• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bounded 3-manifolds with Distance n Heegaard Splittings

    2014-03-03 03:34:52ZOUYANQINGANDLIUXIMIN

    ZOU YAN-QING AND LIU XI-MIN

    (School of Mathematical Sciences,Dalian University of Technology,Dalian, Liaoning,116024)

    Bounded 3-manifolds with Distance n Heegaard Splittings

    ZOU YAN-QING AND LIU XI-MIN*

    (School of Mathematical Sciences,Dalian University of Technology,Dalian, Liaoning,116024)

    Communicated by Lei Feng-chun

    We prove that for any integern≥2andg≥ 2,there are bounded 3-manifolds admitting distancen,genusgHeegaard splittings with any given boundaries.

    attaching compression body,Heegaard distance,subsurface projection

    1 Introduction

    Let S be a compact surface with χ(S)≤?2 but not a 4-punctured sphere.Harvey[1]de fi ned the curve complex C(S)as follows∶The vertices of C(S)are the isotopy classes of essential simple closed curves on S,and k+1 distinct vertices x0,x1,···,xkdetermine a k-simplex of C(S)if and only if they are represented by pairwise disjoint simple closed curves.For two vertices x and y of C(S),the distance of x and y,denoted by dC(S)(x,y),is de fi ned to be the minimal number of 1-simplexes in a simplicial path joining x to y.In other words, dC(S)(x,y)is the smallest integer n≥0 such that there is a sequence of vertices x0=x, ···,xn=y such that xi?1and xiare represented by two disjoint essential simple closed curves on S for each 1≤i≤n.For two sets of vertices in C(S),say X and Y,dC(S)(X,Y) is de fi ned to be min{dC(S)(x,y)|x∈X,y∈Y}.Now let S be a torus or a once-punctured torus.In this case,Masur and Minsky[2]de fi ned C(S)as follows∶The vertices of C(S)are the isotopy classes of essential simple closed curves on S,and k+1 distinct vertices x0, x1,···,xkdetermine a k-simplex of C(S)if and only if xiand xjare represented by two simple closed curves ciand cjon S such that ciintersects cjin just one point for each0≤i≠j≤k.

    Let M be a compact orientable 3-manifold.If there is a closed surface S which cuts M into two compression bodies V and W such that S=?+V=?+W,then we say that M has a Heegaard splitting,denoted by M=V∪SW,where?+V(resp.?+W)means the positive boundary of V(resp.W).We denote by D(V)(resp.D(W))the set of vertices in C(S)such that each element of D(V)(resp.D(W))is represented by the boundary of an essential disk in V(resp.W).The distance of the Heegaard splitting V∪SW,denoted by d(S),is de fi ned to be dC(S)(D(V),D(W))(see[3]).

    Hempel[3]showed that for any integers g≥2 and n≥2,there is a 3-manifold admitting a distance at least n Heegaard splitting of genus g.Similar results are obtained in di ff erent ways by[4–5].Minsky,Moriah and Schleimer[6]proved the same result for knot complements,and Li[7]constructed the non-Haken manifolds admitting high distance Heegaard splittings.In general,generic Heegaard splittings have Heegaard distances at least n for any n≥2(see[8–10]).By studying Dehn fi lling,Ma et al.[11]proved that distances of genus 2 Heegaard splittings cover all non-negative integers except 1.Recently,Ido et al.[12]proved that,for any n>1 and g>1,there is a compact 3-manifold with two boundary components which admits a distance n Heegaard splitting of genus g.Johnson[13]proved that there always exist closed 3-manifolds admitting a distance n≥5,genus g Heegaard splitting.Qiu et al.[14]proved that there is closed 3-manifold admitting any given distance, genus Heegaard splitting.

    The main result of this paper is the following theorem∶

    Theorem 1.1 Let n be a positive integer,{F1,···,Fn}be a collection of closed orientable surfaces,I?{1,2,···,n}and J={1,···,n}I be two subsets of{1,···,n}.Then,for any integers

    there is a compact 3-manifold M admitting a distance m Heegaard splitting of genus g,say M=V∪SW,such that

    We introduce some results of curve complex in Section 2 and prove the main theorem in Section 3.

    2 Some Results of Curve Complex

    Let S be a compact surface of genus at least 1,and C(S)be the curve complex of S.We say that a simple closed curve c in S is essential if c bounds no disk in S and is not parallel to?S.Hence each vertex of C(S)is represented by the isotopy class of an essential simple closed curve in S.For simplicity,we do not distinguish the essential simple closed curve c and its isotopy class c without any further notation.The following lemma is well known (see[2],[15–16]).

