• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method for Isolating Mitochondrial DNA from Etiolated Tissue of Cabbage

    2014-03-07 09:12:02WangShuaiWangChaoandZhangXiaoxuan

    Wang Shuai, Wang Chao, and Zhang Xiao-xuan

    College of Horticulture, Northeast Agricultural University, Harbin 150030, China

    Method for Isolating Mitochondrial DNA from Etiolated Tissue of Cabbage

    Wang Shuai, Wang Chao*, and Zhang Xiao-xuan

    College of Horticulture, Northeast Agricultural University, Harbin 150030, China

    Isolation of high-quality mitochondrial DNA (mtDNA) is an important premise for researching molecular mechanisms in cytoplasmic male sterility of cabbage (Brassica oleracea L.var.capitata). An efficient protocol for separation and purification of mitochondria and extraction of mitochondrial DNA (mtDNA) from etiolated tissues of cabbage was developed. We took a method combined mannitol density gradient with differential centrifugation, selected appropriate rotational speed, extended DNase I treating time and changed mitochondria cracking condition. The results showed that the extracted mitochondria in this protocol had complete structure, appeared to ellipsoid and had not been contaminated with other impurities under the Jannus Green B staining. The isolated mitochondrial DNA had high purity and yield through detecting the optical density, nuclear specific primer PCR and agarose gel electrophoresis. The results indicated that mitochondrial DNA extracted by this protocol had high quality and enabled to be used in futher genetic studies.

    cabbage, cytoplasmic male sterility (CMS), mitochondrial DNA (mtDNA), isolation

    Introduction

    Cytoplasmic male sterility (CMS) is expressed as a maternally inherited trait in more than 150 plant species whereby plants inability to produce functional pollen attribute to mitochondrial dysfunction during meiosis or microsporogenesis, although vegetative development is unaffected (Hanson 1991; Schnable et al., 1998; Zhang and Stewart 2001; Dieterich et al., 2003). As a convenient and economic method, CMS plays an important role in the production of hybrid seeds in cabbage (Fang et al., 2001) since it prevented self-fertilization, while production of others depended upon manual or mechanical emasculation.

    So far, there are plenty of evidence to support that mitochondrial DNA rearrangements lead to novel loci which can be responsible for CMS (Janska et al., 1998; Gong et al., 2006; Shedge et al., 2007). This phenomenon of mitochondrial DNA rearrangements occurs in many plant species and is often originating from these altered open reading frames which were translated into unique proteins and then interfered with mitochondrial function and pollen development, as a result, leading to CMS (Schnable et al., 1998; Fujii et al., 2009). Meanwhile, some scholars proved that there were differences between amplification products of sterile line and its maintainer line in quantity and quality (Liu et al., 2004; Zhang et al., 2012; Wang et al., 2012).

    Many studies are focused on the difference of mitochondrial genome between sterile line and maintainerline in order to provide theoretical basis for the mechanism of CMS (Li et al., 2011; Jee et al., 2013). Therefore, how to extract high-quality mtDNA quickly and easily becomes the key to research on the molecular mechanism of CMS in cabbage (Brassica oleracea L.var.capitata).

    However, because of the interference of cell walls, big vacuole and chloroplast DNA in plant cells, it becomes more difficult for mtDNA separating. Traditional mtDNA extraction procedures mainly included density gradient centrifugation and differential centrifugation (Scotti et al., 2001; Tanaka et al., 2011). It is easy for differential centrifugation to extract a large amount of mtDNA, but has the problem including low purity and contamination of nuclear genes or chloroplast genome. Density gradient centrifugation also has some disadvantages, such as timeconsuming, laborious and high cost. The most popular method currently used in extraction of mtDNA is a combined method of sucrose density gradient and differential centrifugation, and has been reported at many species, such as potato (Scotti et al., 2001), rice (Pei et al., 2002), kenaf (Zhao et al., 2011) and Chinese cabbage (Zhang et al., 2006; Li et al., 2011). Compared with many studies on other species, there are few reports on mtDNA extraction of cabbage.

    For mtDNA extraction in different plants, influence and constraint by various complicated factors in cells, the methods reported had some disadvantages including low yield and purity that could not meet the following studies. In this text, we devised a protocol which chose the appropriate buffer, centrifugation and DNase I processing time, based on the former studies and biochemical principles to set up an effective method to extract mtDNA from etiolated tissues of cabbage.

