• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vertex-distinguishing IE-total Colorings of Cycles and Wheels

    2014-03-03 03:34:56

    (College of Mathematics and Information Science,Northwest Normal University, Lanzhou,730070)

    Vertex-distinguishing IE-total Colorings of Cycles and Wheels

    CHEN XIANG-EN,HE WEN-YU,LI ZE-PENG AND YAO BING

    (College of Mathematics and Information Science,Northwest Normal University, Lanzhou,730070)

    Communicated by Du Xian-kun

    Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u)be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)C(v)for any two di ff erent vertices u and v of V(G),thenfis called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by(G),and is called the VDIET chromatic number of G.We get the VDIET chromatic numbers of cycles and wheels,and propose related conjectures in this paper.

    graph,IE-total coloring,vertex-distinguishing IE-total coloring,vertexdistinguishing IE-total chromatic number

    1 Introduction and Preliminaries

    For an edge coloring(proper or not)of a graph G and a vertex v of G,denote by S(v)the set of colors used to color the edges incident to v.

    A proper edge coloring of a graph G is said to be vertex-distinguishing if each pair of vertices is incident to a di ff erent set of colors.In other words,S(u)S(v)whenever uv. A graph G has a vertex-distinguishing proper edge coloring if and only if it has no more than one isolated vertex and no isolated edges.Such a graph is referred to as a vdec-graph. The minimum number of colors required for a vertex-distinguishing proper edge coloringof a vdec-graph G is denoted by(G).The concept of vertex-distinguishing proper edge coloring has been considered in several papers(see[1–7]).

    A general edge coloring(not necessarily proper)of a graph G is called vertex-distinguishing if S(u)≠S(v)is required for any two distinct vertices u and v.The point-distinguishing chromatic index of a vdec-graph G,denoted by χ0(G),refers to the minimum number of colors required for a vertex-distinguishing general edge coloring of G.This parameter was introduced by Harary and Plantholt in[8].In spite of the fact that the structure of complete bipartite graph is simple,it seems that the problem of determining χ0(Km,n)is not easy, especially in the case m=n,as documented by papers of Horˇn′ak and Sot′ak[9–10],Zagaglia Salvi[11–12]and Horˇn′ak and Zagaglia Salvi[13].

    For a total coloring(proper or not)f of G and a vertex v of G,denote by Cf(v),or simply C(v)if no confusion arises,the set of colors used to color the vertex v as well as the edges incident to v.Let(v)be the complementary set of C(v)in the set of all colors we used.Obviously|C(v)|≤dG(v)+1 and the equality holds if the total coloring is proper.

    For a proper total coloring,if C(u)C(v),i.e.,(u)(v)for any two distinct vertices u and v,then the coloring is called vertex-distinguishing(proper)total coloring and the minimum number of colors required for a vertex-distinguishing(proper)total coloring is denoted by χvt(G).This concept has considered in[14–15].In[15],the authors give the following conjecture.

    From[15]we know that the above conjecture is valid for complete graphs,complete bipartite graphs,path and cycle,etc.

    In this paper we propose a kind of vertex-distinguishing general total coloring.The relationship of this coloring and vertex-distinguishing proper total coloring is similar to the relationship of vertex-distinguishing general edge coloring and vertex-distinguishing proper edge coloring.

    When we de fi ne a proper total coloring of a graph G,we need three conditions for a total coloring which are listed as follows∶

    Condition(v)∶No two adjacent vertices receive the same color;

    Condition(e)∶No two adjacent edges receive the same color;

    Condition(i)∶No edge receives the same color as one of its endpoints.

    If we only consider the total coloring of the graph G such that the Condition(v)is satis fi ed,then such a coloring is called an IE-total coloring of the graph G.

    If f is an IE-total coloring of the graph G using k colors and for all u,v∈V(G),uv, we have C(u)C(v),then f is called a k-vertex-distinguishing IE-total coloring,or a k-VDIET coloring.The minimum number k for which G has a k-VDIET coloring is called the vertex-distinguishing IE-total chromatic number(or VDIET chromatic number)of the graph G and is denoted by

    The following proposition is obviously true.

    Proof.For a graph G,let nibe the number of the vertices of degree i,δ≤i≤Δ.Suppose that

    In Section 2 we consider the VDIET colorings for cycles and paths.The discussions of the VDIET colorings for wheels and fans are long,so we put them into the Section 3.In Section 4 we give two conjectures.

