• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bifurcation in a Class of Planar Piecewise Smooth Systems with 3-parameters

    2014-03-03 03:34:54

    (School of Mathematics,Jilin University,Changchun,130012)

    Bifurcation in a Class of Planar Piecewise Smooth Systems with 3-parameters

    LIU YUAN-YUAN AND CHAI ZHEN-HUA

    (School of Mathematics,Jilin University,Changchun,130012)

    Communicated by Ma Fu-ming

    This paper is concerned with the bifurcation properties on the line of discontinuity of planar piecewise smooth systems.The existence of equilibria and periodic solutions with sliding motion in a class of planar piecewise smooth systems with 3-parameters is investigated in this paper using the theory of di ff erential inclusion and tools of Poincar′e maps.

    piecewise smooth system,line of discontinuity,equilibria,periodic solution with sliding motion,bifurcation

    1 Introduction

    Many dynamical systems that occur naturally in the description of physical processes are presented as piecewise smooth equations.For example,they arise in the case of impacts, they occur in mechanical systems if the e ff ects of dry friction are considered,they frequently appear in control theory when discontinuous or impulse controls are involved(see[1–3]).

    Piecewise smooth dynamical systems have been shown to exhibit many bifurcation phenomena that cannot be explained in terms of classical bifurcation theory for smooth systems. Examples include the bifurcation of equilibria of a planar piecewise smooth system when the discontinuity and the equilibria interact on each other(i.e.,equilibria lying on the discontinuity boundary of phase space),grazing bifurcation and sliding phenomenon etc.Bifurcation theories of smooth systems are well understood and described in many textbooks(see[4–6]), whereas bifurcations of systems with discontinuous vector fi elds(or Filippov systems)are still the object of active research.In[7],a procedure to fi nd all limit sets near bifurcatingequilibria was presented in a class of hybrid systems.Leine[8]showed a variety of bifurcation phenomena of equilibria which can be observed in non-smooth continuous systems. Giannakopoulos and Pliete[9]investigated the bifurcation of equilibrium points and periodic trajectories of Z2-symmetry planar piecewise linear di ff erential equations.Zanget al.[10]investigated the bifurcation properties of stationary points of a class of planar piecewise smooth systems with 3-parameters.

    The focus of this paper is to investigate the bifurcation properties of stationary points on discontinuity and periodic solutions with sliding motion of a class of planar piecewise linear Filippov system with 3-parameters of the following form

    In[10],the bifurcation properties of stationary points of the system(1.1)were well investigated under the restriction α+β??α?β+=0.In this paper,we remove this restriction and investigate the existence theorems of stationary points on the line of discontinuity and periodic solutions with sliding motion.

    This paper is organized as follows∶In Section 2,we introduce and discuss some basic assumptions and de fi nitions.In Section 3,we study the existence of equilibria on the line of discontinuity.In Section 4,we investigate the existence of periodic solutions with sliding motion by means of Poincar′e maps.

    2 Basic Assumptions

    In this section we introduce some basic assumptions for this work and discuss some consequences of our assumptions.We assume that

    (H1)4det(A±)>(tr(A±))20;

    (H2)β±>0;

    (H3)α+β??α?β+>0.

    Assumption(H1)implies that the matrices A+and A?possess a pair of complex eigenvalues a+±ib+and a?±ib?with a±0,respectively,that is to say the matrices A±are invertible.Assumption(H2)assures that the fl ow of the system(1.1)develops surrounding the origin clockwise.From assumption(H3)it follows that the vector fi eld on the line of discontinuityΣis quadratic rather than linear.

    De fi ne

    It is obvious that the vector fi elds f+and f?are tangent to the line of discontinuityΣat the points q+(λ)=(0,yq+(λ))and q?(λ)=(0,yq?(λ)),respectively,which means(q±(λ),λ)=0.Direct computation gives

    De fi ne the function

    which characterizes the directed distance between the tangent points q±(λ)and controls the existence and stability of the sliding motion solution of the equation(1.1).

    De fi ne a set-valued function by

    Apart fromΣ,the existence and uniqueness theorem ensures that the solutions of(1.1)are well de fi ned.We de fi ne the solutions of(1.1)nearΣby considering the following di ff erential inclusion

    De fi nition 2.1[11]An absolutely continuous functionu(t)is called a solution of the equation(1.1),if it satis fi es the di ff erential inclusion(2.2)almost everywhere.

    De fi nition 2.2A pointpis called a stationary point of(1.1),if0∈F(p,λ).

    De fi nition 2.3A solution of the system(1.1)is called a sliding motion solution,if it or a part of it remains on the line of discontinuity Σ for at least a fi nite time.