    Materials and Methods

    Plant materials

    Cabbage seeds used in this study were provided by Cabbage Group, College of Horticulture, Northeast Agricultural University, Harbin, China. The seeds were sterilized by immersion in 75% alcohol for 30 s with rinsing in distilled sterile water twice and 2% sodium hypochlorite solution for 20 min, with three rinses in distilled sterile water, then germinated in dark condition (26℃) and the etiolated seedings were harvested after 7-10 days as shown in Fig. 1 (Li et al., 2011).

    Fig. 1 Etiolated seedling after 7-10 days cultivation in dark condition

    Mitochondria extraction

    Mitochondria and mitochondrial DNA were extracted according to the method described by Virupakshi et al. (2007) and Zhao et al. (2011) with some modifications. All steps must be carried out at 4℃unless otherwise stated.

    (1) About 60 g etiolated seedlings were soaked in 75% ethanol for 2-3 min, cleaned by sterile water, then ground in a breaker with 300 mL of homogenization buffer (0.4 mol ? L-1mannitol, 50 mmol ? L-1Tris-acetate pH 7.5, 20 m mol ? L-1EDTA, 0.1% cysteine, 0.2% bovine serum albumin, 1 % PVP-40) and incubated at 4℃ for 15-30 min in dark condition.

    (2) Homogenized cells were obtained by using high speed homogenizer, 15 s once and repeated 5 times, then filtered through eight layer cheese cloth and centrifuged at 1 000 g for 10 min. The suspension was centrifuged twice at 2 000 g for 10 min. The crude mitochondria were pelleted from the supernatant by centrifuging at 20 000 g for 15 min. The pellet wasgently resuspended in homogenization buffer and centrifuged again.

    (3) The obtained pellet was resuspended with 12 mL of digestion buffer comprised 0.4 mol ? L-1mannitol, 50 mmol ? L-1Tris-acetate pH 7.5, 10 mmol ? L-1magnesium chloride and 0.1% bovine serum albumin and mixed up with 30 μL (1 U ? μL-1) DNase I. The mixture were incubated at room temperature for 30 min (shaking every 5 min) and 4℃ for 1 h, then added 1.2 mL 0.5 mol ? L-1EDTA to stop the enzyme digestion reaction.

    (4) The suspension was flatted on 25 mL of washing buffer (0.5 mol ? L-1mannitol, 50 mmol ? L-1Tris-acetate pH 7.5, 20 mmol ? L-1EDTA) and centrifuged at 18 000 g for 20 min. The pellet was resuspended in digestion buffer and repeated centrifuging. After centrifugation, high-purity mitochondria was obtained and stored at–80℃ until required or treated for mtDNA extraction immediately.

    Mitochondria integrity detection

    A small amount of purified mitochondria were resuspended in digestion buffer, blended with same volume of 1% Jannus Green B and used microscope for detecting integrity after 10 min treatment in dark condition.

    Mitochondrial DNA extraction

    (1) Isolated mitochondria were treated with 0.9 mL lysis buffer (50 mmol ? L-1Tris-acetate pH 8.0, 20 mmol ? L-1EDTA, 5% sodium dodecyl sulfonate, 0.1 mol ? L-1sodium chloride, 0.01% beta mercaptoethanol) and 5 μL (20 mg ? mL-1) proteinase K each pellet. Probes were incubated for 1 h at 65℃ with gentle shaking to avoid mechanical breaking of DNA.

    (2) 100 μL of 8 mol ? L-1ammonium acetate and an equal volume of TE-saturated phenol/chloroform/ isoamyl alcohol (25 : 24 : 1) were added to the lysate and rest for 10 min at room temperature. The nucleic acids were extracted at 12 000 g for 10 min and repeated this procedure once.

    (3) The supernatant was digested by RNase I for 1 h at 37℃ with gentle shaking and RNase I was eliminated by an equal volume of TE-saturated phenol/ chloroform /isoamyl alcohol (25 : 24 : 1) as step 2.

    (4) Nucleic acids were precipitated from the aqueous fraction by the addition of two volumes of precooling ethanol and one-tenth volume of 8 mol ? L-1ammonium acetate overnight at –80℃.

    (5) Mitochondrial DNA was concentrated after centrifugation at 18 000 g for 20 min, washed 3 times with 70% ethanol and resuspended in 30-50 μL of sterile ultrapure water after drying in clean bench. mtDNA was either immediately subjected to detect or stored at –80℃ until required.

    Mitochondrial DNA concentration determination

    2 μL mtDNA were added ultrapure water to 100 μL. Ultraviolet spectrophotometer was used to determine A260nm/A280nm, A260nm/A230nm and the concentration of mtDNA.