    2 Vertex Distinguishing IE-total Chromatic Numbers of Cycle and Path

    Theorem 2.1LetCnbe a cycle of ordern(n≥3).Then

    Proof.When n=3,4,5,6,the results are obviously true.Let Cn=u1u2u3···unu1.In this proof when we want to give a k-VDIET coloring fnof Cnwith all colors 1,2,···,k,we need only to give(fn(ui?1ui),fn(ui),fn(uiui+1))or fn(ui?1ui)fn(ui)fn(uiui+1)for each i=1,2,···,n,i.e.,

    such that

    and

    If n=7,then

    Assume that C7has a 3-VDIET coloring g.Then there are three vertices such that their color sets are{1},{2}and{3},respectively.But no two such vertices are adjacent.So without loss of generality we assume that C(u1)={1},C(u3)={2},C(u5)={3}.As no two adjacent vertices receive the same color,the colors that u2and u4are assigned under g are 3 and 1,respectively.Thereby u2and u4have the same color set,which is a contradiction.So there does not exist a VDIET coloring of C7using 3 colors.

    Obviously,

    If

    i.e.,8≤n≤14,then

    Let

    If

    i.e.,15≤n≤25,then

    Let

    where“+”denotes the concatenation of sequence.Obviously,when 15≤n≤25,fnis a 5-VDIET coloring of Cn,so the result holds.

    We now want to apply the same technique to give fnfor

    To do so,we de fi ne Ckat fi rst.Let

    If l≡0(mod 4),let

    If l≡1(mod 4),let

    If l≡2(mod 4),let

    If l≡3(mod 4),let

    For l=6,7,···,k?2,we do the above work step by step.Finally we obtain.The last term ofis(k?1)1k or k1(k?1).We change the last term(k?1)1k to(k?1)k1 and k1(k?1)to k(k?1)1.And the resulting sequence is denoted by Ck.

    Now we determine fnwhen

    Suppose

    Let

    Theorem 2.2For a pathPnof ordern(≥8),if

    Proof.If

    Actually,based on the k-VDIET coloring fnof Cn=u1u2u3···unu1de fi ned in the above theorem,if we delete the edge which connects two vertices with color sets{4,2}and{4,3}, i.e.,the corresponding terms are 424 and 434,then we can obtain Pnand its k-VDIET coloring when

    3 Vertex Distinguishing IE-total Chromatic Numbers of Wheel and Fan

    Proof.Let

    In this proof,when we want to give a k-VDIET coloring fnof Wn,we always appoint that the colors which we use are 1,2,···,k,the color of u0is k,and then it suffices to give (fn(ui?1ui),fn(u0ui),fn(ui),fn(uiui+1))or fn(ui?1ui)fn(u0ui)fn(ui)fn(uiui+1)for each i=1,2,···,n,equivalently to give

    such that fn(ui)fn(ui+1),i=1,2,···,n,and

    If n=4,then

    Case 1.|C(u0)|=1.Then C(u0)={3},and each C(ui),i=1,2,3,4,is one of{1,2,3}, {2,3},{1,3}.Three subsets can not distinguish 4 vertices.It is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={3,2}.Then each C(ui),i=1,2,3,4,is one of{1,2,3},{1,2},{1,3},{2}.Let C(u1)={2}.Then the colors of u2and u4are only 1.Thus{C(u2),C(u4)}={{1,2,3},{1,2}}.So C(u3)={1,3}and the color of u3is 2 for ensuring the vertex coloring proper.This is a contradiction.

    Case 3.|C(u0)|=3.Of course C(u0)={1,2,3}.Then each C(ui),i=1,2,3,4,is one of{1,2},{2,3},{1,3},{1},{2}.

    (a)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{1},{2}},then two vertices which has color sets{1}and{2}are not adjacent.But these two vertices must have the same color.This is a contradiction.

    (b)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{2,3},{1}},without loss of generality,we assume C(u1)={1}.Then 1∈C(u2)∩C(u4).Thus C(u3)={2,3},whichyields g(u3)=2.But g(u1)=1,so the color that u2is assigned under g is one of g(u1), g(u3)and g(u0).This is a contradiction.

    (c)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{2,3},{1},{2}},then similar to(a)we can get a contradiction.

    (d)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{2,3},{2}},then similar to(b) we can get a contradiction.