    De fi ne three sets on the y-axis

    For any point u=(0,y)T∈M+,direct computation gives

    Similarly,for any point u∈M?,we have

    Therefore the sliding motion solution does not occur on M+∪M?.If φ(λ)=0,the set M contains a single point and the equation(1.1)does not have sliding motion solution.If φ(λ)0,together with assumption(H2),for any u=(0,y)T∈M,then we have

    Therefore the sliding motion solution only occurs on M.If φ(λ)0 and u∈M.De fi ne

    Direct computation gives

    where

    According to[11],on the line of discontinuity,a sliding solution u satis fi es the equation

    Obviously,the dynamical behavior of the system(1.1)on?+∪??is very clear.In this article we concentrate on discussing the existence of stationary points and periodic solutions with sliding motion on the line of discontinuity.

    3 Equilibrium Points on the Line of Discontinuity

    In this section we investigate the properties of the equilibrium points on the line of discontinuity.

    Theorem 3.1Assume that(H1)–(H3)hold.There is no stationary point onM+∪M?of the equation(1.1).

    Proof.According to the equations(2.1)and(2.3)–(2.5),it is obvious that F(u,λ)?(0,+∞)(resp.F(u,λ)?(?∞,0))for any u∈M+(resp.u∈M?).

    Theorem 3.2Assume that(H1)–(H3)hold.Ifφ(λ)=0,then there is a unique stationary pointq+(λ)on the line of discontinuity Σ if and only ifλ2λ3≥0.

    Proof.In the case of φ(λ)=0,we get q+(λ)=q?(λ).The vector fi eld F(q+(λ),λ) satis fi es

    and

    According to(H2),we have β±>0 and+>0.Therefore,u0is a stationary point if and only if,which is equivalent to λ2λ3≥0.This completes the proof.

    Let

    Direct computation gives

    We have the following result.

    Theorem 3.3Assume that(H1)–(H3)hold andφ(λ)0.

    (1)IfΔ(λ)<0,then there is no equilibrium point onM;

    (2)IfΔ(λ)=0andH+(λ)H?(λ)>0,then there is no equilibrium point onM;

    (3)IfΔ(λ)=0andH+(λ)H?(λ)≤0,then there is only one stationary point onM;

    (4)IfΔ(λ)>0andλ2λ3>0,then there is only one equilibrium point onM;

    (5)IfΔ(λ)>0,λ2λ3<0,H+(λ)H?(λ)<0andλ2φ(λ)>0,then there are two stationary points onM;

    (6)IfΔ(λ)> 0,λ2λ3< 0,H+(λ)H?(λ)< 0andλ2φ(λ)< 0,then there is no stationary point onM;

    (7)IfΔ(λ)>0,λ2λ3<0andH+(λ)H?(λ)≥0,then there is no stationary point onM;

    (8)IfΔ(λ)>0,λ3=0andH?(λ)H0(λ)≤0,then there are two stationary points onM;

    (9)IfΔ(λ)>0,λ3=0andH?(λ)H0(λ)>0,then there is only one stationary point onM;

    (10)IfΔ(λ)>0,λ2=0andH+(λ)H0(λ)≤0,then there are two stationary points onM;

    (11)IfΔ(λ)>0,λ2=0andH+(λ)H0(λ)>0,then there is only one stationary point onM.

    Proof.It is obvious that u=(0,y)T∈M is a stationary point of(1.1)if and only if f0(u,λ)=0,which is equivalent to g(y,λ)=0.Therefore,the proof follows from the properties of the solutions of the quadratic equation g(y,λ)=0 on M.

    Firstly,we assume that yq?(λ)<yq+(λ)and Fig.3.1 shows the di ff erent cases of the real solutions of the equation g(y,λ)=0 on[yq?,yq+].

    Fig.3.1 The real solutions of the equation ay2+by+c=0 on interval[yq?,yq+]

    If Δ(λ)<0,the values of g(y,λ)are all positive for y∈[yq?,yq+],see Fig.3.1(a),then (1)is obviously true.

    Because H±(λ)characterize the directed distance between h(λ)and q±(λ),it is obvious that H+(λ)H?(λ)>0 if and only if h/∈[yq?,yq+]and H+(λ)H?(λ)≤0 if and only if h∈[yq?,yq+],see Fig.3.1(b)and(c),then(2)and(3)are obviously true.

    At the points yq+(λ)and yq?(λ),direct computation gives

    Together with(H2),it implies that g(h)g(yq+(λ))and λ2φ(λ)are opposite signs.According to Fig.3.1(d)–(g),(4)–(7)are obviously true.