    Agarose gel electrophoresis

    Electrophoresis was performed in 0.8% agarose gel using TAE buffer (0.04 mol ? L-1Tris-acetate, 1 mmol ? L-1EDTA). Gels were run at 100 V for 30 min, stained with ethidium bromide and photographed over a UV light sourse.

    PCR detection

    According to NCBI gene sequences in the database, mitochondrial cob gene specific primers and the specific primers of nuclear actin gene (Table 1) were designed by using PrimerPremier5.0 software, and primers synthesized by Suzhou Genewiz Company. mtDNA extracted from the extraction of the mitochondria with DNase I digested and without DNase I digested as the templates for PCR amplification. 50 μL PCR reaction system contained 2 μL mtDNA, 1 μL upstream and downstream primers (10 mmol ? L-1), 25 μL 2×EcoTaq PCR Super Mix and 21 μL ddH2O2. PCR products were detected in 1% agarose gel electrophoresis. Gene actin PCR cycle: 94℃ for 2 min; 94℃for 30 s, 30 s to 61℃, 72℃ for 1 min (30 cycles), andfinally extended at 72 ℃ for 5 min, stored at 4℃; gene cob PCR cycle: 94℃ for 2 min; 94℃ for 30 s, 30 s to 56℃, 72℃ for 1 min (30 cycles), and finally extended at 72℃ for 5 min, stored at 4℃.

    Results

    Effects of different homogenization buffers on mitochondria extraction

    The composition in homogenization buffer and concentration of each component were crucial to maintain the integrity of mitochondria. We detected buffer A as the best homogenization buffer in the four different buffers through a detection for the extracted mitochondria by microscope (Table 2).

    Effects of different centrifugation on isolation and purification of mitochondria

    In this test, we designed five different combinations of the centrifugal force to isolate mitochondria (Table 3). The results showed that high and pure mitochondria were obtained by the fifth combination.

    Table 1 Unique primer sequence of mitochondrial gene and nuclear gene

    Table 2 Mitochondria-isolating performance at different buffers

    Table 3 Mitochondria-isolating performance at different centrifugal forces

    Jannus Green B staining observation

    The mitochondria with activity could spread green fluorescence after staining by Jannus Green B. We observed several spots with green fluorescence (Fig. 2A) under the fluorescence microscope and plenty of oval spots (Fig. 2B) under optical microscope. Both of the two figures could illustrate that the extracted mitochondriawere complete and had biological activity.

    mtDNA quality analysis

    The spectrophotometry of extracted mtDNA showed that A260nm/A280nm was about 1.80-1.90, A260/A230above 2.0, and concentration of mtDNA about 189 ng ? μL-1. The results indicated that there were few proteins or phenol pollutions and the quality of mtDNA could fulfill the requirement for molecular marker technology analyses and researches.

    mtDNA electrophoresis analysis

    The lanes in agarose gel were observed clearly and the size of mtDNA fragment was about 23 kb (Fig. 3). It also declared that large fragment of mtDNA with high purity was successfully obtained.

    Fig. 2 Observation of mitochondria by Janus Green B reactive dying

    Fig. 3 Agarose gel electrophoresis patterns of mtDNA

    PCR analysis

    Specific product could be obtained after PCR amplification by designing specific primers. Fig. 4 showed that the product of mtDNA of mitochondria with DNase I by specific primer PCR amplificating included cob gene sequence (about 505 bp), but no actin gene sequence (about 340 bp) and the product of mtDNA of mitochondria without DNase I by specific primer PCR amplificating contained both of the two gene sequences. mtDNA extracted by this protocol had high purity without any nuclear genes.

    Fig. 4 Agarose gel electrophoresis patterns of mtDNA by specific primers of nucleus gene and mitochondrial gene PCR amplificating

    Discussion

    CMS plants have a maternally inherited trait and its implementation needs a complex process. People had never stopped to explore its mechanism since it was found. The development of molecular biology supplied an effective way for researching CMS. Many studies had showed that CMS had a close relationship with the mutation of mtDNA (Janska et al., 1998; Gong et al., 2006; Shedge et al., 2007). The research for mtDNA at molecular level could not only find out the relationship between different species, but also cloned the mitochondrial genes which related to some special phenomena, such as CMS.

    Separately adopting the method of density gradient or differential centrifugation had a high requirement for experimental conditions and existed many shortcoming such as low purity, time-consuming or high cost so that both of them could not be suitable for general laboratory to extract mitochondrial DNA. Because of the difference in types and contents of inclusions, the experimental procedures of extracting mitochondria were diverse in different species by the method combined sucrose density gradient with differential centrifugation (Pei et al., 2002; Zeng et al., 2005; Zhang et al., 2006). There almost no any one specific efficient method was suitable for all species to extract mtDNA, so that it needs some meliorations.