    (e)If{C(u1),C(u2),C(u3),C(u4)}={{1,3},{2,3},{1},{2}},then similar to(a)we can get a contradiction.

    Thus there does not exist a VDIET coloring of W4using 3 colors,so≥4.We can prove=4 by giving a 4-VDIET coloring f4of W4(note that f4(u0)=4)as follows∶f4=(1132,2214,4323,3411).

    As the(proper)vertex chromatic number of W5is χ(W5)=4,χievt(W5)≥4.We can show that=4 by giving a 4-VDIET coloring f5of W5as follows∶

    Note that

    Case 1.|C(u0)|=1.Then C(u0)={3},and each C(ui),i=1,2,···,6,is one of {1,2,3},{2,3},{1,3}.This is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={3,1}.Then each C(ui),i=1,2,···,6, is one of{1,2,3},{1,2},{2,3},{1}.This is a contradiction.

    Case 3.|C(u0)|=3.Then C(u0)={1,2,3},and each C(ui),i=1,2,···,6,is one of{1,2},{2,3},{1,3},{1},{2}.Five subsets do not distinguish six vertices.This is a contradiction.

    f13=(1132,2112,2222,2114,4224,4114,4334,4223,3333,3113,3223,3431,1111). It is easy to see that fnis a 4-VDIET coloring of Wnand(Wn)=4 when 7≤n≤13.

    Case 1.|C(u0)|=1.Then C(u0)={4},and each C(ui),i=1,2,···,14,is one of {1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.This is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={1,4}.Then each C(ui),i=1,2,···,14, is one of{1},{1,2},{1,3},{2,4},{3,4},{1,3,4},{1,2,4},{1,2,3},{2,3,4},{1,2,3,4}. This is a contradiction.

    Case 3.|C(u0)|=3.We may suppose C(u0)={1,2,4}.Then each C(ui),i= 1,2,···,14,is one of{1},{2},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,3,4}, {2,3,4},{1,2,3,4}.This is a contradiction.

    Case 4.|C(u0)|=4,that is,C(u0)={1,2,3,4}.Then each C(ui),i=1,2,···,14,is one of{1},{2},{3},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4}.This is a contradiction.

    f14=(1132,2112,2222,2114,4444,4224,4114,4334,4223,3333,3113,3223,3431,1111).

    (I)We prove that what wheel has(k?1)-VDIET coloring with colors 1,2,···,k?1 for k≥6.

    Suppose that Wnhas a(k?1)-VDIET coloring g.Let|C(u0)|=i.Denote by mithe number of subsets of{1,2,···,k?1}which can be acted as the color set of some uj(1≤j≤n).Then

    This yields that if

    (II)Next we prove that k colors can color Wn,so that the coloring is IE-total coloring and is vertex distinguishing when

    Assume that we have constructed all fiwith

    such that

    (1)The fi rst term of fiis 1132;

    (2)When

    and fn(u0)=l,the fi rst term abcd and the last term a1b1c1d1of fnsatisfy that d1=a=1, c1?=c and if there are at most 3 di ff erent numbers in{a1,b1,c1,d1}then c1=d1=1;

    (3)fqhas used up all 4-combinations,3-combinations,2-combinations and 1-combination of{1,2,···,k?1}except for 1-combination{k?1}.Under fq,C(u0)={1,2,···,k?1}.

    Let

    and let Cibe the sequence de fi ned in the proof of Theorem 2.1 for i≥7.We change each term abc of Cs,4≤s≤k?1,into akbc,and the resulted sequence is denoted byLetObviously,Dkhasterms.

    (A)Let fq+1be the sequence formed by inserting the term(k?1)(k?1)(k?1)(k?1) into the place between(k?1)33(k?1)and(k?1)22(k?1)from fq.

    (B)Let

    Let

    If the(r?1)-th term of Dkis akb(k?1),then we can obtain fq+r+1by adding the fi rst r?1 terms of Dkto fq+1and then adding(k?1)k(k?2)1.

    If the(r?1)-th term of Dkis(k?1)kab(but not(k?1)k1s,s≤k?2),then we can obtain fq+r+1by adding the fi rst r?1 terms of Dkto fq+1and then adding bk(k?1)1.

    Let

    If the(r?1)-th term of Bkis abbk,then we can obtainby adding the fi rst r?1 terms of Bktoand then adding the term k(k?1)11.