    In case of λ3=0,from(3.1),it follows that g(yq?(λ),λ)=0,then q?(λ)is a stationary point of the system(1.1)on M.Direct computation gives

    This completes the proof of(8)–(9)by Fig.3.1(h)and(i).

    By the similar way,λ2=0 implies g(yq+(λ),λ)=0 and q+(λ)is a stationary point of the system(1.1)on M.Direct computation gives

    Likewise,we can get all assertions in the case of yq?(λ)>yq+(λ).This completes the proof.

    4 Periodic Solutions with Sliding Motion

    In this section,we de fi ne two Poincar′e maps P+(·,λ1,λ2)and P?(·,λ1,λ3)on each half plane?+and??,and discuss the existence of the periodic solution with sliding motion with the aid of Poincar′e maps.We assume that

    (H4)α±<0.

    Assumption(H4)assures that if the system has an equilibrium point in?+or??,then the equilibrium point is a stable focus.

    If λ2≤0,for any initial point u0=(0,s)Twith s>yq+(λ),then the solution fl ow of the equation˙u=f+(u,λ)transversal cross the line of discontinuityΣinto the right semi-plane x>0 and intersect the line of discontinuity again at point(0,P+(s))within a fi nite time,see Fig.4.1(a).

    Fig.4.1 The solution fl ow of the equation˙u=f+(u,λ)near the tangent point q+(λ)

    De fi ne a Poincar′e map

    such that(0,P+(s,λ1,λ2))T∈Σrepresents the fi rst crossing point of the solution fl ow of equation˙u=f+(u,λ)with initial value u0.Furthermore,the time map

    represents the fl ight time of solution fl ow before intersect the line of discontinuityΣ.

    If λ2>0,then there is only one stationary point p+(λ)=(λ2,λ1)in the right semi-plane x>0.For the initial value u0=q+(λ),the solution fl ow of the equation˙u=f+(u,λ) intersects the line of discontinuityΣat the point(0,(λ))Twith fi nite backward development of time and p+(λ)is the unique limit point of this fl ow with forward development of time,see Fig.4.1(b).Therefore,for any initial value(0,s)T∈Σwith s∈(yq+(λ),(λ)), the solution fl ow of the equation˙u=f+(u,λ)does not intersect the line of discontinuity in forward time development.Similarly,we can de fi ne the Poincar′e map

    and the time fl ight map

    Similarly,we de fi ne the Poincar′e map P?(s,λ1,λ3)and the time fl ight map T?(s,λ1,λ3) by solving(1.1)on??.If λ3≤0,see Fig.4.2(a),then we can de fi ne the Poincar′e maps.

    If λ3>0,see Fig.4.2(b),then we can de fi ne the Poincar′e maps

    Fig.4.2 The solution fl ow of the equation=f-(u,λ)near the tangent point q-(λ)

    The following two lemmas construct the Poincar′e maps and investigate its monotonicity.

    Lemma 4.1[12]Assume that(H1)–(H2)hold.Ifλ2?=0andλ1∈R,then one has the following formulas∶

    Ifλ2=0,for anyλ1∈Rands>yq+(λ),then one has the following formulas∶

    Furthermore,the Poincar′e mapsP+(s,λ1,λ2)(λ20)andP+(s,λ1,0)are both monotone decreasing functions in variables.

    Lemma 4.2[12]Assume that(H1)–(H2)hold.Ifλ30andλ1∈R,then one has the following formulas∶

    Ifλ3=0,for anyλ1∈Rands<yq?(λ),then one has the following formulas∶

    Furthermore,the Poincar′e mapsP?(s,λ1,λ3)(λ3?0)andP?(s,λ1,0)are both monotone decreasing functions in variables.

    De fi ne the sets

    According to Theorem 3.3,if λ∈?1∪?2∪?6∪?7,then the system(2.2)has no stationary point on the line of discontinuityΣ.Let

    The following two theorems introduce the existence of the periodic solution with sliding motion of(1.1)for λ∈?1∪?2∪?6∪?7.

    Theorem 4.1Assume that(H1)–(H4)hold andλ∈?1∪?2∪?7.

    (1)Ifφ(λ)≥0,then there is no periodic solution with sliding motion of the system(1.1);

    (2)Ifφ(λ)<0andλ3≤0,then there is no periodic solution with sliding motion of the system(1.1);

    (3)Ifφ(λ)<0,λ3>0andQ?(λ)<0,then there is only one periodic solution with sliding motion of the system(1.1);

    (4)Ifφ(λ)<0,λ3>0,Q?(λ)=0andQ+(λ)>0,then there are two periodic solutions with sliding motion of the system(1.1);

    (5)Ifφ(λ)<0,λ3>0,Q?(λ)=0andQ+(λ)≤0,then there is only one periodic solution with sliding motion of the system(1.1);

    (6)Ifφ(λ)<0,λ3>0,Q?(λ)>0andQp(λ)<0,then there is only one periodic solution with sliding motion of the system(1.1);

    (7)Ifφ(λ)<0,λ3>0,Q?(λ)>0andQp(λ)≥0,then there is no periodic solution with sliding motion of the system(1.1).

