• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unsuspected implications arising from assumptions in simulations:insights from recasting a forest growth model in system dynamics

    2014-02-24 07:33:53JeromeVanclay
    Forest Ecosystems 2014年1期

    Jerome K Vanclay

    Unsuspected implications arising from assumptions in simulations:insights from recasting a forest growth model in system dynamics

    Jerome K Vanclay

    Background:Familiarity with a simulation platform can seduce modellers into accepting untested assumptions for convenience of implementation.These assumptions may have consequences greater than commonly suspected, and it is important that modellers remain mindful of assumptions and remain diligent with sensitivity testing.

    Forest growth model;Validity of assumptions;Visual modelling environment;Fortran;Simile; System dynamics;Swindle

    Background

    Modellers generally try to implement ecological concepts faithfully and completely,but there is inevitably a tendency for model implementation to be influenced by technology,both hardware and software.This tendency is often subtle,with small artefacts introduced into a simulator with little discussion,deemed prudent to achieve efficiency or expediency.Whilst modelling,like management,is usually a compromise to deliver timely and useful results,the danger of technological limitations is that they are often subtle,understated and untested.A search of the literature suggests that authors are more likely to discuss compromises made because of data limitations than those introduced because of software limitations,perhaps because of the ease of applying a familiar approach(i.e.,a‘golden hammer’,Brown et al.,1998).This is somewhat worrisome,because minor compromises introduced for convenience in implementation may introduce substantial and unsuspected effects into simulated predictions.Where such consequences are suspected,they may be remedied during model evaluation,but two dangers remain:firstly that many modellers do not suspect the extent to which their chosen software influences their implementation or the magnitude of the consequences that may arise;and as a result they tend not to discuss these assumptions in simulator documentation.Discussions informing this paper suggest that many modellers discount and dismiss these dangers and their consequences too readily,despite empirical evidence of their importance.This paper seeks to alert modellers to these dangers and to encourage greater reporting of assumptions and compromisesin both model design and in their implementation in simulators(sensu Pretzsch et al 2002).

    This paper explores some aspects of compromises made during the implementation of a simulator,drawing on a published growth model for north Queensland rainforests (Vanclay,1989a).The most-widely used version of this simulator was written in standard Fortran-77 and executed under Unix on a Vax 11-780 computer system, a platform relatively free of limitations and well understood by many modellers.This simulator was not na?ve implementation,but was a deliberate decision informed by familiarity with Wirth’s(1985)work on the importance of data structures,by knowledge of diverse programming languages(e.g.,Fortran,Pascal,Simula,and Simscript),by feedback received through earlier publication of several forest growth models,and by familiarity with other modelling approaches(Vanclay,1983).The model was widely emulated(e.g.,Ong and Kleine,1996;Alder and Silva, 2000),and was instrumental in informing changes in forest management(Preston and Vanclay,1988;Vanclay, 1996a).But a re-evaluation of the simulator as part of an undergraduate teaching program has revealed that some untested assumptions implicit in the Fortran implementation become more evident when the model is implemented in other platforms.This paper draws attention to two issues important in modelling:the need for critical review of assumptions implicit in model implementation, and the utility of considering alternative formulations to encourage explicit recognition of such assumptions.

    Literature

    Early models in the form of alignment charts(e.g., Reineke,1927)were transparent in their application,if not their development,but the advent of statistical and computer-based models(e.g.,Buckman,1962;Clutter, 1963)commenced a subtle trend of incomplete disclosure of simulator details in published documentation. Whilst this is generally not deliberate,text-based publication of component functional relationships is rarely sufficient to reproduce a simulator(Robinson and Monserud, 2003),because many details intimate to a particular implementation may affect predictions(Villa et al.,2009). Guidelines(e.g.,Pretzsch et al.,2002)have improved the standard of documentation,but there are limits on the extent to which text-based descriptions can adequately and efficiently describe computer-based implementations.Visual‘icon-based’modelling environments,typically based on system dynamics,can help to reveal model structure and reduce the‘black box’syndrome (Smith et al.,2005).One key advantage of these visual modelling environments is that the diagram is both the model and the simulator,unlike some early applications where system dynamics flowchart was merely documentation about the model(e.g.,Kalgraf 1979). Unfortunately,the potential of these new tools for model design and simulator function has received little attention.Researchers have investigated how simulation results may depend on the functional form of tree growth equations(e.g.,Elkin et al.,2012),but have not adequately addressed how simulators may also depend on host software used to implement the model.It is surprising that these potential dependencies have not been researched,because several popular modelling platforms have different unique features.For instance, Stella(Doerr,1996;Eskrootchi and Oskrochi,2010)has a conveyor-stock that handles time-lags efficiently(e.g., Blackwell et al.,2001),whilst Simile(Muetzelfeldt and Massheder,2003;Muetzelfeldt,2010)offers multipleinstancesubmodelsthatfacilitateindividual-based modelling,so it seems likely that these features may influence the implementation of models on respective platforms.

    Vanclay’s(1989a)model for simulating growth and yield of tropical rainforest is widely cited and has provided the inspiration for several other forest growth simulators still in use today(e.g.,Ong and Kleine,1996; Alder and Silva,2000),but the traditional journal article presentation of this model remains silent about some key details concerning the design and implementation of this simulator.Although this model has been superseded (Vanclay,1994a),it retains considerable utility for teaching because of its relative simplicity.An alternative implementation of this simulator using the visual modelling environment Simile is revealing,informative and more pedagogic than the original Fortran code and journal article.Although visual system-dynamics modelling tools have been available and used increasingly for over two decades(Bossel,1991;Doerr,1996;Garcia,2013), their role in informing and sharing information remains underutilized.This paper discusses new insights offered through the Simile presentation of this model,and refutes the assertion(Dufour-Kowalski et al.,2012)that visual modelling environments such as Simile are not well suited for forest growth modelling.