    Lemma 2.1C(S)is connected,and the diameter ofC(S)is in fi nite.

    We say that a collection G={a0,a1,···,an}is a geodesic in C(S)if each aiis contained in C0(S)and dC(S)(ai,aj)=|i?j|for any 0≤i,j≤n.The length of G is denoted by L(G) and de fi ned to be n.By the connection of C1(S),there is always a shortest path in C1(S) connecting any two vertices of C(S).Thus for any two vertices α and β of distance n,we call G={a0=α,···,an=β}a geodesic connecting α and β.Now for any two sub-simplicial complexes X,Y?C(S),we say that a geodesic G realizes the distance of X and Y if G connects an element α∈X and an element β∈Y such that L(G)=dC(S)(X,Y).

    Let F be a compact surface of genus at least 1 with non-empty boundary.Similarly to the de fi nition of the curve complex C(F),we can de fi ne the arc and curve complex AC(F) as follows.

    Each vertex of AC(F)is the isotopy class of an essential simple closed curve or an essential properly embedded arc in F,and a set of vertices forms a simplex of AC(F)if these vertices are represented by pairwise disjoint arcs or curves in F.For any two disjoint vertices,we place an edge between them.All the vertices and edges form a 1-skeleton of AC(F),denoted by AC1(F).And for each edge,we assign it length 1.Thus for any two vertices α and β in AC1(F),the distance dAC(F)(α,β)is de fi ned to be the minimal length of paths in AC1(F) connecting α and β.Similarly,we can de fi ne the geodesic in AC(F).

    When F is a subsurface of S,we call that F is essential in S if the induced map of the inclusion from π1(F)to π1(S)is injective.Furthermore,we call that F is a proper essential subsurface of S if F is essential in S and at least one boundary component of F is essential in S.For more details the reader can see[16].

    So if F is an essential subsurface of S,then there is some connection between AC(F)and C(S).For any α∈C0(S),there is a representative essential simple closed curve αgeosuch that the intersection number i(αgeo,?F)is minimal.Hence each component of αgeo∩F is essential in F or S?F.Now for α∈C(S),let κF(α)be isotopy classes of the essential components of αgeo∩F.It is well de fi ned.

    For any γ∈C(F),γ′∈σF(β)if and only if γ′is the essential boundary component of a closed regular neighborhood of γ∪?F.Specially,let σF(?)=?.Now let πF=σF?κF. Then the map πFlinks AC(F)and C(S),which is the de fi ned subsurface projection map in [16].

    We say that α∈C0(S)cuts F if πF(α)≠?.If α,β∈C0(S)both cut F,we write

    If dC(S)(α,β)=1,then dAC(F)(α,β)≤ 1 and dC(F)(α,β)≤ 2,observed by Masur and Minsky[16]at fi rst.What happens if the two vertices α and β have distance k in C(S)?

    The following follows immediately from the above observation.

    Lemma 2.2LetFandSbe as above,andG={α0,···,αk}be a geodesic ofC(S)such thatαjcutsFfor each0≤i≤k.Then

    In general,Masur and Minsky[16]proved the following result called bounded geodesic image theorem.

    Lemma 2.3LetFbe an essential sub-surface ofS,andγbe a geodesic segment inC(S),such thatπF(v)?for every vertexvofγ.Then there is a constantMdepending only on

    Ssuch that

    When S is closed with g(S)≥2,there is always a compact 3-manifold M with S as its compressible boundary.Let D(M,S),called a disk set for S,be the subset of vertices of C(S), where each element bounds a disk in M.Now an essential simple closed curve on S,say c,is said to be disk-busting if S?c is incompressible in M.Since any two essential disks intersect in a typical way,it provides more information to study the subsurface projection of a disk complex.The following disk image theorem is proved by Li[17],Masur and Schleimer[18]independently.

    Lemma 2.4LetMbe a compact orientable and irreducible3-manifold,and S be a boundary component ofM.Suppose that?M?Sis incompressible.LetDbe the disk complex ofS,andF?Sbe an essential subsurface.Assume each component of?Fis disk-busting.Then either

    (1) Mis an I-bundle over some compact surface,Fis a horizontal boundary of the I-bundle and the vertical boundary of this I-bundle is a single annulus,or

    (2)The image of this complex,κF(D),lies in a ball of radius3inAC(F).In particular,κF(D)has diameter6inAC(F).Moreover,πF(D)has diameter at most12inC(F).