    Proof.According to(2.3)–(2.5),the sliding motion solutions do not occur on M+∪M?. Therefore we only need to consider the case with the sliding motion solution on M.

    If φ(λ)=0,then the set M degenerates into a point and(1.1)does not have sliding motion solution.If φ(λ)≠0,then according to Theorem 3.3 and Fig.3.1(a),(b)and(g) we obtain g(y,λ)>0 for any u=(0,y)T∈M and λ∈?1∪?2∪?7.Therefore

    Fig.4.3 The solution fl ow of(2.2)near the tangent points

    If φ(λ)<0,then the solution fl ow of(2.2)with the initial value u=(0,y)T∈M is an unstable movement along the line of discontinuity M,see Fig.4.4.

    Fig.4.4 The solution fl ow of(2.2)near the tangent points q+(λ)and q-(λ)for φ(λ)<0

    Therefore,the solution fl ows of(2.2)in two semi-planes enter into the line of discontinuity M only at the tangent points q+(λ)and q?(λ).According to(4.1),we have(u,λ)<0 for any u=(0,y)T∈M and λ∈?1∪?2∪?7which means that the solution fl ow of (2.2)with the initial value u=(0,y)T∈M is an unstable downward movement along the line of discontinuity M.Then the periodic solution of(2.2)with sliding motion enter into the line of discontinuity M only at the tangent point q?(λ).If λ3≤0,then we get P?(u,λ)>yq?(λ)for all u<yq?(λ)(see Fig.4.5(a)).Therefore the solution fl ow cannot go back to the tangent point q?(λ)and(2)is obviously true.

    Fig.4.5 The solution fl ow of(2.2)near the tangent points q+(λ)and q-(λ) for φ(λ)<0 and λ∈?1∪?2∪?7

    see Fig.4.5(a)and we get(4).

    If φ(λ)<0,λ3>0,Q?(λ)>0 and Qp(λ)≥0,then there is no periodic solution with sliding motion,see Fig.4.6(b)–(c)and(7)is true.

    Fig.4.6 The solution fl ow of(2.2)near the tangent points q+(λ)and q-(λ) for φ(λ)<0,λ3>0 and λ∈?1∪?2∪?7

    Theorem 4.2Assume that(H1)–(H4)hold andλ∈?6.

    (1)Ifλ2<0,then there is no periodic solution with sliding motion of the system(1.1);

    (2)Ifλ2>0andQ+(λ)≥0,then there is only one periodic solution with sliding motion of the system(1.1);

    (3)Ifλ2>0,Q+(λ)<0andQq(λ)<0,then there is only one periodic solution with sliding motion of the system(1.1);

    (4)Ifλ2>0,Q+(λ)<0andQq(λ)≥0,then there is no periodic solution with sliding motion of the system(1.1).

    Proof.According to Theorem 3.3 and Fig.3.1(f)we obtain g(y,λ)<0 for any u= (0,y)T∈M and λ∈?6.Therefore

    According to the de fi nition of?6,if λ2<0 and λ∈?6,then λ3>0,φ(λ)>0 and(u,λ)<0.Therefore,the solution fl ow of(2.2)with the initial value u=(0,y)T∈M is a stable downward movement along the line of discontinuity M,see Fig.4.7(b).Therefore, the solution fl ow of(2.2)with the initial value u=(0,y)T∈M leaves away from the line of discontinuity M only at the tangent point q?(λ)and goes into the left semi-plane x<0.According to the assumption(H4),it is obvious that the solution fl ow and the line of discontinuityΣare no longer intersecting as the time forward develop.Therefore,there is no periodic solution with sliding motion of the system(2.2)and the assertion(1)is true.

    If λ2>0 and λ∈?6,then λ3<0,φ(λ)<0 andTherefore,the solution fl ow of(2.2)with the initial value u=(0,y)T∈M is a unstable upward movement along the line of discontinuity M,see Fig.4.7(b).Therefore,the solution fl ow of(2.2)with the initial value u=(0,y)T∈M enters into the line of discontinuity M only at the tangentpoint q+(λ).If Q+(λ)>0,then(λ)<yq?(λ)and the solution fl ows construct a periodic solution with sliding motion along the following path(see Fig.4.8(a))

    For the case of Q+(λ)=0,the proof is similar and(2)is obviously true.

