嚴(yán)樹(shù)林,李志艷,葛渭高
(1.常州工程職業(yè)技術(shù)學(xué)院基礎(chǔ)部,江蘇常州213164)(2.河海大學(xué)常州校區(qū)數(shù)理部,江蘇常州213022)(3.北京理工大學(xué)數(shù)學(xué)學(xué)院,北京100081)
近年來(lái),二階微分方程周期解的存在性得到了廣泛研究[1-10]。最近,有學(xué)者研究了帶 p-Laplacian算子的微分方程周期解的存在性及唯一性.例如,文獻(xiàn)[4]中研究了方程 (φp(x′))′+f(t,x′)+g(t,x)=e(t),得到了一些好的結(jié)果.受文獻(xiàn)[4]的啟發(fā),文中進(jìn)一步研究一類(lèi)更廣泛的二階p-Laplacian方程的周期解,其中φp(u)=|u|p-2u,p > 1,f(t,·,·)關(guān)于t是周期為T(mén)的連續(xù)函數(shù),e是周期為T(mén)的連續(xù)函數(shù),顯然文獻(xiàn)[3]是本文的特例.文中推廣和改進(jìn)了已有文獻(xiàn)的結(jié)果.
對(duì)于周期邊值問(wèn)題
式中:f∈ C(R3,R).為方便起見(jiàn),記.下面的引理1是文中的重要依據(jù).
引理1[7]假設(shè) Ω 是中的有界開(kāi)集且下列條件滿足
(A1)對(duì)于 ?λ ∈(0,1),方程(φp(x′(t)))′=λ~f(t,x,x′),x(0)=x(T),x′(0)=x′(T)在?Ω上無(wú)解;
(A2)定義函數(shù)滿足F(r)F(-r)<0,其中r>0.
對(duì)于 t∈ (0,T0),有 |y(t)|≤ D,其中
為行文方便,列出下列假設(shè),在第2節(jié)中,它們將被用來(lái)研究方程(1)的T-周期解.
[H1]假設(shè)存在常數(shù) d > 0,使得 f(t,x0,0)>|e|0,?x0> d;
[H2]假設(shè)存在常數(shù) d > 0,使得 f(t,x0,0)<-|e|0,?x0<-d;
[H3]f有分解式 f(t,x,x′)=g(t,x)+h(t,x,x′),其中 g,h 分別滿足 x[g(t,x)+h(t,x,0)-e(t)]> 0,當(dāng)x ≥d時(shí);h(t,x0,x1)≤m1|x0|p-1+m2|x1|p-1+m3,m1,m2,m3為非負(fù)常數(shù);
[H4]f(t,x,x′)關(guān)于 x 單調(diào)遞減.
定理1 假設(shè)條件[H1]~[H3]滿足,則方程(1)至少有1個(gè)T-周期解;當(dāng)p≥2且條件[H4]成立時(shí),方程(1)的解是唯一存在的.
證明:記~f(t,x,x′)=f(t,x,x′)-e(t),設(shè)x是方程(φp(x′))′= λ~f(t,x,x′),λ ∈ (0,1)的解,即
令φp(x′)=y,方程(3)等價(jià)變形為如下方程組
式中φq(s)為φp(s)的反函數(shù).設(shè)t是0x(t)的最大值點(diǎn),即x(t0)=mtaRx x(t),顯然x′(t0)
∈=0,又y(t0)= φp(x′(t0))=0,可證,y′(t0)≤0.假設(shè)y′(t0)>0,則由極限保號(hào)性知,?σ >0,當(dāng)t∈[t0,t0+ σ]時(shí),y′(t)> 0,即y(t)> y(t0)=0,t∈[t0,t0+σ],又x′(t)= φq(y(t))> 0,得x(t)在[t0,t0+ σ]上單調(diào)遞增,故 x(t)> x(t0)=0,t∈[t0,t0+σ],顯然這與x(t)在t0取最大值矛盾,所以假設(shè)不成立,即y′(t0)≤0成立.
由方程(4)的第2個(gè)方程y′(t)的表達(dá)式,可知
即 f(t0,x(t0),0)≤ e(t0)≤|e|0,由假設(shè)[H1]可得
-d<x(t1)≤x(t)≤x(t0)<d
故(φp(x′))′= λf(t,x,x′)的解 x(t)有界,且
下證x′(t)也是有界的.,由方程(4)的第2個(gè)方程知
由引理2知,|y(t)|≤D2=D1em2T.