    Remark 2.1For any I-bundle J over a bounded compact surface P,?J=?vJ∪?hJ, where the vertical boundary?vJ is the I-bundle related to?P,and the horizontal boundary?hJ is the portion of?J transverse to the I- fi bers.

    Hempel[3]de fi ned a full simplex X on S to be a dimension 3g(S)?4 simplex in C(S). Hence,after attaching 2-handles and 3-handles along the vertices of X in the same side of S,we can get a handlebody,denoted by HX.

    Lemma 2.5[3]LetSbe a closed,orientable surface of genus at least2.For any positive numberd,and for any full simplexXofC(S),there is another full simplexYofC(S)such that

    The central lemma in our proof is∶

    Lemma 2.6([14],Lemma 2.6)Letg,n,m,s,tbe fi ve integers such thatg,m,n≥2,and1≤t,s≤g?1.LetSgbe a closed surface of genusg.Then there are two essential separating curvesαandβinSgsuch thatdC(Sg)(α,β)=n,one component ofSg?αhas genustwhile one component ofSg?βhas genuss.Furthermore,there is a geodesicG={a0=α,a1,···,an?1,an=β}inC(Sg)such that

    (1)aiis non-separating inSgfor1≤i≤n?1,and

    (2)mM+2≤dC(Sai)(ai?1,ai+1)=mM+6,whereSaiis the surfaceS?N(ai)for1≤i≤n?1.

    3 The Proof of Theorem 1.1

    Proof.Let S be a closed,orientable genus g surface.We assume that I?.We choose F1(resp.F3)where 1∈I(resp.3∈J,when J?)and g(F1)=t,g(F3)=s.If J=?we choose s to be any positive number less than g(S).By Lemma 2.6,we can fi nd two essential separating slopes α and β on S such that one component of S1?S?N(α)(resp. S3?S?N(α))has genus t(resp.s)and dC(S)(α,β)=n,for any n≥3.Attaching 2-handles along α and β on S×I from di ff erent sides,we can get a Heegaard splitting V∪SW.And Heegaard distance of the Heegaard splitting is n,since in both V and W there is only one essential disk up to isotopy.It is not hard to see that one component of??V(resp.??W)has genus t(resp.S),denoted by F1(resp.F3).

    Let Q1=F1and Q2be the components of??V,and S1and S2be the two components of S?α.Similarly,let Q3=F3and Q4be the components of??W,and S3and S4be the two components of S?β.Now B cuts V into two manifolds Q1×I and Q2×I,and D cuts W into two manifolds Q3×I and Q4×I.

    We fi rst consider the compression body V.We may assume that

    Let fQi∶Si∪B→Qibe the natural homeomorphism such that fQi(x×1)=x×0 for i=1,2 and fQi(?)=?.No doubt that fQiis well de fi ned.Then,for any two essential simple closed curves ζ,θ?Si∪B,i=1,2,

    Hence fQiinduces an isomorphism from C(Si∪B)to C(Qi),for any i=1,2.Denote the isomorphism by fQitoo.

    Let ι∶Si→Si∪B be the inclusion map for i=1,2.Note that?Sicontains only one component.If c is an essential simple closed curve in Si,ι(c)is also essential in Si∪B. Now,for any two essential simple closed curves ζ,θ?Si,i=1,2,

    Hence ι induces a distance non-increasing map from C(Si)to C(Si∪B),for any i=1,2. Denote the inclusion map by ι too.Then we can de fi ne a projection map∶

    Since dC(S)(α,β)=n≥2,α∩β?.By the argument in Section 2,

    Hence

    Let us consider the compression body V.Remember??V=Q1∪Q2.By Lemma 2.5, we can fi nd a full simplex X in Q2such that

    It is not hard to see that we can choose some verticesΔof X such that after attaching 2-handles and possible 3-handles along these vertices,Q2×I is changed into a compression body C(Δ)and??(C(Δ))consists of{Fi,i∈I?{1}}.And V is changed into VC(Δ).Since D(C(Δ))?D(H(X)),

    Claim 3.1The Heegaard distance of VC(Δ)∪SW is n.

    Proof.Suppose,otherwise,that

    Since W contains only one essential disk D up to isotopy such that

    there is an essential disk B1in VC(Δ)such that

    i.e.,there is a geodesic G={a0=β,···,ak=?B1},where k≤n?1.

    Fact 3.1aj∩S2?for any 0≤j≤k.