    Fig.4.7 The solution fl ow of(2.2)near the tangent points q+(λ)and q-(λ) for φ(λ)<0,λ3>0 and λ∈?1∪?2∪?7

    Fig.4.8 The solution fl ow of(2.2)near the tangent points q+(λ)and q-(λ) for φ(λ)<0,λ2>0,λ3<0 and λ∈?6

    (3)is obviously true.Similarly,(4)is obviously true by Fig.4.8(c)–(d).

    [1]Bernardo M Di,Feigin M I,Hogan S J,Homer M E.Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems.Chaos Solitons Fractals,1999,10:1881–1908.

    [2]Kunze M.Non-smooth Dynamical Systems.vol.1744.Berlin:Springer-Verlag,2000.

    [3]Zou Y K,K¨upper T.Generalized Hopf bifurcation emanated from a corner for piecewise smooth planar systems.Nonlinear Anal.,2005,62:1–17.

    [4]Guckenheimer J,Holmes P H.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields.in:Appl.Math.Sci.vol.42.New York:Springer-Verlag,1983.

    [5]Kuznetsov Y A.Elements of Applied Bifurcation Theory.in:Appl.Math.Sci.3rd ed.vol.112. New York:Springer-Verlag,2004.

    [6]Seydel R.Practical Bifurcation and Stability Analysis.in:Interdisciplinary Applied Mathematics.2nd ed.vol.5.New York:Springer-Verlag,1994.

    [7]Benjamin Biemond J J,Nathan van de W,Henk N,Nonsmooth bifurcations of equilibria in planar continuous systems.Nonlinear Anal.,2010,4:451–474.

    [8]Leine R I.Bifurcations of equilibria in non-smooth continuous systems.Phys.D,2006,223: 121–137.

    [9]Giannakopoulos F,Pliete K.Planar systems of piecewise linear di ff erential equations with a line of discontinuity.Nonlinearity,2001,14:1611–1632.

    [10]Zang L,Chen X M,Gong C C,Zou Y K.Bifurcation of equilibria in a class of planar piecewise smooth system with 3-parameters.Comm.Math.Res.,2009,25:204–212.

    [11]Filippov A F.Di ff erential Equations with Discontinuous Righthand Sides.in:Math.Appl. (Soviet Ser.).vol.18.Translated from the Russian.Dordrecht:Kluwer Academic Publishers Group,1988.

    [12]Zang L.Analysis of Local Bifurcation and Generalized Hopf Bifurcation for a Class of Filippovtype Systems(in Chinese).Ph.D Thesis.Changchun:Jilin Univ.,2008.

    tion:34A36,34A60,34C23,37G10

    A

    1674-5647(2014)03-0207-15

    10.13447/j.1674-5647.2014.03.03

    Received date:Sept.15,2011.

    Foundation item:The NSF(11071102)of China.

    E-mail address:yyliu09@mails.jlu.edu.cn(Liu Y Y).