    The best way to share information about a model is to share the simulator itself,in a form that is open-source and implemented in a generic easily-understood way. However,many useful computer languages are accessible only to a small number of practitioners,and important details of simulators coded in these languages may be hidden like the proverbial‘needle in a haystack’(Muetzelfeldt, 2004;Villa et al.,2009).Thus there is limited benefit in sharing proprietary computer code,unless the simulator is well documented and the language widely utilized and freely available.These hidden aspects of computer-based simulators may well be a‘skeleton in the closet’:many experienced modellers have anecdotes about the importance of untested‘calibration factors’or about unintendedconsequences of particular data structures(e.g.,Hamilton, 1994),but these are rarely documented in the formal literature,allowing these oversights to be perpetuated.

    Muetzelfeldt’s interest in dynamic representation of ecological relationships(e.g.,Muetzelfeldt et al.,1989)led to the development of Simile,a visual modelling environment useful for modelling ecological and agricultural systems(Muetzelfeldt and Taylor,1997;Muetzelfeldt and Massheder,2003).Simile employs a declarative modelling approach and saves models as structured text files,able to be processed by other software(Muetzelfeldt,2004).It offers several constructs useful for modelling plant growth and related concepts(Prabhu et al.,2003;Vanclay,2006a), as well as more abstract issues(e.g.,Haggith et al.,2003). Thus Simile provides an interesting vehicle to illuminate, compare and share existing models(Davey et al.,2009). Simile is not unique in this ability,and Vensim is an alternative that has been used to implement forest growth simulators(e.g.,Garcia and Ruiz,2003).

    Rainforests provide an informative case study because many of their characteristics pose challenges in modelling:the large number of species,the wide range of stem sizes and growth patterns,and the paucity of calibration data all amplify inherent challenges(Vanclay, 1991d;Clark and Clark,1999;Picard and Franc,2003). Vanclay’s(1989a)model for Queensland rainforests is a frequently cited example,and illustrates several insights that may be gained by recasting a simulator from its original Fortran into a visual system dynamics representation.

    Methods

    Recasting the model in simile

    Figure 1 Simile diagram of the underlying philosophy of Vanclay’s(1989a)model.

    The essence of Vanclay’s(1989a)model is summarised in the Simile model illustrated in Figure 1.Input data comprise a series of triplets reflecting species,size (diameter at breast height,1.3 m above ground)and stocking(N/ha)of each tree measured on a field plot. The symbols used in Figure 1 are standard system dynamics notation common to several visual modelling environments(Ford 1999),and are not merely a diagram, but form a model with which simulations may be made. Rectangles()are stocks or compartments that represent an amount of substance(numbers of trees,size of a tree),and change only via a flow(,e.g.,die,grow). Clouds()denote exogenous elements of no further use in the model.Variables()may contain data, equations or lookup tables.Submodels can represent a single instance()usually to provide context to other elements,or may represent multiple instances() such as a list of trees(cf.an array).

    The elements of Figure 1 represent the key information needed for individual-based modelling of forests (Weiskittel et al.,2011).These data may be read from file by the growth model,with each input record forming one of many tree records or cohorts in the model, a technique used widely in forest growth modelling (Vanclay,1994b;Porte and Bartelink,2002).These cohorts retain the species identity,and progressively increase tree size to reflect growth,and reduce stocking to reflect mortality.

    Figure 1 is not merely a diagram,but when created in Simile,is the simulator that runs and creates simulated outputs.One of the strengths of Simile is that the user interface simultaneously creates a diagrammatic overview,the executable code,and model documentation(a‘mouseover’displays any comment included with each symbol).

    Figure 2 contains additional detail to show how coefficients for equations are drawn from file,specific to each of a small number of species groups(e.g.,K?hler and Huth,1998).Stand basal area(BA)is computed from the size and stocking represented by each tree record.A key concept is that BA is external to the Tree record submodel and can‘see’all the diameters,and thus computes the stand-level statistic,whereas Grow sees only the single Dbh within its own Tree record.Figure 2 also adds influences that denote how both growth and mortality depend on tree size and stand density.Thus although Figure 2 is a crude and partial approximation of Vanclay’s (1989a)model,it gives a useful overview of much model detail and introduces concepts of Simile notation,most of which is standard system-dynamics notation.

    Figure 2 Growth and mortality depend on tree size and stand density.Equation parameters are drawn from an external file.Mouseover causes icon contents(the formula for calculating stand basal area)to be displayed.

    Figure 3 adds recruitment to the model using the migration symbol().Because recruitment adds additional tree records,the Tree record submodel is no longer a list with fixed membership(like the input file with multiple outlines bottom right),but is denoted as a population(denoted by multiple outlines top left)in which the number of records can increase or decrease during the simulation.Thus the sunrise symbol(initial) indicates the initial membership of the population,and the migration()symbol(recruit)initiates the new records needed to simulate recruitment.The number of recruits is estimated from stand density.Whilst Figure 3 is a slightly simplified representation of Vanclay’s(1989a) model,it serves to explain several details of Simile in an accessible way.Readers seeking more specifics about other simulation constructs available in Simile are directed to Simulistics(2013).