    If the(r?1)-th term of Bkis of the form kaab(≠k11s,i.e.,a≠1),then we can obtainby adding the fi rst r?1 terms of Bktoand then adding the term bk11.

    Theorem 3.2LetFnbe a fan of ordern+1.If3≤ n≤ 4,then(Fn)=3;if5≤n≤13,then

    thenχievt(Fn)=k.

    Proof.Let

    In this proof when we want to give a k-VDIET coloring gnof Fnwith the set of all colors {1,2,···,k},we always appoint that the color of v0is k and then it suffices to give the desired sequence

    Assume that F5has a 3-VDIET coloring h and h(v0)=3.

    If|C(v0)|=1,then 3∈C(vi),i=0,1,···,5.But the number of the subsets of{1,2,3} which contain 3 is 4.This is a contradiction.

    If|C(v0)|≥2,then{3}is not the color set of any vertex.Since the vertex coloring is proper,we may suppose h(v1)=h(v3)=h(v5)=1 and h(v2)=h(v4)=2.As{C(v0), C(v1),···,C(v5)}={{1},{2},{1,2},{1,3},{2,3},{1,2,3}},and C(v3)≠{1},without loss of generality we assume that C(v1)={1}and C(v4)={2}.This yields that 2∈C(vi), i=0,2,3,4,5.This is a contradiction for we just have 4 subsets of{1,2,3}which contain 2.

    Similarly to proving that W6has no 3-VDIET coloring in the proof of Theorem 3.1 we can show that F6has no 3-VDIET coloring.And

    is a 4-VDIET coloring of F6.So=4.

    Similarly to the proof that W14has no 4-VDIET coloring in the proof of Theorem 3.1, we can show that F14have no 4-VDIET coloring.And

    g14=(132,2112,2222,2114,4444,4224,4114,4334,4223,3333,3113,3223,3431,111). So

    If we delete the fi rst number of the fi rst term of fnand also delete the last number of the last term of fn,then the resulting sequence gnis a 4 or 5-VDIET coloring of Fnwhen 7≤n≤13 or 15≤n≤29.Thus=4 if 7≤n≤13,and=5 if 15≤n≤29. Su

    ppose that

    and n≥30.

    (I)We can show that Fnhas no(k?1)-VDIET coloring.The process is the same as(I) in the proof of Theorem 3.1.So≥k.

    (II)If we delete the fi rst number of the fi rst term of fnand also delete the last number of the last term of fn,then the resulting sequence gnis a k-VDIET coloring of Fn.

    and n≥30.

    The proof is completed.

    Theorem 3.3LetKnbe the complete graph of ordern(n≥3),then(Kn)=n.

    Proof.Any two vertices in Knmust receive di ff erent colors under arbitrary VDIET coloring.Therefore(Kn)≥n.Of course,we are able to show that(Kn)=n by giving a VDIET coloring of Knusing n colors 1,2,···,n as follows.Assign colors 1,2,···,n to vertices v1,v2,···,vnof Knrespectively,and then let all edges receive the same color 1. The proof is completed.

    4 Conjectures

    From the results obtained in this paper,we know that for any graph G discussed in this paper but Kn(n≥5),we have χievt(G)=ξ(G)or ξ(G)+1.So we propose the following conjectures.

    Conjecture 4.1For a simple graphG,if(proper vertex coloring)chromatic numberχ(G)≤4,we have=ξ(G)orξ(G)+1.

    Conjecture 4.2For a simple graphG,we have≤max{ξ(G)+1,χ(G)}.

    [1]Balister P N,Bollob′as B,Schelp R H.Vertex distinguishing colorings of graphs with Δ(G)=2. Discrete Math.,2002,252:17–29.

    [2]Balister P N,Riordan O M,Schelp R H.Vertex distinguishing edge colorings of graphs.J. Graph Theory,2003,42:95–109.

    [3]Bazgan C,Harkat-Benhamdine A,Li H,Wo′zniak M.On the vertex-distinguishing proper edge-colorings of graphs.J.Combin.Theory Ser.B,1999,75:288–301.

    [4]Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J.Graph Theory,1997,26(2):73–82.

    [5]ˇCer′ny J,Horˇn′ak M.Observability of a graph.Math.Slovaca,1996,46:21–31.

    [6]Horˇn′ak M,Sot′ak R.Observability of complete multipartite graphs with equipotent parts.Ars Combin.,1995,41:289–301.