    According to the method described above, few mitochondria appeared at the bottom of the tube and the purity could not conform to the requirements of the subsequent experiment. We used mannitol as the material of the density gradient instead of sucrose and achieved a better result. We changed the centrifugal rotational speed in order to fit for extracting cabbage mitochondria such as removing pieces of large organizations at 1 000 g, disposing small particles like fibers at 2 000 g, precipitating the mitochondria at 20 000 g and enriching the mitochondria precipitation at 18 000 g. As a result, mitochondria formed a large deposit on the surface of the tube. Nuclear DNA still existed after 1 h DNase I treatment with the extracted mitochondria as others, but would be deleted thoroughly after a treatment at room temperature for 30 min (shaking every 5 min) and at 4℃ for 1 h. The concentration of DNA increased after a treatment for mitochondrial under cracking condition at 65℃ for 1 h instead of 37℃ for 4 h.

    Conclusions

    In this study, we took advantages of the protocol of combining the density gradient with the differential centrifugation to obtain mitochondria with the high quality. The extracted mitochondria was treated with DNase I to eliminate the influence of nuclear gene and dissolved by SDS. Proteins and RNA were digested by protein K and RNase A. We used TE-saturated phenol/ chloroform/isoamyl alcohol (25 : 24 : 1) to separate mtDNA from protein. Finally, mtDNA was concentrated by washing with 75% ethanol. Under the testing of microscope, gel electrophoresis and PCR amplification, we got a result that the purify and quality of mtDNA samples were high enough for the further relative researches. It provided a premise condition for the further researches on the molecular mechanism of CMS in cabbage.

    Dieterich J H, Braun H P, Schmitz U K. 2003. Alloplasmic male sterility in Brassica napus (CMS 'Tournefortii-Stiewe') is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics, 269: 723-731.

    Fang Z Y, Sun P T, Liu Y M, et al. 2001. Investigation of different types of male sterility and application of dominant male sterility in cabbage. China Veg, 1: 6-10.

    Fujii S, Yamada M, Toriyama K. 2009. Cytoplasmic male sterility related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11. Plant Cell Physiol, 50: 828-837.

    Jee Y P, Lee Y P, Lee J, et al. 2013. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containingDCGMS cytoplasm. Theor Appl Genet, 126: 1763-1774.

    Janska H, Sarria R, Woloszynska M, et al. 1998. Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. The Plant Cell, 10: 1163-1180.

    Hanson M R. 1991. Plant mitochondrial mutations and male-sterility. Annu Rev Genet, 25: 461-486.

    Gong Y, Cang X, Chao Z. 2006. Research on molecular mechanism of cytoplasmic male sterility in plants. Molecular Plant Breeding, 6(4): 51-56.

    Liu J, Cui C R, Cui C S, et al. 2004. RAPD analysis of mitochondrial DNA of CMS line and its maintainer in onion. Journal of Northeast Agricultural University, 35(3): 322-324.

    Li S S, Xue L F, Su A G, et al. 2011. Progress on sequencing and alignment analysis of higher plant mitochondrial genomes. Journal of China Agricultural University, 16(2): 22-27.

    Li Z X, Zhang D S, Si L T, et al. 2011. A method for mitochondrial isolation in Chinese cabbage. Acta Agriculture Boreali-Sinica, 26(2): 138-142.

    Pei D S, Cai P Z, Li M Y, et al. 2002. A simple method for isolation of rice mitochondrial DNA. Journal of Sichuan University (Natural Science Edition), 39(4): 18-20.

    Schnable P S, Wise R P. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 3: 175-180.

    Scotti N, Cardi T, Marechaldrouard L. 2001. Mitochondrial DNA and RNA isolation from small amounts of potato tissue. Plant Molecular Biology Reporter, 19: 670-671.

    Shedge V, Arrieta-Montiel M, Christensen A C, et al. 2007. Plant mitochondrial recombination surveillance requires unusual recA and muts homologs. The Plant Cell, 19: 1251-1264.

    Tanaka M N, Fujita H, Uemura H M.2004. Proteomics of the rice cell: systematic identification of the protein populations in subcellularcompartments. Mol Gen Genomics, 271: 566-576.

    Virupakshi S, Naik G R. 2007. Purification of DNA from chloroplast and mitochondria of sugarcane. Current Science, 92(11): 1613-1619.