    Proof.Suppose that aj∩S2=?for some 0≤j≤k.Since ak=?B1and?S2=α, ak?S2.We say ak∩S2=?for if not,then B1?Q1×I is an inessential disk of VC(Δ), which contradicts the choice of ak.Hence jk.j0 since a0=β.Hence there is a geodesic G?={β=a0,···,aj,α}.It means that

    a contradiction.This completes the proof of Fact 3.1.

    Let us continue to prove Claim 3.1.By Lemma 2.3 and Fact 3.1,

    Furthermore,

    Depending on the way of intersection between B1and B,we have

    (1)B1∩B=?.Since B1is not isotopic to B,ψQ2(?B1)bounds an essential disk in C(Δ).It contradicts the choice of X;

    (2)B1∩B?.Let a be an outermost arc of B1∩B on B1.It means that a,together with a sub-arc γ??B1,bounds a disk Bγsuch that Bγ∩B=a.Since B cuts VC(Δ)into a compression body C(Δ),which contains Q1and an I-bundle Q1×I,Bγ?C(Δ). Hence ψQ2(?B1)bounds an essential disk in C(Δ).This contradicts the choice of X.So the distance of VC(Δ)∪SW is n.The proof of Claim 3.1 is completed.

    ??VC(Δ)consists of{Fi,i∈I}.Denote VC(Δ)by V.So??V consists of{Fi,i∈I}.

    Now let us consider the compression body W.If J=?,by Lemma 2.5,we can fi nd two full simplexes Z1?Q3and Z2?Q4such that

    Then W is changed into WZ1,Z2.Denote WZ1,Z2by W.

    Claim 3.2The Heegaard distance of V∪SW is n.

    Proof.Suppose not.Then

    and there is an essential disk B1in V and an essential disk B2?W such that

    i.e.,there is a geodesic G={a0=?B2,···,ak=?B1},where k≤n?1.

    Not hard to see that akβ.By the standard outermost disk argument,at least one of ψQ3(a0)and ψQ4(a0)is nonempty and bounds an essential disk in HZ3or HZ4.We assume that ψQ3(a0)?and bounds an essential disk in HZ3.Hence ψQ3(a0)∈D(HZ3).On the other hand,by the proof of Fact 3.1,πS3(ai)?,for any i?{0,1,···,k}.By Lemma 2.3,

    Hence

    Let us consider the S3projection of the essential disk of V.Since Q1=F1???V?, V cannot be the I-bundle of any compact surface.By construction,?S3=β intersects all the boundaries of essential disks in V.Then,by Lemma 2.4,

    Hence

    Since akbounds an essential disk in V,by the above argument,

    It contradicts the assumption

    The argument for another case is similar.This completes the proof.

    (1)?+C(ζ)=Q4;

    (2)??C(ζ)={Fj,j∈J?{3}};

    (3)dQ4(D(C(ζ)),ψQ4(D(V)))≥M+1.

    After attaching 2-handles along ζ to W,by the proof of Claim 3.2,the compression body W is changed into WC(ζ)and the Heegaard distance is n.Denote WC(ζ)by W.Then the Heegaard splitting V∪SW satis fi es the conclusions of our main theorem.

    AcknowledgementWe thank Guo Qi-long for helpful discussions.

    [1]Harvey W.Boundary Structure of the Modular Group.in:Riemann Surfaces and Related Topics:Ann.of Math.Stud.vol.97.Princeton,NJ:Princeton Univ.Press,1981:245–251.

    [2]Masur H,Minsky Y.Geometry of the complex of curves I:Hyperbolicity.Invent.Math.,1999,138:103–149.

    [3]Hempel J.3-manifolds as viewed from the curve complex.Topology,2001,40:631–657.

    [4]Campisi M,Rathbun M.High distance knots in closed 3-manifolds.J.Knot Theory Rami fi cations,2012,21(2):Aticle ID 1250017,20pp.

    [5]Evens T.High distance Heegaard splittings of 3-manifolds.Topology Appl.,2006,153:2631–2647.

    [6]Minsky Y,Moriah Y,Schleimer S.High distance knots.Algebraic&Geom.Topology,2007,7: 1471–1483.

    [7]Li T.Small 3-manifolds with large Heegaard distance.arXiv:1211.3064[math.GT].Submitted on 13 Nov.2012.

    [8]Lustig M,Moriah Y.Horizontal Dehn surgery and genericity in the curve complex.arXiv: 0711.4492[math.GT].Submitted on 28 Nov.2007.