    [7]Horˇn′ak M,Sot′ak R.Asymptotic behaviour of the observability of Qn.Discrete Math.,1997,176:139–148.

    [8]Harary F,Plantholt M.The Point-distinguishing Chromatic Index.In:Harary F,Maybee J S.Graphs and Application.New York:Wiley Interscience,1985:147–162.

    [9]Horˇn′ak M,Sot′ak R.The fi fth jump of the point-distinguishing chromatic index of Kn,n.Ars Combin.,1996,42:233–242.

    [10]Horˇn′ak M,Sot′ak R.Localization jumps of the point-distinguishing chromatic index of Kn,n. Discuss.Math.Graph Theory,1997,17:243–251.

    [11]Zagaglia Salvi N.On the point-distinguishing chromatic index of Kn,n.Ars Combin.,1988,25B:93–104.

    [12]Zagaglia Salvi N.On the value of the point-distinguishing chromatic index of Kn,n.Ars Combin.,1990,29B:235–244.

    [13]Horˇn′ak M,Zagaglia Salvi N.On the point-distinguishing chromatic index of complete bipartite graphs.Ars Combin.,2006,80:75–85.

    [14]Chen X E.Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube(in Chinese).J.Northwest Norm.Univ.(Natur.Sci.),2005,41(5):1–3.

    [15]Zhang Z F,Qiu P X,Xu B G,et al.Vertex-distinguishing total colorings of graphs.Ars Combin.,2008,87:33–45.

    tion:05C15

    A

    1674-5647(2014)03-0222-15

    10.13447/j.1674-5647.2014.03.04

    Received date:Oct.18,2011.

    Foundation item:The NSF(61163037,61163054)of China and the Scienti fi c Research Project(nwnu-kjcxgc-03-61)of Northwest Normal University.

    E-mail address:chenxe@nwnu.edu.cn(Chen X E).