若0≤t≤t2,有0≤t2≤t+T≤2T,由y(t)的T-周期性及假設(shè)[H3]可得
由式(9)及0≤t≤t2,有|y(t)|=|y(t+T)|≤.即對(duì)于0 ≤t≤t2,有|y(t)|≤ D3=2D1em2T,由于 D2≤ D3,由式(8,9)可得,即‖x′‖∞≤,所以,即(φp(x′)′=的解 x(t)是有界的,i.e.,‖x‖ < M,取 Ω ={x∈ Χ:‖x‖ = ‖x‖∞+‖x′‖∞< M}.
顯然方程(4)在?Ω上無(wú)解,即引理1的條件(A1)滿足.
對(duì)于x=±M∈R,x∈?Ω且M >d,由假設(shè)[H3]有
即引理1的條件(A2)滿足,由引理1的結(jié)論可知,方程(1)在Ω內(nèi)存在一個(gè)解.
下證p≥2且假設(shè)[H4]滿足時(shí)方程(1)的解還是唯一存在的.
設(shè)x1(t),x2(t)為方程(1)的兩個(gè)周期解,且y1(t)= φp(x′1(t)),y2(t)= φp(x′2(t)),同時(shí),
令u(t)=x1(t)-x2(t),v(t)=y1(t)-y2(t),由x′=φq(y)及方程(4)可得
下用反證法證明對(duì)于t∈[0,T],u(t)≤0成立.
證明:假設(shè)?t0∈[0,T]使得u(t0)=max u(t)=x1(t0)-x2(t0)> 0,則
u′(t0)= φq(y1(t0))-φq(y2(t0))=0,即y1(t0)=y2(t0),且u″(t0)≤0,由于p≥2,q≤2,且定義當(dāng)u=0,q=2時(shí),|u|q-2=1;當(dāng)u=0,q < 2時(shí),|u|q-2=+∞.
由假設(shè)[H4]及y1(t0)=y2(t0)有
這與u″(t0)≤0矛盾,故u(t)≤0.
綜上所證,方程(1)在p≥2及[H4]成立時(shí),有且僅有一個(gè)周期解.定理1得證.
References)
[1] 鄭亮,魯世平,陳麗娟.一類(lèi)二階時(shí)滯微分系統(tǒng)的周期解和同宿解[J].揚(yáng)州大學(xué)學(xué)報(bào):自然科學(xué)版,2013,16(1):8-11,41.Zheng Liang,Lu Shiping,Cheng Lijuan.Periodic solutions and homoclinic solutions for a class of second order differential systems with delay[J].Journal of Yangzhou University:Natural Science Edition,2013,16(1):8-11,41.(in Chinese)
[2] 李志艷,葛渭高.三階p-Laplace多點(diǎn)共振邊值問(wèn)題解的存在性[J].揚(yáng)州大學(xué)學(xué)報(bào):自然科學(xué)版,2012,15(3):12-15.Li Zhiyan,Ge Weigao.Existence of solutions for a thirdorder p-Laplace boundary value problem at resonance[J].Journal of Yangzhou University:Natural Science E-dition,2012,15(3):12-15.(in Chinese)
[3] 何濤,丁衛(wèi).二階非自治系統(tǒng)的彈性周期解[J].江蘇科技大學(xué)學(xué)報(bào):自然科學(xué)版,2011,25(4):401-404.He Tao,Ding Wei.Periodic bouncing solutions for non-autonomous second order systems[J].Journal of Jiangsu University of Science and Technology:Natural Science E-dition,2011,25(4):401-404.(in Chinese)
[4] Yang Xiaojing,Kin Yongin,Lo Kueiming.Periodic solutions for a generalized p-Laplacian equation[J].Applied Mathematics Letter,2012(25):586-589.
[5] Wang Yong.Novel existence and uniqueness criteria for periodic solutions of a Duffing type p-Laplacian equation[J].Applied Mathematics Letter,2010(23):436-439.
[6] Lu Shiping,Ge Weigao.Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument[J].Nonlinear Analysis,2004,56:501-514.
[7] Manasevich R,Mauhin J.Periodic solutions for nonlinear systems with p-Laplacian-like operators[J].J Dfferential Equation,1998,145:367-393.
[8] Cheung Wingsum,Ren Jingli.Periodic solutions for p-Laplacian Rayleigh equations[J].Nonlinear Analysis,2004,59:107-120.
[9] Lu Shiping.Existence of periodic solutions to a p-Laplacian Lienard differential equations with a deviating argument[J].Nonlinear Analysis,2008,68(6):1453-1461.
[10] Ding Huisheng,Ye Guorong,Long Wei.Existence and uniqueness of periodic solutions for a class of nonlinear equations with p-Laplacian-like operators[J].Advance in Differential Equations,2010,doi:10.1155/2010/197263.