    [9]Lustig M,Moriah Y.High distance Heegaard splittings via train tracks.Topology Appl.,2009,156(6):1118–1129.

    [10]Lustig M,Moriah Y.Are large distance Heegaard splittings generic?J.Reine Angew.Math., 2012,670:93–119.

    [11]Ma J,Qiu R.Degenerating slopes with respect to Heegaard distance.arXiv:0907.4419 [math.GT].Submitted on 25 July 2009.

    [12]Ido A,Jang Y,Kobayashi T.Heegaard splittings of distance of exactly n.arXiv:1210.7627 [math.GT].Submitted on 29 Oct.2012.

    [13]Johnson J.Non-uniquess of high distance Heegaard splittings.arXiv:1308.4599[math.GT]. Submitted on 21 Aug.2013.

    [14]Qiu R,Zou Y,Guo Q.The Heegaard distances cover all non-negative integers.arXiv:1302. 5188[math.GT].Submitted on 21 Feb.2013.

    [15]Minsky Y.A Geometric Approach to the Complex of Curves on A Surface.Finland:Proceedings of the Taniguchi Symposium,1995.

    [16]Masur H,Minsky Y.Geometry of the complex of curves II:Hierarchical structure.Geom. Funct.Anal.,2000,10:902–974.

    [17]Li T.Images of the disk complex.Geom.Dedicata,2012,158:121–136.

    [18]Masur H,Schleimer S.The geometry of the disk complex.J.Amer.Math.Soc.,2013,26(1): 1–62.

    tion:57M27

    A

    1674-5647(2014)03-0193-08

    10.13447/j.1674-5647.2014.03.01

    Received date:May 9,2013.

    Foundation item:The NSF(11271058 and 11371076)of China.

    *Corresponding author.

    E-mail address:yanqing@mail.dlut.edu.cn(Zou Y Q),ximinliu@dlut.edu.cn(Liu X M).