    考比视频在线观看| 日本av免费视频播放| 婷婷丁香在线五月| 精品少妇内射三级| 欧美日韩亚洲高清精品| 精品人妻熟女毛片av久久网站| 一级片免费观看大全| 国产成人欧美在线观看 | 色网站视频免费| 最黄视频免费看| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 男女午夜视频在线观看| 国产熟女欧美一区二区| 成年女人毛片免费观看观看9 | 人人妻人人爽人人添夜夜欢视频| 欧美亚洲 丝袜 人妻 在线| 国产成人啪精品午夜网站| 亚洲欧美清纯卡通| 国产免费又黄又爽又色| 性色av乱码一区二区三区2| 精品一区二区三区四区五区乱码 | 欧美老熟妇乱子伦牲交| 成人手机av| 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 欧美老熟妇乱子伦牲交| 免费看十八禁软件| 青青草视频在线视频观看| 国产精品99久久99久久久不卡| 美女午夜性视频免费| 狠狠婷婷综合久久久久久88av| 欧美黄色淫秽网站| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 精品久久久久久电影网| 欧美人与性动交α欧美软件| 日本91视频免费播放| 成在线人永久免费视频| 亚洲精品乱久久久久久| 9热在线视频观看99| 精品国产一区二区三区四区第35| 精品福利永久在线观看| 美女扒开内裤让男人捅视频| 亚洲欧美日韩另类电影网站| 国产欧美日韩精品亚洲av| 中文欧美无线码| 久久午夜综合久久蜜桃| 美女视频免费永久观看网站| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9 | 人人妻人人澡人人爽人人夜夜| bbb黄色大片| 在线观看免费高清a一片| 亚洲一区中文字幕在线| 又紧又爽又黄一区二区| 热re99久久精品国产66热6| 少妇粗大呻吟视频| 日韩电影二区| 纵有疾风起免费观看全集完整版| svipshipincom国产片| 欧美精品亚洲一区二区| 免费看不卡的av| 丝袜人妻中文字幕| 脱女人内裤的视频| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 亚洲精品乱久久久久久| 手机成人av网站| 久久狼人影院| 1024视频免费在线观看| 黄色怎么调成土黄色| 晚上一个人看的免费电影| 在线天堂中文资源库| 最黄视频免费看| 少妇猛男粗大的猛烈进出视频| 成年av动漫网址| 国产精品一区二区在线观看99| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 国产野战对白在线观看| 精品福利永久在线观看| 黄色a级毛片大全视频| 丝袜在线中文字幕| 国产熟女欧美一区二区| 搡老乐熟女国产| 亚洲精品在线美女| 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 精品少妇内射三级| 一区福利在线观看| 麻豆国产av国片精品| 啦啦啦视频在线资源免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品大桥未久av| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| h视频一区二区三区| 久久精品成人免费网站| 中文精品一卡2卡3卡4更新| av天堂久久9| 在现免费观看毛片| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 亚洲国产欧美在线一区| 一区二区三区激情视频| 精品久久久久久久毛片微露脸 | 多毛熟女@视频| 亚洲中文字幕日韩| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 亚洲精品国产一区二区精华液| 手机成人av网站| 国产一卡二卡三卡精品| 99久久精品国产亚洲精品| 日韩免费高清中文字幕av| 日韩视频在线欧美| 国产精品一国产av| 国产精品熟女久久久久浪| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 久久热在线av| 十八禁高潮呻吟视频| 满18在线观看网站| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 丝袜美腿诱惑在线| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 国产亚洲精品第一综合不卡| 嫁个100分男人电影在线观看 | 成在线人永久免费视频| 搡老乐熟女国产| 在线亚洲精品国产二区图片欧美| 亚洲av日韩在线播放| 男女国产视频网站| 精品亚洲乱码少妇综合久久| cao死你这个sao货| 久久国产亚洲av麻豆专区| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 日本一区二区免费在线视频| 久久av网站| 亚洲九九香蕉| 亚洲人成电影免费在线| av天堂久久9| 在线观看www视频免费| 国产一区二区三区综合在线观看| 首页视频小说图片口味搜索 | 精品国产乱码久久久久久男人| 国产精品欧美亚洲77777| 蜜桃国产av成人99| 国产亚洲欧美在线一区二区| 国产熟女欧美一区二区| 无遮挡黄片免费观看| 考比视频在线观看| 欧美xxⅹ黑人| 亚洲精品日韩在线中文字幕| 最新在线观看一区二区三区 | 欧美日韩国产mv在线观看视频| 老熟女久久久| 黑丝袜美女国产一区| 国产黄频视频在线观看| 女警被强在线播放| 少妇精品久久久久久久| 无遮挡黄片免费观看| 黄片小视频在线播放| 性色av乱码一区二区三区2| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 欧美乱码精品一区二区三区| 国产一级毛片在线| 亚洲国产看品久久| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线| 欧美大码av| 久久久久网色| av在线老鸭窝| 成人亚洲欧美一区二区av| 国产男女内射视频| 久久精品国产a三级三级三级| 色网站视频免费| 国产麻豆69| 交换朋友夫妻互换小说| 久久毛片免费看一区二区三区| 视频区欧美日本亚洲| 久久九九热精品免费| 成人三级做爰电影| 午夜福利影视在线免费观看| 亚洲图色成人| 成年人免费黄色播放视频| 国产成人影院久久av| 啦啦啦在线观看免费高清www| 亚洲欧美清纯卡通| 亚洲伊人色综图| 欧美激情极品国产一区二区三区| 99国产精品一区二区蜜桃av | 亚洲欧洲日产国产| 女人高潮潮喷娇喘18禁视频| 亚洲美女黄色视频免费看| 精品少妇内射三级| 