    久久这里只有精品19| 天美传媒精品一区二区| 咕卡用的链子| 婷婷成人精品国产| 99国产精品免费福利视频| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 亚洲国产精品国产精品| 黄色一级大片看看| 免费人妻精品一区二区三区视频| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 宅男免费午夜| 国产精品一国产av| 天美传媒精品一区二区| 三上悠亚av全集在线观看| 99re6热这里在线精品视频| 女人久久www免费人成看片| 老鸭窝网址在线观看| 亚洲av男天堂| 国产精品久久久久成人av| 精品亚洲成a人片在线观看| 国产精品.久久久| 男人操女人黄网站| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 老司机影院毛片| 在线观看免费午夜福利视频| 毛片一级片免费看久久久久| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 欧美日韩国产mv在线观看视频| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久久久99蜜臀 | 一级片'在线观看视频| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 国产免费现黄频在线看| 久久久精品国产亚洲av高清涩受| 亚洲综合精品二区| 男人添女人高潮全过程视频| 男女边摸边吃奶| 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 午夜影院在线不卡| 亚洲国产欧美一区二区综合| 欧美少妇被猛烈插入视频| 久久久久精品性色| 国产不卡av网站在线观看| 久久免费观看电影| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 亚洲av欧美aⅴ国产| 2018国产大陆天天弄谢| 一级黄片播放器| 精品视频人人做人人爽| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 久热爱精品视频在线9| 精品人妻在线不人妻| 国产精品 国内视频| 男女边吃奶边做爰视频| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 午夜免费鲁丝| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久男人| 一级毛片 在线播放| 美国免费a级毛片| 精品亚洲成国产av| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 亚洲三区欧美一区| 五月开心婷婷网| 亚洲欧洲国产日韩| 亚洲四区av| 国产色婷婷99| 制服诱惑二区| 国产在视频线精品| 久久久欧美国产精品| 亚洲人成电影观看| 国产99久久九九免费精品| 欧美 日韩 精品 国产| 啦啦啦 在线观看视频| 欧美日韩一级在线毛片| 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 亚洲精品自拍成人| 国产99久久九九免费精品| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| e午夜精品久久久久久久| 国产在视频线精品| 赤兔流量卡办理| 18在线观看网站| 精品第一国产精品| 亚洲精品中文字幕在线视频| 老司机影院毛片| 可以免费在线观看a视频的电影网站 | 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 五月开心婷婷网| 国产97色在线日韩免费| 九色亚洲精品在线播放| 久久亚洲国产成人精品v| 国产精品无大码| 日日爽夜夜爽网站| 搡老岳熟女国产| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 国产在线免费精品| 日韩av免费高清视频| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 午夜老司机福利片| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| av在线观看视频网站免费| 色视频在线一区二区三区| 久久久久久人妻| 国产av码专区亚洲av| 一级片'在线观看视频| 99热全是精品| 国产一区二区三区综合在线观看| 中文字幕色久视频| 99热全是精品| 国产av码专区亚洲av| 国产成人啪精品午夜网站| 丰满饥渴人妻一区二区三| 在线天堂中文资源库| 日本wwww免费看| 不卡av一区二区三区| 国产免费又黄又爽又色| 69精品国产乱码久久久| 精品久久久精品久久久| 精品一区二区三卡| 国产国语露脸激情在线看| 欧美乱码精品一区二区三区| 久久毛片免费看一区二区三区| 制服诱惑二区| 亚洲国产精品成人久久小说| 亚洲中文av在线| 少妇的丰满在线观看| 亚洲四区av| 国产一卡二卡三卡精品 | 麻豆乱淫一区二区| 国产精品av久久久久免费| 国产男女内射视频| 18禁观看日本| 日本午夜av视频| 久久青草综合色| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 男女午夜视频在线观看| 国产精品偷伦视频观看了| 热re99久久国产66热| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 久久 成人 亚洲| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 午夜91福利影院| 成人午夜精彩视频在线观看| 99热网站在线观看| 久久人人爽人人片av| 亚洲在久久综合| 亚洲av男天堂| 久久久精品区二区三区| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 国产极品天堂在线| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 精品久久久久久电影网| 天堂俺去俺来也www色官网| 成人亚洲精品一区在线观看| 欧美精品av麻豆av| 97在线人人人人妻| 91aial.com中文字幕在线观看| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 欧美成人精品欧美一级黄| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 日韩欧美一区视频在线观看| 