| 亚洲成人国产一区在线观看| 熟女少妇亚洲综合色aaa.| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 亚洲色图av天堂| 黄片大片在线免费观看| www.自偷自拍.com| 国产激情久久老熟女| 欧美黑人欧美精品刺激| 香蕉久久夜色| 久久久久国内视频| 12—13女人毛片做爰片一| 成人国语在线视频| 久久中文看片网| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| 久久天堂一区二区三区四区| 久久久久久久久中文| 69av精品久久久久久| 欧美日韩黄片免| 亚洲欧美激情综合另类| 黄色女人牲交| 成人精品一区二区免费| 高清黄色对白视频在线免费看| 动漫黄色视频在线观看| 日韩一卡2卡3卡4卡2021年| 一区二区日韩欧美中文字幕| 国产99久久九九免费精品| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 亚洲精品久久成人aⅴ小说| 看免费av毛片| 满18在线观看网站| 老司机靠b影院| 狂野欧美激情性xxxx| 久久中文看片网| 91在线观看av| 日韩高清综合在线| 国产精品久久久久久亚洲av鲁大| 午夜成年电影在线免费观看| 国产精品日韩av在线免费观看 | 18禁裸乳无遮挡免费网站照片 | 国产蜜桃级精品一区二区三区| 国产激情欧美一区二区| 男女下面插进去视频免费观看| 亚洲精品国产区一区二| 在线av久久热| 国产精品免费一区二区三区在线| 咕卡用的链子| 男人的好看免费观看在线视频 | 午夜精品国产一区二区电影| 亚洲精品国产一区二区精华液| 欧美日本中文国产一区发布| 757午夜福利合集在线观看| 精品欧美国产一区二区三| 亚洲国产精品999在线| 久久久久久久久免费视频了| 久久人妻熟女aⅴ| 国产99白浆流出| 国产成人欧美在线观看| 91精品三级在线观看| 超碰成人久久| 久9热在线精品视频| 99re在线观看精品视频| 成人欧美大片| 大型av网站在线播放| 国产精品综合久久久久久久免费 | 午夜福利18| 久久热在线av| 搡老妇女老女人老熟妇| 黄色 视频免费看| 成人三级做爰电影| 欧美日本中文国产一区发布| 亚洲午夜精品一区,二区,三区| 欧美日韩福利视频一区二区| 日本欧美视频一区| 色av中文字幕| 欧美午夜高清在线| 两个人看的免费小视频| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 午夜a级毛片| 日韩欧美国产在线观看| 亚洲第一青青草原| 啦啦啦韩国在线观看视频| 人人妻人人爽人人添夜夜欢视频| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 美国免费a级毛片| cao死你这个sao货| 黄色成人免费大全| 在线观看免费日韩欧美大片| 免费在线观看影片大全网站| 可以在线观看的亚洲视频| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 精品人妻1区二区| 老司机午夜福利在线观看视频| 国产主播在线观看一区二区| xxx96com| 国产人伦9x9x在线观看| 深夜精品福利| 一级毛片精品| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 国产精品综合久久久久久久免费 | 又黄又粗又硬又大视频| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 亚洲人成电影免费在线| 午夜影院日韩av| www.精华液| 天堂动漫精品| 精品国产国语对白av| а√天堂www在线а√下载| 欧美一区二区精品小视频在线| 国产精品 欧美亚洲| 99国产综合亚洲精品| 久久婷婷成人综合色麻豆| 欧美中文综合在线视频| or卡值多少钱| 亚洲一区二区三区色噜噜| 欧美中文综合在线视频| 久久中文字幕人妻熟女| 12—13女人毛片做爰片一| 国内久久婷婷六月综合欲色啪| 丝袜美腿诱惑在线| 国产高清视频在线播放一区| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 欧美日韩黄片免| √禁漫天堂资源中文www| 久久中文字幕一级| 国产精品综合久久久久久久免费 | 午夜福利欧美成人| 99久久99久久久精品蜜桃| 后天国语完整版免费观看| 男女做爰动态图高潮gif福利片 | videosex国产| 精品国产超薄肉色丝袜足j| 精品久久久久久成人av| 久久中文字幕人妻熟女| 一进一出抽搐gif免费好疼| 国产精品永久免费网站| 性色av乱码一区二区三区2|