    Wang Q B, Zhang Y Y, Fang Z Y, et al. 2012. Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Mol Breeding, 30: 709-716.

    Zeng X, Sun W, Meng Y, et al. 2005. Extraction and purification of mtDNA in crucifer. Acta Botanica Boreali-Occidentalia Sinica, 25(6): 1137.

    Zhang J F, Stewart J M D. 2001. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Science, 41(2): 289-294.

    Zhang X, Meng Z G, Zhou T, et al. 2012. Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Plant Breeding, 131(4): 563-570.

    Zhao Y, Chen P, Zhou R Y. 2011. Extraction of high purity mitochondrial DNA from kenaf for genome sequencing. Journal of Northeast Agricultural University, 42(4): 98-101.

    Zhang Z, Zhang L G, Wang Q, et al. 2006. An effective and quick protocol for mitochondrial DNA extraction from Chinese cabbage. Biotechnology, 16(3): 48-50.

    S634; S330

    A

    1006-8104(2014)-03-0023-07

    Received 5 December 2013

    Supported by Funding of Utilization of Heterosis and Breeding of New Variety in Brassicaceous Vegetable (2012BAD02B01)

    Wang Shuai (1988-), male, Ph. D, engaged in the research of molecular breeding and biotechnique. E-mail: wangshuai10log@126.com

    * Corresponding author. Wang Chao, professor, supervisor of Ph. D student, engaged in the research of molecular breeding and biotechnique. E-mail: wangchao504@126.com