    A reviewer asked whether the migration symbol() could be changed from a bird to an icon that better represents tree dynamics:it can be,but such customization does not facilitate communication.To take an example from Microsoft:a user may not like the scissors icon used to denote‘cut’in Microsoft software,but everyone understands what this icon denotes,and shared understanding should take precedence over personal aesthetics. One aspect of many forest growth simulators that is often poorly documented is that of record splitting,a technique introduced to emulate growth variation,and avoid bias associated with Jensen’s inequality(Jensen, 1906;Duursma and Robinson,2003).This is an established technique often known as a‘swindle’(Jacoby and Harrison,1962;Stage,1973;Simon,1976;Hedayat and Su,2012)employed in many simulators either as binary splitting(e.g.,Alder and Silva,2000;Ledermann and Eckmüllner,2004)or as tripling(e.g.,Stage,1973; Crookston and Dixon,2005)to attain more realistic projections,by simulating heterogeneous growth deterministically without the overheads of stochastic simulation. Despite the care with which modellers craft this splitting into their source code,the resulting effects are rarely tested exhaustively,and may overlook serial correlation of growth(often handled implicitly via an estimate of onesided competition,e.g.,Cole and Stage,1972).This inequality has the potential to introduce considerable bias into estimates(Valle,2011).Simile provides an icon() to facilitate record splitting and inheritance of attributes (Figure 4)that facilitates exploration of this issue.

    Figure 3 Recruitment is density-dependent,and initiates a new Tree record.

    Figure 4 The Tree list submodel central to the Simile representation of Vanclay’s(1989a)model.

    Figure 4 shows the major part of the Simile implementation of Vanclay’s(1989a)model.The ba submodel at top left simply tabulates the basal area and volume per tree by size class and by species;it provides a collation role and serves no functional purpose.The series of variables at top right extract the relevant species-specific parameters for use in other functions.Four symbols at bottom right influence the number of records in the tree list,creating the initial number(),adding recruitment (),splitting records(),and removing redundant records()when they represent an infinitesimal stocking.The key functional components of this submodel lie within the Size and Stems submodels which estimate diameter increment and mortality respectively.Between these are two variables,rate and split,that deal with serial correlation of increments and record splitting respectively.When a large cohort is split into two smaller cohorts with faster and slower than average growth,rate maintains this growth difference to preserve the serial correlation specified by the user.

    Figure 5 illustrates the recruitment submodel,which predicts regeneration within each species group,standardises it to the total expected recruitment(Vanclay, 1989a),and adds the stem count to a tally of saplings (by species class).When one of these counts exceeds a user-specified threshold,recruitment to the main model is initiated.This Recruitment submodel is functionally similar,but does not exactly replicate the algorithm in the original Fortran model,which initiated five new records at each time step,and subsequently amalgamated them during the process of rationalizing the Tree list. The approach illustrated in Figure 5 accumulates saplings until one of the species groups exceeds the userspecified threshold of abundance,and then transfers members of that species group to the main tree list. This approach minimizes the housekeeping required within the main Tree list submodel,and reproduces the commonly-observed tendency for rainforest recruitment to be clustered in time and space(e.g.,Okuda et al., 1997;Connell and Green,2000;Nebel et al.,2001;Kariuki et al.,2006).

    Figure 5 Recruitment submodel simulates regeneration and recruitment.

    This alterative way to process recruitment illustrates one of the benefits of recasting models:advances in computer technology have created more revealing ways to represent concepts,and pose fewer restrictions on computational resources,allowing modellers to focus on good representations rather than computational efficiency(Vanclay,2003).The challenge is for modellers to break free of old paradigms and fully exploit these new opportunities,and not merely follow a well-trodden path without question.Leary(1985,p.47),commenting on a related matter,warned that“what began as an interim solution(site index)to a difficult problem(geocentric approach[to site productivity estimation])should notnow be called the solution to the original problem”and his caveat applies equally to modelling.

    Figure 6 The complete model of Vanclay(1989a)implemented in Simile,with enhancements.

    Figure 6 illustrates the complete model,a Simile equivalent of Vanclay’s(1989a)Fortran simulator,which differs from the original in only a few minor respects.The Run control submodel(left,middle)contains a slider that enables users to adjust parameters that were deeply embedded in the original Fortran code,that control the frequency and variance of record splitting,the serial correlation of increments,and the granularity of the simulator.The ability to vary granularity was not available in Vanclay’s(1989a)model which was aimed at estate-level planning,and was implemented only later (Vanclay,1991a).Granularity deals with the‘lumpiness’(cf.sugar lumps versus table sugar)of outputs and the use of stochastic functions.If a user stipulates a coarse granularity(e.g.,1.0),the simulator behaves as a single tree model with stochastic mortality of stems with frequency<1/ha so that individual tree records always represent at least 1 tree per hectare.In contrast,fine granularity(e.g.,<0.01)ensures deterministic outputs with a resolution characteristic of estate-level averages.

    In the original Fortran simulator,record splitting was hard-coded to assign 1.3 times the average increment to a quarter of the stems,whilst the remaining stems were assigned 0.9 times the predicted increment.In Figure 6, these growth rates are under user control as an easilyaccessible slider.The conditions for initiating record splitting and the degree of serial correlation of increments were hidden deep in the original Fortran code,but are under user control as a slider in Figure 6.These controls could be shown explicitly as separate sliders,but for compactness are here compressed into a single vector.

    The Parameters submodel(Figure 6,top right)contains parameters for diameter increment(Anon,1987), for mortality and recruitment(Vanclay,1989a),for volume estimation(Anon,1981),and for harvesting and logging damage(Preston and Vanclay,1988).The practice of collating all parameters into one submodel(rather than scattering them throughout the model)facilitates verification and maintenance of the simulator.The species grouping used in this model differs slightly from Vanclay (1989a)in using the same species groups for growth,harvesting and volume estimation,whereas Vanclay’s(1989a) model used a 3-digit species code,with each digit denoting the volume,harvesting or growth equation to be applied.These differences in the species grouping are minor, and the simplification employed here makes little practical difference and improves clarity for teaching.

    The Simile implementation of this model encourages exploration of simulator assumptions not possible in the original version.For instance,a slider labelled Force BA (Figure 6 top left)allows users to over-ride the calculated stand basal area and thus to explore growth patterns and possible thinning regimes by holding standing basal area constant.Such experimentation is easy to implement within Simile,and can offer new insights and better understanding of a simulator.