    99热6这里只有精品| 国产高清三级在线| 叶爱在线成人免费视频播放| 视频区欧美日本亚洲| 嫩草影视91久久| 小蜜桃在线观看免费完整版高清| 天天躁日日操中文字幕| 日本精品一区二区三区蜜桃| 欧美精品啪啪一区二区三区| 国产精品一区二区精品视频观看| 真人一进一出gif抽搐免费| 黄片小视频在线播放| www.自偷自拍.com| 一本综合久久免费| 熟妇人妻久久中文字幕3abv| 色尼玛亚洲综合影院| 丰满人妻熟妇乱又伦精品不卡| 欧美色欧美亚洲另类二区| 日本撒尿小便嘘嘘汇集6| 欧美丝袜亚洲另类 | xxx96com| 宅男免费午夜| 99国产精品一区二区蜜桃av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩东京热| 黄色日韩在线| 国产午夜福利久久久久久| 悠悠久久av| 国产精品久久久久久亚洲av鲁大| 日韩人妻高清精品专区| 国产精品久久久久久亚洲av鲁大| 国产高潮美女av| 日本免费一区二区三区高清不卡| 成人特级黄色片久久久久久久| 国产亚洲av高清不卡| 小说图片视频综合网站| 亚洲成人免费电影在线观看| 国产高清视频在线播放一区| 91字幕亚洲| 亚洲成人精品中文字幕电影| 97人妻精品一区二区三区麻豆| 人人妻人人澡欧美一区二区| 亚洲成人精品中文字幕电影| 亚洲成人中文字幕在线播放| 日本 av在线| 热99在线观看视频| 久久久成人免费电影| 搡老岳熟女国产| 国产蜜桃级精品一区二区三区| 久久人人精品亚洲av| 少妇人妻一区二区三区视频| 美女大奶头视频| avwww免费| 黄色女人牲交| 国产免费av片在线观看野外av| 黄色女人牲交| 亚洲国产欧洲综合997久久,| 国产一区二区在线av高清观看| 男女做爰动态图高潮gif福利片| 91av网一区二区| 精品国产美女av久久久久小说| 1024香蕉在线观看| 亚洲精品国产精品久久久不卡| 国产黄a三级三级三级人| 久久久精品欧美日韩精品| 我要搜黄色片| 久久天躁狠狠躁夜夜2o2o| 男插女下体视频免费在线播放| 久久九九热精品免费| 欧美日韩福利视频一区二区| xxxwww97欧美| www.精华液| 看免费av毛片| 在线国产一区二区在线| 欧美日韩国产亚洲二区| 亚洲自偷自拍图片 自拍| 色老头精品视频在线观看| 日本黄色视频三级网站网址| 国产精品久久久久久亚洲av鲁大| 999久久久国产精品视频| 又粗又爽又猛毛片免费看| 美女免费视频网站| 日韩欧美三级三区| 变态另类丝袜制服| 国产精品日韩av在线免费观看| a级毛片a级免费在线| av在线天堂中文字幕| 亚洲欧美一区二区三区黑人| 嫩草影院入口| 精品一区二区三区视频在线 | 性色avwww在线观看| 精品一区二区三区视频在线 | 国产视频内射| 成人亚洲精品av一区二区| 亚洲在线观看片| 欧美日本视频| 国产精品一区二区精品视频观看| 精品福利观看| 一区二区三区高清视频在线| 亚洲美女黄片视频| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 亚洲成a人片在线一区二区| 成人亚洲精品av一区二区| 国产在线精品亚洲第一网站| 日日夜夜操网爽| 好看av亚洲va欧美ⅴa在| 老熟妇乱子伦视频在线观看| 国产一区二区三区视频了| 亚洲精品一区av在线观看| 在线观看一区二区三区| 在线免费观看的www视频| 久久香蕉国产精品| 一个人观看的视频www高清免费观看 | 久久人人精品亚洲av| 精品国产美女av久久久久小说| 日韩欧美一区二区三区在线观看| 1024香蕉在线观看| or卡值多少钱| 亚洲五月天丁香| 在线观看日韩欧美| 久久久久性生活片| 欧美中文综合在线视频| 国产1区2区3区精品| 欧美日韩瑟瑟在线播放| ponron亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲av美国av| 亚洲狠狠婷婷综合久久图片| 99久久无色码亚洲精品果冻| 1024手机看黄色片| 老司机福利观看| 99精品在免费线老司机午夜| 超碰成人久久| 成年女人看的毛片在线观看| 国产男靠女视频免费网站| 国产精品一及| 精品国产乱码久久久久久男人| 51午夜福利影视在线观看| 香蕉国产在线看| 国产成人欧美在线观看| 中文字幕最新亚洲高清| 搡老熟女国产l中国老女人| 国产极品精品免费视频能看的| 亚洲精品在线观看二区| 91麻豆精品激情在线观看国产| 亚洲av日韩精品久久久久久密| 国产高清有码在线观看视频| 别揉我奶头~嗯~啊~动态视频| 97超级碰碰碰精品色视频在线观看| 国产激情久久老熟女| 亚洲中文日韩欧美视频| 九九在线视频观看精品| 亚洲美女黄片视频| 99热只有精品国产| 日本 欧美在线| 久久九九热精品免费| 婷婷丁香在线五月| 天堂av国产一区二区熟女人妻| 韩国av一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | av欧美777| 亚洲精品国产精品久久久不卡| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| svipshipincom国产片| 天天一区二区日本电影三级| 精品电影一区二区在线| 黄片小视频在线播放| 岛国在线免费视频观看| av女优亚洲男人天堂 | 精品人妻1区二区| 国产91精品成人一区二区三区| 淫秽高清视频在线观看| 黄片大片在线免费观看| 亚洲欧美精品综合久久99| 一级毛片高清免费大全| 三级国产精品欧美在线观看 | 亚洲成a人片在线一区二区| 国产视频内射| 成人一区二区视频在线观看| 国产精品98久久久久久宅男小说| 999久久久国产精品视频| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 一本久久中文字幕| 久久久久国产一级毛片高清牌| 亚洲在线观看片| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 亚洲精品色激情综合| 欧美在线一区亚洲| x7x7x7水蜜桃| 高潮久久久久久久久久久不卡| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线观看免费| 亚洲乱码一区二区免费版| 99在线人妻在线中文字幕| 一边摸一边抽搐一进一小说| 成年女人毛片免费观看观看9| 怎么达到女性高潮| 国产精品一区二区三区四区免费观看 | 亚洲av日韩精品久久久久久密| 中亚洲国语对白在线视频| 一进一出抽搐动态| 看免费av毛片| av福利片在线观看| www日本黄色视频网| 天堂av国产一区二区熟女人妻| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 午夜亚洲福利在线播放| 在线观看日韩欧美| 