    两性午夜刺激爽爽歪歪视频在线观看| 精品电影一区二区在线| 亚洲精品一区av在线观看| 色老头精品视频在线观看| 国产成人啪精品午夜网站| 我要搜黄色片| 波多野结衣高清作品| 成人三级黄色视频| 久久人人精品亚洲av| 免费在线观看视频国产中文字幕亚洲| 美女cb高潮喷水在线观看 | 男女视频在线观看网站免费| 欧美日韩黄片免| 香蕉久久夜色| 久久久久免费精品人妻一区二区| 搡老熟女国产l中国老女人| 国产伦在线观看视频一区| 精品久久久久久久人妻蜜臀av| 国产综合懂色| 丁香六月欧美| 亚洲国产欧美网| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 他把我摸到了高潮在线观看| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 美女免费视频网站| 啦啦啦免费观看视频1| 国产真人三级小视频在线观看| 最新中文字幕久久久久 | 久久精品人妻少妇| 中文资源天堂在线| 日韩欧美国产在线观看| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 中文字幕高清在线视频| 国产人伦9x9x在线观看| 人妻久久中文字幕网| 久久人妻av系列| 亚洲无线观看免费| 欧美不卡视频在线免费观看| 国产亚洲av高清不卡| 亚洲一区二区三区色噜噜| 怎么达到女性高潮| 亚洲中文日韩欧美视频| 国产亚洲精品综合一区在线观看| 99久久99久久久精品蜜桃| 一边摸一边抽搐一进一小说| 这个男人来自地球电影免费观看| 精品欧美国产一区二区三| 成年人黄色毛片网站| 很黄的视频免费| 精品久久蜜臀av无| av黄色大香蕉| 韩国av一区二区三区四区| 国产欧美日韩精品一区二区| 欧美日本视频| 国产亚洲精品一区二区www| 欧美日韩瑟瑟在线播放| 黑人巨大精品欧美一区二区mp4| 动漫黄色视频在线观看| 99久久久亚洲精品蜜臀av| 日韩欧美国产一区二区入口| 巨乳人妻的诱惑在线观看| 国产精品久久久久久精品电影| 18禁国产床啪视频网站| 亚洲av成人av| 国产精品爽爽va在线观看网站| 欧美性猛交╳xxx乱大交人| 丝袜人妻中文字幕| 亚洲乱码一区二区免费版| 国产爱豆传媒在线观看| 国产av在哪里看| 啦啦啦免费观看视频1| 精品乱码久久久久久99久播| 19禁男女啪啪无遮挡网站| 欧美日韩中文字幕国产精品一区二区三区| 久久99热这里只有精品18| 亚洲美女视频黄频| 久久婷婷人人爽人人干人人爱| 色综合亚洲欧美另类图片| 欧美日韩一级在线毛片| 成人性生交大片免费视频hd| av片东京热男人的天堂| 老司机福利观看| 国产综合懂色| 在线国产一区二区在线| 桃红色精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 欧美性猛交╳xxx乱大交人| 久9热在线精品视频| 18禁黄网站禁片午夜丰满| 精品久久久久久成人av| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 国产亚洲精品综合一区在线观看| 老熟妇乱子伦视频在线观看| 久久精品91蜜桃| 成年版毛片免费区| 欧美日韩综合久久久久久 | 亚洲男人的天堂狠狠| 国产亚洲精品一区二区www| 国产人伦9x9x在线观看| 久久久久性生活片| 欧美精品啪啪一区二区三区| 在线观看一区二区三区| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 亚洲欧美日韩无卡精品| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免费看| 亚洲欧美日韩高清专用| 欧美乱色亚洲激情| 午夜免费观看网址| 老司机在亚洲福利影院| 色吧在线观看| 欧美日韩一级在线毛片| 曰老女人黄片| 成年女人永久免费观看视频| 熟女少妇亚洲综合色aaa.| 黄色成人免费大全| 噜噜噜噜噜久久久久久91| av片东京热男人的天堂| 夜夜看夜夜爽夜夜摸| 老汉色av国产亚洲站长工具| 又爽又黄无遮挡网站| 曰老女人黄片| 成年女人永久免费观看视频| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 又粗又爽又猛毛片免费看| 国产伦人伦偷精品视频| 999久久久国产精品视频| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| 国产精品野战在线观看| 99re在线观看精品视频| 99在线视频只有这里精品首页| 一区二区三区国产精品乱码| 久久精品国产亚洲av香蕉五月| tocl精华| 一个人看视频在线观看www免费 | 国模一区二区三区四区视频 | 欧美日韩亚洲国产一区二区在线观看| 国产午夜福利久久久久久| 国产一区二区激情短视频| 两人在一起打扑克的视频| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 精品久久蜜臀av无| 99久久久亚洲精品蜜臀av| 91av网站免费观看| 人妻丰满熟妇av一区二区三区| 99国产极品粉嫩在线观看| 亚洲欧美日韩卡通动漫| 中文字幕高清在线视频| 美女黄网站色视频| 亚洲专区国产一区二区| 日本 av在线| 禁无遮挡网站| 欧美乱色亚洲激情| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 18禁观看日本| 中亚洲国语对白在线视频| 成人欧美大片| 一进一出好大好爽视频| 国产单亲对白刺激| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 一卡2卡三卡四卡精品乱码亚洲| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 国产高清三级在线| 搡老岳熟女国产| 青草久久国产| 久久久久国产精品人妻aⅴ院| 欧美黑人欧美精品刺激| 特大巨黑吊av在线直播| 91字幕亚洲| 99国产精品一区二区蜜桃av| 亚洲av成人一区二区三| 亚洲18禁久久av| av片东京热男人的天堂| 悠悠久久av| 亚洲欧美日韩卡通动漫| 成人欧美大片| 免费电影在线观看免费观看| 久久草成人影院| 99视频精品全部免费 在线 | 日韩人妻高清精品专区| 色精品久久人妻99蜜桃| 一个人看视频在线观看www免费 | 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 少妇丰满av| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 免费看日本二区| 