    Results

    Alternative strategies of record splitting may have considerable influence on predictions.Whilst differences mayappear rather small over a decade,they can accumulate to contribute substantial differences that may dramatically affect the timing of harvests which is typically influenced by the number of stems exceeding some threshold.This difference does not eventuate in the case of a single stem simulated as an individual tree model (granularity=1),but can be substantial when cohorts of post-disturbance regeneration are simulated at the estate level(granularity<0.01).

    It is no longer possible to demonstrate a side-by-side comparison of the Fortran and Simile implementations of this model,because of agency restrictions and subsequent loss of the original source code(Vanclay 2006b). Whilst it would be possible to reconstruct a Fortran implementation from extant documentation,such reconstruction is unlikely to recreate an unbiased implementation given prior knowledge that the reconstruction would be used test for inadequate assumptions.However,it is possible to demonstate that the Simile implementation offers reasonable growth predictions:Figure 7 illustrates that a 50-year simulation compares favourably with growth observations on one of the plots with the longest measurement history(Experiment 78,Plot 1,last harvested in 1943).This plot was selected for this and subsequent comparisons because of the long duration of observation, the absence of disturbance,and the frequency of remeasures.Whilst Figure 7 is insufficient to serve as a formal evaluation,it serves as a simple reality check prior to the current question surrounding the influence of implicit assumptions in constructing the simulator.

    The simulator configuration presented in Figure 6 simplifies the testing of several assumptions:the threshold number of saplings for recruitment to be initiated,the magnitude of the swindle(i.e.,the variance of growth rates),the duration of serial correlation in growth rates, the threshold difference for a cohort to be split,and the granularity of mortality(i.e.,whether it emulates the individual tree or estate-level average).Most of these exhibit little sensitivity,and substantial changes in these parameters barely influence predictions likely to influence forest management–but two of these parameters have a substantial effect in the longer term:the magnitude of the swindle and the duration of serial correlation.Figure 8 illustrates that modest changes in these parameters cause substantial changes(i.e.±20%)in the predicted volume available during the 3rdsuccessive harvest with a nominal 40-year interval.This 120-year duration was adopted as the basis of comparison,because at the time the model was developed during the 1980s,three successive nondecliming harvests were commonly accepted as a criterion for sustainability(Higgins,1977;Preston and Vanclay, 1988;Botkin,1993;Vanclay,1996b).Ironically,the harvest predicted for the third cycle depends heavily on untested assumptions regarding the swindle and serial correlation (Figure 8),both of which are rarely examined during the commissioning of a simulator.The consequences are counter-intuitive:one might expect that serial correlation might lead to larger harvests,but the faster-growing cohorts are harvested first,so that later harvests are depressed when serial correlation continues for longer durations.In this particular case,these consequences are minor,as the model was enhanced and refined(Vanclay 1994a),and timber harvesting ceased(Vanclay 1996a),but this example highlights the importance of comprehensive sensitivity testing of all model components.The lesson from this study is not the importance of serial correlation(which may be less in models that use basal area in larger trees to predict increment,Ledermann andEckmüllner,2004),but of the possible consequences of untested assumptions.

    Figure 7 Predicted growth of forest in Experiment 78 Plot 1,showing observed and predicted basal areas during a 50-year period from the initial measurement in 1948.

    Figure 8 Predicted timber harvest during three 40-year harvesting cycles under three different assumptions.Note the difference in the predicted harvest during the third cycle.

    This re-appraisal of an established simulator should remind readers of the importance of sensitivity testing of assumptions,both explicit and implicit.Clearly,the constructs offered in software,the operating system and the hardware available may all influence the representation, implementation and performance of a simulator.It remains instructive for all modellers to constantly question whether a representation is faithful to their imagination or slave to the technology available,and to be aware that seemingly innocuous assumptios may have significant consequences for predictions.

    Discussion

    Vanclay’s(1989a)model was a proof-of-concept that signalled a change from long-established stand-table projection approaches(Higgins,1977)to dynamic simulation and yield scheduling(Vanclay,1990,1994a).Most of the embedded functional relationships were subsequently enhanced:site quality assessment(Vanclay,1989b),diameter increment(Vanclay,1991a),mortality(Vanclay,1991b), regeneration(Vanclay,1992),merchantability(Vanclay, 1991c)and harvesting(Vanclay,1989c)functions were all subsequently revised to include more species groups and more variables.However,the prototype simulator presented here in Simile offers pedagogic advantages as it embodies the design and structure of the operational version, without the additional complexity of many equations with multiple parameters(i.e.,hundreds of species and dozens of equations,each with several parameters).Despite its comparative simplicity,the simulator involves assumptions that appeared innocuous in the Fortran implementation,but are now revealed in Simile to have substantial consequences for resulting predictions.

    This practical example illustrates that the quality of a model cannot be judged independently of its implementation as a simulator,and that apparently minor assumptions made in implementing the simulator may have substantial influence on predictions.A motor car offers a familiar and pedagogic analogy:a perfect engine cannot perform well in an unroadworthy car,and the utility of the vehicle relies on its overall performance rather than its theoretical specifications.So it is with simulation models:the utility of a model depends in part on assumptions made during model implementation as a simulator,and it behoves modellers to reveal,document and test such assumptions.This requires some thoughtful reflection by the modelling team,as familiarity with a modelling environment may lead to the intuitive use of convenient constructs(e.g.,arrays in Fortran; submodels in Simile)without a full appreciation of the consequences for predictions.