欧美精品亚洲一区二区| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av高清一级| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 亚洲天堂av无毛| 老司机亚洲免费影院| 中文字幕人妻丝袜一区二区| 亚洲欧洲日产国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 肉色欧美久久久久久久蜜桃| 免费一级毛片在线播放高清视频 | 91字幕亚洲| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 高清视频免费观看一区二区| 国产精品三级大全| 国产野战对白在线观看| 又大又黄又爽视频免费| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 两个人看的免费小视频| 久久亚洲精品不卡| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 亚洲欧美精品自产自拍| 中文字幕高清在线视频| 亚洲av美国av| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 婷婷色综合大香蕉| 亚洲精品在线美女| 18在线观看网站| 欧美人与性动交α欧美软件| 国产高清不卡午夜福利| 日日爽夜夜爽网站| 午夜福利,免费看| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 人人妻人人澡人人看| 久久人人爽人人片av| 90打野战视频偷拍视频| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 精品久久久久久电影网| 999久久久国产精品视频| 男女边摸边吃奶| 亚洲欧美一区二区三区久久| 日韩熟女老妇一区二区性免费视频| 国产高清videossex| 波多野结衣av一区二区av| 99精品久久久久人妻精品| 久热爱精品视频在线9| 香蕉丝袜av| 亚洲精品av麻豆狂野| 国产午夜精品一二区理论片| 一级片'在线观看视频| 成人国产一区最新在线观看 | 乱人伦中国视频| a级毛片在线看网站| 国产在视频线精品| 五月开心婷婷网| 久久热在线av| 国产91精品成人一区二区三区 | 精品久久久久久电影网| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 色播在线永久视频| videosex国产| 日日夜夜操网爽| 亚洲第一青青草原| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| 观看av在线不卡| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| a级毛片黄视频| 久久中文字幕一级| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 黄片小视频在线播放| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 免费在线观看视频国产中文字幕亚洲 | 久久久欧美国产精品| 国产精品人妻久久久影院| 韩国精品一区二区三区| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 欧美乱码精品一区二区三区| 国产一区二区三区av在线| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 国产男女内射视频| 搡老岳熟女国产| 99久久精品国产亚洲精品| 成年av动漫网址| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 老鸭窝网址在线观看| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 热re99久久国产66热| 啦啦啦 在线观看视频| 黄片播放在线免费| 高清视频免费观看一区二区| 高潮久久久久久久久久久不卡| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 亚洲第一av免费看| 欧美黄色淫秽网站| 国产在线观看jvid| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 爱豆传媒免费全集在线观看| 日本欧美视频一区| av网站在线播放免费| 一个人免费看片子| 少妇人妻久久综合中文| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 麻豆乱淫一区二区| 激情五月婷婷亚洲| 午夜91福利影院| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 一级毛片女人18水好多 | 99香蕉大伊视频| 五月天丁香电影| 欧美黑人欧美精品刺激| 操美女的视频在线观看| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 一本色道久久久久久精品综合| 亚洲专区国产一区二区| videosex国产| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 国产高清不卡午夜福利| 欧美大码av| 欧美+亚洲+日韩+国产| 欧美人与性动交α欧美精品济南到| 欧美日韩黄片免| 成人手机av| 超碰97精品在线观看| 欧美成狂野欧美在线观看| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 国产成人欧美| 国产成人一区二区三区免费视频网站 | 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 在线精品无人区一区二区三| 国产成人免费无遮挡视频| 看免费成人av毛片| 黄色毛片三级朝国网站| 久久国产精品大桥未久av| 久久精品国产综合久久久| 人体艺术视频欧美日本| 在现免费观看毛片| 一级,二级,三级黄色视频| 少妇 在线观看| 国产成人影院久久av| 亚洲中文字幕日韩| 日本av免费视频播放| 国产成人欧美| bbb黄色大片| av线在线观看网站| 成年女人毛片免费观看观看9 | 国产成人免费观看mmmm| 丝袜喷水一区| 美女扒开内裤让男人捅视频| 91麻豆精品激情在线观看国产 | 飞空精品影院首页| 国产成人av教育| 午夜免费成人在线视频| 可以免费在线观看a视频的电影网站| 亚洲第一av免费看| 一边亲一边摸免费视频| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 看十八女毛片水多多多| 一本久久精品| 交换朋友夫妻互换小说| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 