久久久久久久久免费视频了| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 久久精品影院6| 亚洲精品久久国产高清桃花| 精品午夜福利视频在线观看一区| 一级毛片高清免费大全| 国产精品综合久久久久久久免费| avwww免费| 在线观看美女被高潮喷水网站 | 不卡av一区二区三区| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 啪啪无遮挡十八禁网站| 欧美极品一区二区三区四区| 搞女人的毛片| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 母亲3免费完整高清在线观看| x7x7x7水蜜桃| 在线国产一区二区在线| 国产av在哪里看| 淫秽高清视频在线观看| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 亚洲成av人片在线播放无| 午夜福利高清视频| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 观看免费一级毛片| 亚洲专区国产一区二区| 一a级毛片在线观看| 久久久国产精品麻豆| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 熟女少妇亚洲综合色aaa.| 亚洲国产精品合色在线| 美女免费视频网站| 亚洲精品中文字幕一二三四区| 国产真实乱freesex| 欧美最黄视频在线播放免费| 老汉色∧v一级毛片| www.999成人在线观看| 在线观看日韩欧美| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 波多野结衣高清作品| 香蕉国产在线看| 精品一区二区三区av网在线观看| 黄色日韩在线| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看电影 | 欧美乱码精品一区二区三区| 国产乱人视频| 亚洲国产欧美人成| 在线观看日韩欧美| 国产激情欧美一区二区| 午夜视频精品福利| 久久久久久国产a免费观看| 后天国语完整版免费观看| 午夜精品一区二区三区免费看| 国产精品一区二区精品视频观看| 国产精品久久久av美女十八| 香蕉丝袜av| 成年女人毛片免费观看观看9| 香蕉久久夜色| 欧美日本亚洲视频在线播放| 久久中文字幕一级| 两人在一起打扑克的视频| 看黄色毛片网站| 日本五十路高清| 国产精品av久久久久免费| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 51午夜福利影视在线观看| 99久久综合精品五月天人人| 天天一区二区日本电影三级| 啦啦啦免费观看视频1| 日韩av在线大香蕉| 国产精品永久免费网站| 九九在线视频观看精品| 久久精品国产清高在天天线| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 一级黄色大片毛片| 久久久久久久久久黄片| 又大又爽又粗| 亚洲av成人精品一区久久| 成人av一区二区三区在线看| 麻豆国产97在线/欧美| 午夜激情欧美在线| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 国产精品一区二区免费欧美| 欧美日韩黄片免| 国产三级黄色录像| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| 综合色av麻豆| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 亚洲,欧美精品.| 国产麻豆成人av免费视频| 国产亚洲精品综合一区在线观看| 999精品在线视频| 哪里可以看免费的av片| 国产成人aa在线观看| 99国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| www.www免费av| 精品国内亚洲2022精品成人| 男人舔女人的私密视频| 91在线精品国自产拍蜜月 | xxxwww97欧美| а√天堂www在线а√下载| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 男女视频在线观看网站免费| 最近最新中文字幕大全电影3| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 午夜激情欧美在线| 婷婷亚洲欧美| 深夜精品福利| 精品一区二区三区四区五区乱码| 在线观看舔阴道视频| 久久这里只有精品中国| 精品欧美国产一区二区三| 色综合婷婷激情| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 午夜精品一区二区三区免费看| 18禁观看日本| 在线观看美女被高潮喷水网站 | 免费av不卡在线播放| 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 黄片小视频在线播放| 99热6这里只有精品| 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 女警被强在线播放| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av | av在线天堂中文字幕| 国产精品 欧美亚洲| 18禁观看日本| 亚洲国产精品成人综合色| 成人欧美大片| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 久久久久性生活片| 国产精品一区二区三区四区免费观看 | 天天躁狠狠躁夜夜躁狠狠躁| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 欧美日韩瑟瑟在线播放| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 免费在线观看日本一区| 此物有八面人人有两片| 91久久精品国产一区二区成人 | 禁无遮挡网站| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 无人区码免费观看不卡| 亚洲国产精品合色在线| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 国产高清视频在线观看网站| 日本黄色片子视频| 日本黄色视频三级网站网址| 90打野战视频偷拍视频| 日本三级黄在线观看| 97碰自拍视频| 亚洲五月婷婷丁香| 99国产精品一区二区三区| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 丁香欧美五月| 亚洲成av人片免费观看| 中文资源天堂在线| 美女黄网站色视频| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 