亚洲国产av影院在线观看| a 毛片基地| 久久鲁丝午夜福利片| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 久久精品国产亚洲av高清一级| 精品第一国产精品| 一区福利在线观看| 精品久久久久久电影网| 黄色 视频免费看| 国产有黄有色有爽视频| 丁香六月欧美| 亚洲国产精品999| 免费不卡黄色视频| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| av电影中文网址| 国产一卡二卡三卡精品 | 欧美日韩亚洲高清精品| 日韩av在线免费看完整版不卡| 91精品国产国语对白视频| 久久婷婷青草| 亚洲美女视频黄频| 久久精品久久久久久久性| 在线天堂最新版资源| 亚洲av电影在线观看一区二区三区| av在线app专区| 亚洲精品久久久久久婷婷小说| 精品久久久精品久久久| 国产一区二区激情短视频 | 成人国产av品久久久| 男女边摸边吃奶| 99久久综合免费| 国产精品久久久人人做人人爽| 一区二区av电影网| 妹子高潮喷水视频| a级毛片在线看网站| 久久精品国产综合久久久| 18禁国产床啪视频网站| 日本猛色少妇xxxxx猛交久久| 久久久久久久大尺度免费视频| 欧美在线一区亚洲| 一本大道久久a久久精品| 国产毛片在线视频| 久久久久精品国产欧美久久久 | 99久久综合免费| 亚洲欧美成人精品一区二区| 美女扒开内裤让男人捅视频| 精品亚洲成国产av| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 丁香六月欧美| 精品人妻熟女毛片av久久网站| 熟女少妇亚洲综合色aaa.| 亚洲av成人不卡在线观看播放网 | 男女免费视频国产| 亚洲婷婷狠狠爱综合网| 国产成人精品福利久久| 久久午夜综合久久蜜桃| 午夜福利一区二区在线看| 色吧在线观看| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 我要看黄色一级片免费的| 久久精品国产亚洲av涩爱| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 一级毛片 在线播放| 久久久久久人人人人人| 超色免费av| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区 | 免费女性裸体啪啪无遮挡网站| 亚洲色图综合在线观看| 深夜精品福利| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 菩萨蛮人人尽说江南好唐韦庄| 青春草国产在线视频| 制服丝袜香蕉在线| 老司机深夜福利视频在线观看 | 国产毛片在线视频| 夫妻午夜视频| 一区福利在线观看| 高清av免费在线| 伊人久久国产一区二区| 国产麻豆69| 蜜桃国产av成人99| 色精品久久人妻99蜜桃| 777久久人妻少妇嫩草av网站| 在线天堂最新版资源| 久久国产亚洲av麻豆专区| 久久av网站| 美女扒开内裤让男人捅视频| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 国产精品一国产av| 亚洲成人一二三区av| 一级片免费观看大全| 亚洲四区av| 色网站视频免费| 国精品久久久久久国模美| 久久天堂一区二区三区四区| 国产激情久久老熟女| tube8黄色片| 亚洲天堂av无毛| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 免费高清在线观看日韩| 精品国产国语对白av| 黄色视频不卡| 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看 | 久久精品久久久久久噜噜老黄| 一二三四在线观看免费中文在| 大话2 男鬼变身卡| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 精品第一国产精品| 深夜精品福利| 天美传媒精品一区二区| 日韩,欧美,国产一区二区三区| 国产一区二区 视频在线| 一区福利在线观看| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 丝袜喷水一区| e午夜精品久久久久久久| 丝瓜视频免费看黄片| 69精品国产乱码久久久| 午夜精品国产一区二区电影| 亚洲欧洲国产日韩| av线在线观看网站| 亚洲国产av新网站| 国产野战对白在线观看| 99久久精品国产亚洲精品| 三上悠亚av全集在线观看| 日本午夜av视频| 欧美亚洲日本最大视频资源| 国产 一区精品| 丰满饥渴人妻一区二区三| 最新的欧美精品一区二区| 最近的中文字幕免费完整| 永久免费av网站大全| 中文字幕精品免费在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 王馨瑶露胸无遮挡在线观看| 在线天堂最新版资源| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密 | 国产在视频线精品| 在线看a的网站| 无限看片的www在线观看| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜制服| 亚洲四区av| 欧美xxⅹ黑人| 午夜91福利影院| 午夜福利,免费看| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 黄色毛片三级朝国网站| 欧美97在线视频| 亚洲人成电影观看| 无限看片的www在线观看| 久久久欧美国产精品| 在线观看三级黄色| 亚洲专区中文字幕在线 | 曰老女人黄片| 国产精品.