国产一区二区三区视频了| 欧美日韩乱码在线| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 午夜福利视频1000在线观看| 国产熟女xx| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 两个人的视频大全免费| 99国产精品一区二区蜜桃av| 一本综合久久免费| 久久久水蜜桃国产精品网| 欧美绝顶高潮抽搐喷水| 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 人妻夜夜爽99麻豆av| 观看美女的网站| 久久久久久久久免费视频了| 亚洲美女视频黄频| 国产v大片淫在线免费观看| 1000部很黄的大片| 国产精品久久久久久人妻精品电影| 亚洲av中文字字幕乱码综合| 岛国视频午夜一区免费看| 国产单亲对白刺激| 午夜免费成人在线视频| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 成人午夜高清在线视频| 韩国av一区二区三区四区| 久久久久久久久久黄片| av黄色大香蕉| 成人三级黄色视频| 色视频www国产| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 日韩三级视频一区二区三区| 两个人看的免费小视频| 久久精品国产亚洲av香蕉五月| 国产不卡一卡二| 成年人黄色毛片网站| 成人国产综合亚洲| 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 午夜免费观看网址| 国产激情久久老熟女| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| www日本在线高清视频| 变态另类丝袜制服| 国内精品久久久久精免费| av欧美777| av片东京热男人的天堂| 日韩精品青青久久久久久| 给我免费播放毛片高清在线观看| 老司机在亚洲福利影院| 欧美激情在线99| 波多野结衣巨乳人妻| 黄片小视频在线播放| 人妻久久中文字幕网| 久久久久亚洲av毛片大全| 香蕉国产在线看| 国产精品99久久99久久久不卡| 国产精品自产拍在线观看55亚洲| 黄色 视频免费看| 偷拍熟女少妇极品色| 亚洲在线观看片| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲欧美98| 两个人的视频大全免费| 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 久久草成人影院| 嫩草影视91久久| 亚洲五月婷婷丁香| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 婷婷精品国产亚洲av| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 成人三级黄色视频| 亚洲成人久久爱视频| 动漫黄色视频在线观看| 男插女下体视频免费在线播放| 亚洲色图av天堂| 黄频高清免费视频| 日韩国内少妇激情av| 天天添夜夜摸| 在线国产一区二区在线| 淫秽高清视频在线观看| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 欧美一级a爱片免费观看看| 久久精品国产清高在天天线| av黄色大香蕉| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 久久亚洲精品不卡| 精品久久久久久成人av| 久久这里只有精品中国| 亚洲avbb在线观看| 国产主播在线观看一区二区| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 99热这里只有精品一区 | 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 久久国产精品影院| 色精品久久人妻99蜜桃| 91在线观看av| 亚洲真实伦在线观看| 久久久国产成人免费| 国产午夜福利久久久久久| 久久久久国内视频| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 女同久久另类99精品国产91| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 亚洲国产精品久久男人天堂| 黄色女人牲交| 国产人伦9x9x在线观看| 亚洲欧美日韩高清专用| 亚洲成人免费电影在线观看| 禁无遮挡网站| 999精品在线视频| 免费观看的影片在线观看| 熟女电影av网| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 欧美成狂野欧美在线观看| 亚洲成人免费电影在线观看| 成年人黄色毛片网站| 欧美三级亚洲精品| 欧美色视频一区免费| 国产极品精品免费视频能看的| 久久久久九九精品影院| 身体一侧抽搐| 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 久久久国产成人精品二区| 亚洲成人精品中文字幕电影| 99久久综合精品五月天人人| 午夜福利欧美成人| 欧美国产日韩亚洲一区| 久99久视频精品免费| 欧美乱码精品一区二区三区| 一个人免费在线观看电影 | 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| 又大又爽又粗| 国产一区二区三区视频了| 久久久色成人| 老熟妇仑乱视频hdxx| 操出白浆在线播放| 亚洲真实伦在线观看| 国产视频内射| 丁香欧美五月| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 国产成人av激情在线播放| 国产精品一区二区三区四区久久| 亚洲最大成人中文| 夜夜爽天天搞| 亚洲熟女毛片儿| 久久久久九九精品影院| 亚洲成人久久性| 欧美日韩一级在线毛片| 免费在线观看日本一区| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 成年女人毛片免费观看观看9| 日韩欧美精品v在线| 国产单亲对白刺激| 国产高清激情床上av| www.