    Other related experiences are also insightful:several colleagues have related anecdotes in which thoughtful bounding to avoid computation problems in a model (such as Y=max(βX,c))has resulted in the use of the upper bound(c)in most simulations,rather than the intended function βX.Sadly,many such discoveries are discovered only accidentally and belatedly,and they are rarely reported in the literature.

    This Simile representation makes the model accessible for teaching purposes,and encourages exploration into the consequences of implementation decisions such as record splitting that have received little consideration.Similar experiences have been reported during reengineering of the landscape model LANDIS(Scheller et al.,2010).Others have shared insights gained from converting a simulator from one computer language to another(e.g.,Cumming and Burton,1993),or to a hybrid implementation combining both code-based and iconbased software(e.g.,Smith et al.,2005;L?ttil? et al.,2010), but such conversion appears to offer fewer insights than re-engineering or recasting a simulator in visual environments.

    Conclusion

    Familiarity with a modelling platform,whether Fortran, Simile or otherwise,can be seductive,and can lure modellers into introducing untested assumptions for convenience of implementation.As demonstrated in this paper,such assumptions may have consequences greater than suspected.Modellers should remain conscious of all assumptions,should consider alternative implementations that make assumptions evident,and should conduct sensitivity tests to inform decisions.

    Competing interests

    The author declares that he has no competing interests.

    Received:30 July 2013 Accepted:29 October 2013

    Published:26 February 2014

    Alder D,Silva JNM(2000)An empirical cohort model for management of Terra Firme forests in the Brazilian Amazon.Forest Ecol Manag 130:141–157

    Anonymous(1981)Rainforest Volume Equations.Research Report No 3. Department of Forestry,Brisbane,Queensland,p 85,ISSN:0311-0893. National Library of Australia,index for this report series is http://trove.nla.gov. au/work/13313532

    Anonymous(1987)Rainforest increment studies.Research Report No 5. Department of Forestry,Brisbane,Queensland,pp 59–60,ISSN:0311-0893. National Library of Australia,index for this report series is http://trove.nla.gov. au/work/13313532

    Blackwell GL,Potter MA,Minot EO(2001)Rodent and predator population dynamics in an eruptive system.Ecol Modell 142(3):227–245

    Bossel H(1991)Modelling forest dynamics:Moving from description to explanation.Forest Ecol Manag 42:129–142

    Botkin DB(1993)Forest Dynamics:an ecological model.Oxford University Press, Oxford,309 pp

    Brown WJ,Malveau RC,McCormick HW,Mowbray TJ(1998)AntiPatterns: Refactoring Software,Architectures,and Projects in Crisis.Wiley,New York. ISBN:0-471-32929-0

    Buckman RE(1962)Growth and yield of red pine in Minnesota.Tech.Bulletin No. 1272,U.S.Department of Agriculture,Forest Service.http://books.google.fi/ books?id=j3e2J5mHYmgC

    Clark DA,Clark DB(1999)Assessing the growth of tropical rain forest trees:Issues for forest modeling and management.Ecol Applications 9:981–997

    Clutter JL(1963)Compatible growth and yield models for loblolly pine.Forest Sci 9(3):354–371

    Cole DM,Stage AR(1972)Estimating future diameters of lodgepole pine. Res.Pap.INT-131.U.S.Department of Agriculture,Forest Service, Intermountain Forest and Range Experiment Station,Ogden UT,p 20

    Connell JH,Green PT(2000)Seedling dynamics over thirty-two years in a tropical rain forest tree.Ecology 81:568–584

    Crookston NL,Dixon GE(2005)The forest vegetation simulator:A review of its structure,content,and applications.Comput Electron Agric 49:60–80

    Cumming SG,Burton PJ(1993)A programmable shell and graphics system for forest stand simulation.Environ Model Software 8:219–230

    Davey C,Ougham HJ,Millar A,Thomas H,Tindal C,Muetzelfeldt R(2009)PlaSMo: Making existing plant and crop mathematical models available to plant systems biologists.Comp Biochem Physiol A Mol Integr Physiol 153:S225–S226

    Doerr HM(1996)Stella ten years later:A review of the literature.Int J Comput Math Learning 1(2):201–224

    Dufour-Kowalski S,Courbaud B,Dreyfus P,Meredieu C,de Coligny F(2012) Capsis:an open software framework and community for forest growth modelling.Ann For Sci 69:221–233

    Duursma RA,Robinson AP(2003)Bias in the mean tree model as a consequence of Jensen’s inequality.For Ecol Manage 186:373–380

    Elkin C,Reineking B,Bigler C,Bugmann H(2012)Do small-grain processes matter for landscape scale questions?Sensitivity of a forest landscape model to the formulation of tree growth rate.Landscape Ecol 27(5):697–711

    Eskrootchi R,Oskrochi GR(2010)A Study of the efficacy of project-based learning integrated with computer-based simulation-STELLA.Educ Tech Soc 13(1):236–245

    Ford A(1999)Modeling the environment:an introduction to system dynamics modeling of environmental systems.Island Press,Washington DC,USA,ISBN: 1-55963-600-9

    Garcia O(2013)Forest stands as dynamical systems:an introduction.Mod Appl Sci 7(5):32–38

    Garcia O,Ruiz F(2003)A growth model for eucalypt in Galicia,Spain.For Ecol Manage 173:49–62

    Haggith M,Prabhu R,Pierce Colfer CJ,Ritchie B,Thomson A,Mudavanhu H (2003)Infectious ideas:modelling the diffusion of ideas across social networks.Small-scale Forest 2:225–239

    Hamilton DA Jr(1994)Uses and abuses of multipliers in the Stand Prognosis Model.Gen.Tech.Rep.INT-GTR-310.U.S.Department of Agriculture, Forest Service,Intermountain Research Station,Ogden,UT,p 9.http://gis.fs. fed.us/fmsc/ftp/fvs/docs/gtr/multipl.pdf