精品一区二区三卡| 免费av中文字幕在线| 18禁国产床啪视频网站| 一区二区三区四区激情视频| 精品人妻熟女毛片av久久网站| 黄色毛片三级朝国网站| 欧美日韩综合久久久久久| 人妻人人澡人人爽人人| 亚洲黑人精品在线| 性色av一级| 男人操女人黄网站| 日本五十路高清| 爱豆传媒免费全集在线观看| 午夜福利一区二区在线看| 在线观看国产h片| 欧美黑人欧美精品刺激| 国产成人精品久久二区二区免费| 精品免费久久久久久久清纯 | 99热国产这里只有精品6| 亚洲av成人不卡在线观看播放网 | 大片免费播放器 马上看| 叶爱在线成人免费视频播放| 国产片特级美女逼逼视频| 一级,二级,三级黄色视频| 久久久精品区二区三区| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 高清av免费在线| 91麻豆精品激情在线观看国产 | 亚洲av成人不卡在线观看播放网 | 一边摸一边抽搐一进一出视频| 日韩人妻精品一区2区三区| 韩国高清视频一区二区三区| 久久天躁狠狠躁夜夜2o2o | 精品国产一区二区久久| 国产xxxxx性猛交| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 亚洲成人手机| 国产免费福利视频在线观看| 亚洲三区欧美一区| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 久久ye,这里只有精品| 中文字幕人妻丝袜一区二区| 欧美日韩国产mv在线观看视频| 满18在线观看网站| 亚洲精品在线美女| 操美女的视频在线观看| 人妻 亚洲 视频| 欧美日韩视频高清一区二区三区二| 国产亚洲欧美在线一区二区| 在现免费观看毛片| 久久性视频一级片| 日本五十路高清| 国产精品免费大片| 国产在线视频一区二区| 美国免费a级毛片| 亚洲国产欧美一区二区综合| 丝袜在线中文字幕| 狂野欧美激情性xxxx| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 成人亚洲精品一区在线观看| 亚洲一区中文字幕在线| 男人操女人黄网站| 丝袜喷水一区| 丰满迷人的少妇在线观看| 国产精品一区二区精品视频观看| 成人黄色视频免费在线看| 亚洲精品一区蜜桃| 亚洲欧洲日产国产| www.av在线官网国产| 亚洲欧美清纯卡通| 亚洲精品久久久久久婷婷小说| 性色av一级| 菩萨蛮人人尽说江南好唐韦庄| 日韩电影二区| 脱女人内裤的视频| 大话2 男鬼变身卡| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 男女无遮挡免费网站观看| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 成年人午夜在线观看视频| 国产精品成人在线| 亚洲少妇的诱惑av| 中文字幕最新亚洲高清| 免费高清在线观看日韩| 久久久久国产精品人妻一区二区| 99精品久久久久人妻精品| 亚洲第一av免费看| 黄色怎么调成土黄色| 一级毛片黄色毛片免费观看视频| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 午夜福利乱码中文字幕| 国产av国产精品国产| 男女之事视频高清在线观看 | 伊人亚洲综合成人网| 婷婷成人精品国产| 久久久久国产一级毛片高清牌| 亚洲男人天堂网一区| 欧美乱码精品一区二区三区| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 黄色片一级片一级黄色片| 亚洲 国产 在线| 亚洲精品久久久久久婷婷小说| 免费久久久久久久精品成人欧美视频| 亚洲国产精品国产精品| 亚洲综合色网址| 亚洲国产看品久久| 欧美另类一区| 欧美人与善性xxx| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频 | 视频区图区小说| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 成年av动漫网址| 桃花免费在线播放| 精品一区二区三卡| 免费av中文字幕在线| 宅男免费午夜| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 美女福利国产在线| 国产熟女欧美一区二区| 免费日韩欧美在线观看| cao死你这个sao货| 丝袜脚勾引网站| 一级,二级,三级黄色视频| 午夜两性在线视频| 制服诱惑二区| 狠狠精品人妻久久久久久综合| 久久这里只有精品19| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 免费高清在线观看日韩| av不卡在线播放| 国产精品 国内视频| 韩国高清视频一区二区三区| 69精品国产乱码久久久| 国产爽快片一区二区三区| 亚洲免费av在线视频| 精品视频人人做人人爽| 亚洲av电影在线观看一区二区三区| 亚洲久久久国产精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月婷婷丁香| 午夜影院在线不卡| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 亚洲av成人不卡在线观看播放网 | 9191精品国产免费久久| 最近最新中文字幕大全免费视频 | 97精品久久久久久久久久精品| 国产精品久久久av美女十八| 伦理电影免费视频| 国产亚洲欧美在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 天天操日日干夜夜撸| 日韩一区二区三区影片| 日本wwww免费看| 午夜福利乱码中文字幕| 亚洲精品久久午夜乱码| 欧美激情高清一区二区三区| 久久国产精品影院| 女警被强在线播放| 国产日韩欧美在线精品| √禁漫天堂资源中文www| 搡老岳熟女国产| 十八禁人妻一区二区| 久久人人97超碰香蕉20202| 成年女人毛片免费观看观看9 | 亚洲第一av免费看| 大码成人一级视频| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| 最近最新中文字幕大全免费视频 | 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲国产一区二区在线观看 | 另类精品久久| 制服诱惑二区| 丁香六月天网| 国产精品一区二区在线不卡| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 成人黄色视频免费在线看| 涩涩av久久男人的天堂| 日韩av免费高清视频| 尾随美女入室| 欧美 亚洲 国产 日韩一| 成人黄色视频免费在线看| 91成人精品电影| 免费av中文字幕在线|