日韩欧美免费精品| 久久久久久久久免费视频了| 91av网一区二区| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 18禁国产床啪视频网站| av片东京热男人的天堂| 亚洲中文字幕日韩| 偷拍熟女少妇极品色| 精品一区二区三区av网在线观看| 欧美又色又爽又黄视频| 国产成人影院久久av| 国产熟女xx| 美女高潮喷水抽搐中文字幕| 99久久综合精品五月天人人| 黄色 视频免费看| 国产成人精品久久二区二区91| 精品久久久久久久久久免费视频| 国产精品影院久久| 亚洲精品久久国产高清桃花| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产精品影院久久| 美女cb高潮喷水在线观看 | 亚洲美女视频黄频| aaaaa片日本免费| 悠悠久久av| cao死你这个sao货| 精品国内亚洲2022精品成人| 国产不卡一卡二| 亚洲欧美日韩高清专用| 手机成人av网站| 国产一区二区三区在线臀色熟女| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 免费看日本二区| 两个人的视频大全免费| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| av女优亚洲男人天堂 | 久久香蕉国产精品| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| www.www免费av| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 丁香欧美五月| x7x7x7水蜜桃| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 特级一级黄色大片| 成人特级av手机在线观看| 无人区码免费观看不卡| 欧美不卡视频在线免费观看| 噜噜噜噜噜久久久久久91| 一级毛片女人18水好多| 精品国产三级普通话版| 少妇的丰满在线观看| 人妻夜夜爽99麻豆av| 国产精品 国内视频| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 日韩欧美国产在线观看| 国产三级在线视频| 女警被强在线播放| 一区二区三区激情视频| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 999久久久国产精品视频| 一本一本综合久久| 变态另类成人亚洲欧美熟女| 一夜夜www| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 97人妻精品一区二区三区麻豆| 麻豆成人午夜福利视频| 一区二区三区激情视频| 精品久久久久久久末码| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 久久人妻av系列| 色综合亚洲欧美另类图片| 99热这里只有精品一区 | 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 最好的美女福利视频网| 美女 人体艺术 gogo| 亚洲专区中文字幕在线| 午夜精品在线福利| 午夜福利在线观看免费完整高清在 | 精品久久久久久久毛片微露脸| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 久久久久国产一级毛片高清牌| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 一二三四在线观看免费中文在| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 精品一区二区三区av网在线观看| 午夜a级毛片| 校园春色视频在线观看| 人人妻人人澡欧美一区二区| aaaaa片日本免费| 精品人妻1区二区| 午夜激情福利司机影院| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 身体一侧抽搐| 久久久色成人| 身体一侧抽搐| 亚洲国产色片| 黄色 视频免费看| 精品熟女少妇八av免费久了| 一区二区三区高清视频在线| 久9热在线精品视频| 日韩免费av在线播放| 国产真实乱freesex| 999久久久国产精品视频| 女警被强在线播放| 欧美+亚洲+日韩+国产| 午夜激情欧美在线| 此物有八面人人有两片| 久久久久性生活片| 人人妻人人澡欧美一区二区| 97超级碰碰碰精品色视频在线观看| 身体一侧抽搐| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 在线观看免费午夜福利视频| 国产三级中文精品| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 香蕉国产在线看| 悠悠久久av| 亚洲人与动物交配视频| 婷婷精品国产亚洲av在线| 国产97色在线日韩免费| 中文字幕人成人乱码亚洲影| 美女扒开内裤让男人捅视频| 在线永久观看黄色视频| 高清在线国产一区| 国产精品久久久人人做人人爽| 99热这里只有精品一区 | 亚洲av第一区精品v没综合| 老司机深夜福利视频在线观看| or卡值多少钱| 老司机深夜福利视频在线观看| 在线观看美女被高潮喷水网站 | 久久99热这里只有精品18| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 窝窝影院91人妻| 综合色av麻豆| 免费看光身美女| 精品久久久久久久末码| 动漫黄色视频在线观看| 亚洲色图 男人天堂 中文字幕| 熟女电影av网| tocl精华| 亚洲 欧美 日韩 在线 免费| 亚洲五月天丁香| 亚洲专区字幕在线| 国产欧美日韩精品亚洲av| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 亚洲av成人av| 夜夜夜夜夜久久久久| 国产极品精品免费视频能看的| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 精品电影一区二区在线| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 十八禁人妻一区二区| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 久9热在线精品视频| av中文乱码字幕在线| 色综合欧美亚洲国产小说| 免费av毛片视频| 99精品在免费线老司机午夜| 国产精品av久久久久免费| 岛国在线观看网站| 18美女黄网站色大片免费观看| 一二三四在线观看免费中文在| 亚洲精华国产精华精| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服|