    Hedayat AS,Su G(2012)Robustness of the simultaneous estimators of location and scale from approximating a histogram by a normal density curve. Am Stat 66(1):25–33

    Higgins MD(1977)A sustained yield study of north Queensland rainforests. Department of Forestry,Brisbane,Queensland,p 182

    Jacoby JE,Harrison S(1962)Multi‐variable experimentation and simulation models.Nav Res Logist Q 9(2):121–136

    Jensen JL(1906)Sur les fonctions convexes et les inégualités entre les valeurs moyennes.Acta Mathematica 30:175–193

    Kalgraf K(1979)The dynamics of a simple stand.In:L?nnstedt L,Randers J(eds) Wood Resource Dynamics in the Scandinavian Forestry Sector,vol 152, Studia Forestalia Suecica.,pp 55–66

    Kariuki M,Kooyman RM,Smith RGB,Wardell-Johnson G,Vanclay JK(2006) Regeneration changes in tree species abundance,diversity and structure in logged and unlogged subtropical rainforest over a thirty six year period. For Ecol Manage 236:162–176

    K?hler P,Huth A(1998)The effects of tree species grouping in tropical rain forest modelling:Simulations with the individual based model Formind.Ecol Modell 109:301–321

    L?ttil? L,Hilletofth P,Lin B(2010)Hybrid simulation models–when,why,how? Expert Syst Appl 37(12):7969–7975

    Leary RA(1985)Interaction Theory in Forest Ecology and Management.Nijnhoff, Dordrecht,219 pp

    Ledermann T,Eckmüllner O(2004)A method to attain uniform resolution of the competition variable Basal-Area-in-Larger Trees(BAL)during forestgrowth projections of small plots.Ecol Modell 171:195–206

    Muetzelfeldt R(2004)Position paper on declarative modelling in ecological and environmental research.European Commission Directorate-General for Research,Sustainable Development,Global Change and Ecosystems, ISBN:92-894-5212-9.http://simileweb.com/documents/dmeer.pdf

    Muetzelfeldt R(2010)A generic approach for representing complex structures in biological models.Nat Precedings,doi:10.1038/npre.2010.5188.1

    Muetzelfeldt R,Massheder J(2003)The Simile visual modelling environment. Eur J Agron 18:345–358

    Muetzelfeldt R,Taylor J(1997)The suitability of AME(the Agroforestry Modelling Environment)for agroforestry modelling.Agro Forum 8(2):7–9

    Muetzelfeldt R,Robertson D,Bundy A,Uschold M(1989)The use of Prolog for improving the rigour and accessibility of ecological modelling.Ecol Modell 46:9–34

    Nebel G,Dragsted J,Vanclay JK(2001)Structure and floristic composition of flood plain forests in the Peruvian Amazon:II.The understorey of restinga forests.For Ecol Manage 150:59–77

    Okuda T,Kachi N,Yap SK,Manokaran N(1997)Tree distribution pattern and fate of juveniles in a lowland tropical rain forest–implications for regeneration and maintenance of species diversity.Plant Ecol 131:155–171

    Ong PC,Kleine M(1996)DIPSIM:Dipterocarp forest growth simulation model–a tool for forest-level management planning.In:Schulte A(ed)Dipterocarp Forest Ecosystems:Towards sustainable management.World Scientific, Singapore,pp 228–246,ISBN:9810227299

    Picard N,Franc A(2003)Are ecological groups of species optimal for forest dynamics modelling?Ecol Modell 163:175–186

    Porte A,Bartelink HH(2002)Modelling mixed forest growth:a review of models for forest management.Ecol Modell 150:141–188

    Prabhu R,Haggith M,Mudavanhu H,Muetzelfeldt R,Standa-Gunda W,Vanclay JK (2003)ZimFlores:a model to advise co-management of the Mafungautsi Forest in Zimbabwe.Small-scale For 2:185–210

    Preston RA,Vanclay JK(1988)Calculation of timber yields from north Queensland rainforests.Queensland Department of Forestry,Technical Paper No 47,p 19 http://espace.library.uq.edu.au/eserv/UQ:8264/R008_tp47.pdf

    Pretzsch H,Biber P,Dursky J,von Gadow K,Hasenauer H,K?ndler G,Kenk G, Kublin E,Nagel J,Pukkala T,Skovsgaard JP,Sodtke R,Sterba H(2002) Recommendations for standardized documentation and further development of forest growth simulators.Forstw Cbl 121:138–151

    Reineke LH(1927)A modification of Bruce’s method of preparing timber yield Tables.J Agric Res 35:843–856

    Robinson AP,Monserud RA(2003)Criteria for comparing the adaptability of forest growth models.Forest Ecol Manag 172:53–67

    Scheller RM,Sturtevant BR,Gustafson EJ,Ward BC,Mladenoff DJ(2010)Increasing the reliability of ecological models using modern software engineering techniques.Front Ecol Environ 8:253–260

    Simon G(1976)Computer simulation swindles,with applications to estimates of location and dispersion.Appl Statist 25:266–274

    Simulistics(2013)Simile at a glance.Simulistics Ltd,http://www.simulistics.com/ overview.htm[16 May 2013]

    Smith FP,Holzworth DP,Robertson MJ(2005)Linking icon-based models to code-based models:a case study with the agricultural production systems simulator.Agricult Sys 83(2):135–151

    Stage AR(1973)Prognosis model for stand development.Res.Pap.INT-137. U.S.Department of Agriculture Forest Service,Intermountain Forest and Range Experiment Station,p 32

    Valle D(2011)Incorrect representation of uncertainty in the modeling of growth leads to biased estimates of future biomass.Ecol Applications 21(4):1031–1036