精华液| 亚洲美女视频黄频| 亚洲人成网站高清观看| 亚洲中文av在线| 亚洲中文日韩欧美视频| 观看美女的网站| 欧美激情久久久久久爽电影| 又大又爽又粗| 国产高清视频在线播放一区| 在线看三级毛片| 欧美av亚洲av综合av国产av| 国产久久久一区二区三区| 精品久久久久久久末码| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 欧美乱妇无乱码| 老熟妇仑乱视频hdxx| 精品无人区乱码1区二区| 亚洲精品一区av在线观看| www国产在线视频色| 日韩 欧美 亚洲 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| 亚洲国产欧美网| 日韩欧美免费精品| 成年版毛片免费区| 毛片女人毛片| 91字幕亚洲| 色哟哟哟哟哟哟| 久久久色成人| 国产乱人伦免费视频| 久久久久久久久久黄片| 小蜜桃在线观看免费完整版高清| 91av网站免费观看| 免费av不卡在线播放| 国产精华一区二区三区| 岛国在线免费视频观看| 成人高潮视频无遮挡免费网站| 日本 欧美在线| 动漫黄色视频在线观看| 美女 人体艺术 gogo| 久久久国产欧美日韩av| 欧美成人免费av一区二区三区| 国内揄拍国产精品人妻在线| 久久久精品大字幕| 国产精品精品国产色婷婷| 成人高潮视频无遮挡免费网站| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 极品教师在线免费播放| 成年版毛片免费区| 这个男人来自地球电影免费观看| 黄色日韩在线| 久久亚洲真实| 悠悠久久av| 国产视频内射| 久久99热这里只有精品18| 国产精品一区二区免费欧美| 欧美一区二区国产精品久久精品| 免费看光身美女| 亚洲精品久久国产高清桃花| 18禁观看日本| 成人三级做爰电影| 精品无人区乱码1区二区| 免费av不卡在线播放| 男插女下体视频免费在线播放| 午夜福利在线观看免费完整高清在 | 母亲3免费完整高清在线观看| 窝窝影院91人妻| 叶爱在线成人免费视频播放| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 国产男靠女视频免费网站| 99热这里只有精品一区 | 校园春色视频在线观看| 成人av在线播放网站| 在线观看66精品国产| 青草久久国产| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影| 精品一区二区三区视频在线观看免费| 99久久精品国产亚洲精品| 国产精品香港三级国产av潘金莲| 亚洲在线自拍视频| 在线观看美女被高潮喷水网站 | 99久久成人亚洲精品观看| 久久精品影院6| 一本综合久久免费| 一本久久中文字幕| 女人高潮潮喷娇喘18禁视频| 在线播放国产精品三级| 欧美性猛交黑人性爽| 国产毛片a区久久久久| 一本久久中文字幕| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久久久久| 亚洲精品国产精品久久久不卡| 日韩国内少妇激情av| 亚洲五月婷婷丁香| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| 成人高潮视频无遮挡免费网站| 高清毛片免费观看视频网站| 日本五十路高清| 在线播放国产精品三级| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| 一进一出抽搐动态| 亚洲片人在线观看| 国产探花在线观看一区二区| 岛国在线免费视频观看| 亚洲成人久久性| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 亚洲国产精品sss在线观看| 国产高清三级在线| 免费观看人在逋| 国产亚洲av高清不卡| 99热6这里只有精品| 国产蜜桃级精品一区二区三区| 天堂av国产一区二区熟女人妻| 久久久久久久精品吃奶| 午夜福利高清视频| 成人亚洲精品av一区二区| 亚洲av成人av| 岛国在线观看网站| 成人精品一区二区免费| 久久久精品欧美日韩精品| 国产精品1区2区在线观看.| 操出白浆在线播放| 久久精品夜夜夜夜夜久久蜜豆| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 老熟妇仑乱视频hdxx| 亚洲男人的天堂狠狠| 久久久久久国产a免费观看| 亚洲午夜精品一区,二区,三区| 久久久色成人| 色噜噜av男人的天堂激情| 啦啦啦韩国在线观看视频| 岛国在线免费视频观看| 久久久久久九九精品二区国产| 美女扒开内裤让男人捅视频| 琪琪午夜伦伦电影理论片6080| 白带黄色成豆腐渣| 亚洲人成电影免费在线| 国产伦精品一区二区三区视频9 | 日韩欧美一区二区三区在线观看| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 村上凉子中文字幕在线| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 不卡一级毛片| 人妻久久中文字幕网| 成年女人永久免费观看视频| av天堂中文字幕网| 夜夜夜夜夜久久久久| 亚洲精品色激情综合| 在线十欧美十亚洲十日本专区| 一级作爱视频免费观看| 最新中文字幕久久久久 | 国产精品香港三级国产av潘金莲| 啦啦啦韩国在线观看视频| 啪啪无遮挡十八禁网站| 久久久久亚洲av毛片大全| 国产综合懂色| 18禁美女被吸乳视频| 1000部很黄的大片| 亚洲国产精品久久男人天堂| 国产精品自产拍在线观看55亚洲| 精品国产亚洲在线| 成熟少妇高潮喷水视频| 久久久国产精品麻豆| 成人高潮视频无遮挡免费网站| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 成人三级做爰电影| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 日韩欧美免费精品| 国产精品99久久99久久久不卡| 男人和女人高潮做爰伦理| 嫩草影视91久久| 中出人妻视频一区二区| 久久久成人免费电影| 国内精品美女久久久久久| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| av福利片在线观看| 最近在线观看免费完整版| 神马国产精品三级电影在线观看| 性欧美人与动物交配| 亚洲美女视频黄频| 高潮久久久久久久久久久不卡| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 99国产精品一区二区蜜桃av| 亚洲 欧美 日韩 在线 免费| 99热6这里只有精品| 国产精品香港三级国产av潘金莲| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 色哟哟哟哟哟哟| 一本久久中文字幕| 欧美+亚洲+日韩+国产| 欧美另类亚洲清纯唯美| 天堂√8在线中文| 曰老女人黄片| 久久久久性生活片| 日韩欧美一区二区三区在线观看| 一级毛片精品|