久久久| 欧美精品av麻豆av| 亚洲第一av免费看| 91国产中文字幕| 日韩 亚洲 欧美在线| 午夜福利免费观看在线| 国产精品 欧美亚洲| 国产亚洲av片在线观看秒播厂| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 五月开心婷婷网| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 看非洲黑人一级黄片| 亚洲欧美激情在线| 国产精品av久久久久免费| 国产免费视频播放在线视频| 久热这里只有精品99| 成人国产av品久久久| 天天影视国产精品| 免费不卡黄色视频| 国产亚洲一区二区精品| 久久人妻熟女aⅴ| 亚洲婷婷狠狠爱综合网| 人人妻人人爽人人添夜夜欢视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 国产精品 国内视频| 9191精品国产免费久久| 宅男免费午夜| 亚洲一级一片aⅴ在线观看| 亚洲精品成人av观看孕妇| 欧美激情极品国产一区二区三区| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| avwww免费| 别揉我奶头~嗯~啊~动态视频 | 美女主播在线视频| 一二三四在线观看免费中文在| 国产男女超爽视频在线观看| 国产精品一区二区在线不卡| 国产亚洲av片在线观看秒播厂| 波多野结衣一区麻豆| av女优亚洲男人天堂| av有码第一页| 中文字幕最新亚洲高清| 一级爰片在线观看| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 免费看不卡的av| 爱豆传媒免费全集在线观看| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| 亚洲精品日韩在线中文字幕| 999精品在线视频| 99热国产这里只有精品6| 新久久久久国产一级毛片| 中文字幕色久视频| 国产不卡av网站在线观看| 精品少妇久久久久久888优播| videosex国产| 超碰成人久久| 又大又爽又粗| 国产爽快片一区二区三区| 色吧在线观看| 久久毛片免费看一区二区三区| 观看美女的网站| 久久久国产精品麻豆| 亚洲综合精品二区| 1024视频免费在线观看| 亚洲国产成人一精品久久久| 中文字幕色久视频| 欧美老熟妇乱子伦牲交| 热re99久久国产66热| 精品免费久久久久久久清纯 | 人妻 亚洲 视频| 黄片播放在线免费| 色94色欧美一区二区| 又黄又粗又硬又大视频| 色精品久久人妻99蜜桃| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 色网站视频免费| 丝袜脚勾引网站| 香蕉国产在线看| 亚洲伊人色综图| 国产男人的电影天堂91| 深夜精品福利| 一本久久精品| 男女边摸边吃奶| 国产精品蜜桃在线观看| 狂野欧美激情性xxxx| 人妻 亚洲 视频| av国产精品久久久久影院| 一级毛片黄色毛片免费观看视频| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 午夜激情久久久久久久| 熟女av电影| 亚洲成人手机| 欧美精品一区二区大全| 欧美成人精品欧美一级黄| 亚洲一级一片aⅴ在线观看| 另类亚洲欧美激情| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 日日啪夜夜爽| 免费av中文字幕在线| 国产探花极品一区二区| 最近手机中文字幕大全| 国产福利在线免费观看视频| 蜜桃国产av成人99| 中文字幕色久视频| 男女床上黄色一级片免费看| 天天躁日日躁夜夜躁夜夜| 色精品久久人妻99蜜桃| 熟妇人妻不卡中文字幕| 国产精品三级大全| 女人久久www免费人成看片| 五月天丁香电影| 国产 一区精品| 少妇精品久久久久久久| 久久综合国产亚洲精品| 免费观看人在逋| 免费黄色在线免费观看| 亚洲国产av新网站| 国产午夜精品一二区理论片| 久久久久久久久免费视频了| 精品国产乱码久久久久久男人| 欧美成人午夜精品| 少妇人妻久久综合中文| 蜜桃在线观看..| 男男h啪啪无遮挡| 欧美精品人与动牲交sv欧美| 成年av动漫网址| 啦啦啦在线观看免费高清www| 亚洲在久久综合| 免费在线观看视频国产中文字幕亚洲 | 久久久国产欧美日韩av| 成人漫画全彩无遮挡| 美女脱内裤让男人舔精品视频| 久久人人爽人人片av| 亚洲伊人久久精品综合| 久久毛片免费看一区二区三区| 热re99久久国产66热| 一级,二级,三级黄色视频| 亚洲图色成人| av天堂久久9| 精品国产一区二区三区久久久樱花| 秋霞在线观看毛片| 女人精品久久久久毛片| 亚洲男人天堂网一区| 一本大道久久a久久精品| 黄片无遮挡物在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人添人人爽欧美一区卜| 你懂的网址亚洲精品在线观看| 韩国av在线不卡| 七月丁香在线播放| 欧美老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 国产极品天堂在线| 蜜桃国产av成人99| 国产国语露脸激情在线看| videos熟女内射| 国产成人系列免费观看| 美女主播在线视频| 国产精品久久久久久精品古装| 欧美日韩成人在线一区二区| 老司机在亚洲福利影院| 免费观看av网站的网址| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美软件| 天堂中文最新版在线下载| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 精品国产超薄肉色丝袜足j| 69精品国产乱码久久久| 99久久人妻综合| 成人国产av品久久久| 晚上一个人看的免费电影| 国产精品秋霞免费鲁丝片| 午夜福利视频在线观看免费| 国产男女内射视频| 人妻一区二区av| 在线观看免费高清a一片| 成人亚洲欧美一区二区av| 在现免费观看毛片| 色精品久久人妻99蜜桃| 国产精品久久久久久精品古装| 精品国产一区二区久久| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久 | 午夜福利,免费看| 黄色毛片三级朝国网站| 日韩av在线免费看完整版不卡| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 天天操日日干夜夜撸| 亚洲av在线观看美女高潮| 久久人人爽av亚洲精品天堂| 纵有疾风起免费观看全集完整版| 国产深夜福利视频在线观看| 两个人看的免费小视频| 国产成人精品无人区| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线观看一区二区三区| 欧美xxⅹ黑人| 自线自在国产av| 两个人看的免费小视频| 国产成人精品无人区| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 亚洲欧美一区二区三区黑人| 亚洲国产成人一精品久久久| 国产视频首页在线观看| 国产免费福利视频在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品国产色婷婷电影| 精品免费久久久久久久清纯 | 亚洲av电影在线进入| 国产精品国产三级国产专区5o| 亚洲av福利一区| 亚洲av电影在线进入| 超碰97精品在线观看| 一边亲一边摸免费视频| 大陆偷拍与自拍| 国产精品久久久久久久久免| 久久久久精品国产欧美久久久 | 亚洲国产看品久久| 久久精品国产综合久久久|