    Vanclay JK(1983)Techniques for modelling timber yield from indigenous forests with special reference to Queensland.M.Sc.Thesis,University of Oxford, U.K,194 p

    Vanclay JK(1989a)A growth model for north Queensland rainforests.Forest Ecol Manag 27:245–271

    Vanclay JK(1989b)Site productivity assessment in rainforests:an objective approach using indicator species.In:Wan Razali M,Chan HT,Appanah S (eds)Proceedings of the Seminar on Growth and Yield in Tropical Mixed/ Moist Forests,20-24 June 1988.Forest Research Institute Malaysia,Kuala Lumpur,pp 225–241

    Vanclay JK(1989c)Modelling selection harvesting in tropical rain forests.J Trop For Sci 1:280–294

    Vanclay JK(1990)Design and implementation of a state-ofthe-art inventory and forecasting system for indigenous forests.In:Lund HG,Preto G(eds)Global Natural Resource Monitoring and Assessment:Preparing for the 21st century, proceedings of the international conference and workshop,September 24-30,1989.Fondazione G.Cini,Isle of San Giorgio Maggiore,Venice,Italy, pp 1072–1078.http://espace.library.uq.edu.au/view/UQ:8268

    Vanclay JK(1991a)Compatible deterministic and stochastic predictions by probabilistic modelling of individual trees.Forest Sci 37:1656–1663

    Vanclay JK(1991b)Mortality functions for north Queensland rainforests.J Trop Forest Sci 4:15–36

    Vanclay JK(1991c)Modelling changes in the merchantability of individual trees in tropical rainforest.Commonw Forest Rev 70:105–111

    Vanclay JK(1991d)Data requirements for developing growth models for tropical moist forests.Commonw Forest Rev 70:248–271

    Vanclay JK(1992)Modelling regeneration and recruitment in a tropical rainforest. Can J Forest Res 22:1235–1248

    Vanclay JK(1994a)Sustainable timber harvesting:Simulation studies in the tropical rainforests of north Queensland.Forest Ecol Manag 69:299–320

    Vanclay JK(1994b)Modelling Forest Growth and Yield:Applications to Mixed Tropical Forests.CAB International,Wallingford,U.K.

    Vanclay JK(1996a)Lessons from the Queensland rainforests:Steps towards sustainability.J Sustainable Forest 3(2/3):1–27

    Vanclay JK(1996b)Assessing the sustainability of timber harvests from natural forests:Limitations of indices based on successive harvests.J Sustainable Forest 3(4):47–58

    Vanclay JK(2003)Realizing opportunities in forest growth modelling.Can J Forest Res 33:536–541

    Vanclay JK(2006a)Spatially-explicit competition indices and the analysis of mixed-species plantings with the Simile modelling environment.Forest Ecol Manag 233:295–302

    Vanclay JK(2006b)Can the lessons from the community rainforest reforestation program in eastern Australia be learned?Int Forest Rev 8(2):256–264

    Villa F,Athanasiadis IN,Rizzoli AE(2009)Modelling with knowledge:a review of emerging semantic approaches to environmental modelling.Environ Model Software 24:577–587

    Weiskittel AR,Hann DW,Kershaw JA,Vanclay JK(2011)Forest Growth and Yield Modeling.Wiley,New York,pp 430,ISBN:978-0-470-66500-8

    Wirth N(1985)Algorithms+Data Structures=Programs(Vol.76).Prentice Hall, Upper Saddle River,NJ,USA ISBN:0130224189

    Cite this article as:Vanclay:Unsuspected implications arising from assumptions in simulations:insights from recasting a forest growth model in system dynamics.Forest Ecosystems 2014 1:7.

    10.1186/2197-5620-1-7

    Correspondence:JVanclay@scu.edu.au

    Southern Cross University,PO Box 157,Lismore,NSW 2480,Australia

    ?2014 Vanclay;licensee Springer.This is an Open Access article distributed under the terms of the Creative Commons

    Attribution License(http://creativecommons.org/licenses/by/2.0),which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.

    Methods:Familiarity with a technique can lead to complacency,and alternative approaches and software can reveal untested assumptions.Visual modelling environments based on system dynamics may help to make critical assumptions more evident by offering an accessible visual overview and empowering a focus on representational rather than computational efficiency.This capacity is illustrated using a cohort-based forest growth model developed for mixed species forest.

    Results:The alternative model implementation revealed that untested assumptions in the original model could have substantial influence on simulated outcomes.

    Conclusions:An important implication is that modellers should remain conscious of all assumptions,consider alternative implementations that reveal assumptions more clearly,and conduct sensitivity tests to inform decisions.

    桃色一区二区三区在线观看| 1024视频免费在线观看| 极品人妻少妇av视频| 国产人伦9x9x在线观看| 岛国在线观看网站| 韩国精品一区二区三区| 中文字幕人妻丝袜一区二区| 禁无遮挡网站| 午夜免费鲁丝| 一区二区三区高清视频在线| 日韩欧美一区视频在线观看| 性色av乱码一区二区三区2| 很黄的视频免费| 国产精品永久免费网站| 亚洲专区国产一区二区| 亚洲激情在线av| 亚洲黑人精品在线| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 日韩高清综合在线| 亚洲欧洲精品一区二区精品久久久| 又黄又爽又免费观看的视频| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 91大片在线观看| 亚洲五月色婷婷综合| 亚洲片人在线观看| 1024视频免费在线观看| 精品久久久久久久久久免费视频| 老汉色∧v一级毛片| 黄色女人牲交| 亚洲精品久久国产高清桃花| 亚洲情色 制服丝袜| 亚洲欧美精品综合一区二区三区| 国产91精品成人一区二区三区| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 热re99久久国产66热| 黄网站色视频无遮挡免费观看| 一区二区日韩欧美中文字幕| a在线观看视频网站| 日本三级黄在线观看| 激情在线观看视频在线高清| 欧美午夜高清在线| 久久九九热精品免费| 欧美久久黑人一区二区| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级 | 午夜免费激情av| 国产精品永久免费网站| 成人特级黄色片久久久久久久| 国产免费av片在线观看野外av| 久久久久久久久久久久大奶| 黄片播放在线免费| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 两人在一起打扑克的视频| 国产熟女xx| 午夜免费成人在线视频| 香蕉丝袜av| 中文字幕色久视频| 欧美激情久久久久久爽电影 | 黑人欧美特级aaaaaa片| 少妇粗大呻吟视频| 香蕉丝袜av| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 国产男靠女视频免费网站| 嫩草影院精品99| 亚洲欧美激情综合另类| 又黄又爽又免费观看的视频| 岛国视频午夜一区免费看| 亚洲五月婷婷丁香| xxx96com| 99国产极品粉嫩在线观看| 精品久久久久久久毛片微露脸| 亚洲欧美激情综合另类| www.999成人在线观看| 国产欧美日韩一区二区精品| 亚洲国产欧美网| 涩涩av久久男人的天堂| 夜夜爽天天搞| 夜夜躁狠狠躁天天躁| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 九色国产91popny在线| 在线观看www视频免费| 99精品欧美一区二区三区四区| 香蕉国产在线看| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 91成年电影在线观看| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| 久久精品国产亚洲av高清一级| 精品日产1卡2卡| 777久久人妻少妇嫩草av网站| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 真人做人爱边吃奶动态| 男女午夜视频在线观看| 日本 欧美在线| 日韩欧美国产在线观看| 老汉色∧v一级毛片| 久久久久久久午夜电影| 99久久综合精品五月天人人| 午夜两性在线视频| 亚洲狠狠婷婷综合久久图片| 亚洲男人的天堂狠狠| 少妇 在线观看| 精品乱码久久久久久99久播| 99久久国产精品久久久| 又黄又爽又免费观看的视频| 日韩欧美一区视频在线观看| 日韩欧美免费精品| 免费女性裸体啪啪无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区在线不卡| 精品国产国语对白av| 不卡一级毛片| 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| 这个男人来自地球电影免费观看| 成人三级做爰电影| 国产免费男女视频| 欧美亚洲日本最大视频资源| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 一边摸一边抽搐一进一小说| e午夜精品久久久久久久| 久久久久国产一级毛片高清牌| 午夜久久久久精精品| 成人国产综合亚洲| 久久欧美精品欧美久久欧美| 一进一出好大好爽视频| 大陆偷拍与自拍| 久久久久国内视频| 免费不卡黄色视频| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 免费看a级黄色片| 啦啦啦 在线观看视频| 一边摸一边抽搐一进一小说| 自拍欧美九色日韩亚洲蝌蚪91| 精品高清国产在线一区| 国产一级毛片七仙女欲春2 | 欧美成人午夜精品| av中文乱码字幕在线| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 亚洲电影在线观看av| 色综合站精品国产| 亚洲国产精品久久男人天堂| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 一级毛片高清免费大全| av在线播放免费不卡| 午夜免费激情av| 成人精品一区二区免费| 18禁国产床啪视频网站| 成人国语在线视频| 999精品在线视频| 亚洲性夜色夜夜综合| 99久久综合精品五月天人人| 午夜精品国产一区二区电影| 亚洲精品中文字幕一二三四区| 久久久久精品国产欧美久久久| 亚洲国产欧美日韩在线播放| 99国产精品一区二区蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 搞女人的毛片| 老汉色av国产亚洲站长工具| 日韩欧美在线二视频| 亚洲国产欧美日韩在线播放| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| 国产区一区二久久| 黄色 视频免费看| 99国产综合亚洲精品| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 久久人人爽av亚洲精品天堂| 免费少妇av软件| 91国产中文字幕| 亚洲午夜理论影院| 国产精品二区激情视频| 成人国语在线视频| 老熟妇仑乱视频hdxx| 亚洲一码二码三码区别大吗| 精品久久久久久久人妻蜜臀av | 一进一出抽搐动态| 在线观看66精品国产| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 香蕉久久夜色| 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| av中文乱码字幕在线| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 99热只有精品国产| 老司机午夜福利在线观看视频| 亚洲三区欧美一区| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 亚洲自拍偷在线| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 久久精品影院6| 精品一区二区三区四区五区乱码| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 日韩大尺度精品在线看网址 | 我的亚洲天堂| 久久精品国产亚洲av香蕉五月| 久久久国产成人免费| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 欧美+亚洲+日韩+国产| 亚洲精华国产精华精| 男男h啪啪无遮挡| 亚洲片人在线观看| 好男人在线观看高清免费视频 | 美女午夜性视频免费| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| 久久青草综合色| 精品国产一区二区三区四区第35| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| a级毛片在线看网站| 国产成人精品久久二区二区免费| 99热只有精品国产| www.熟女人妻精品国产| 午夜福利18| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 免费高清视频大片| 亚洲男人的天堂狠狠| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 亚洲色图av天堂| 大陆偷拍与自拍| 精品国产乱子伦一区二区三区| 国产真人三级小视频在线观看| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 一夜夜www| 成人精品一区二区免费| 男女床上黄色一级片免费看| 亚洲第一电影网av| 美女午夜性视频免费| 人人妻人人澡人人看| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 亚洲一区二区三区不卡视频| 在线天堂中文资源库| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 国产av又大| 色老头精品视频在线观看| 午夜福利免费观看在线| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| 丝袜在线中文字幕| 日韩高清综合在线| 精品不卡国产一区二区三区| 啪啪无遮挡十八禁网站| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站 | 成人精品一区二区免费| 19禁男女啪啪无遮挡网站| 91大片在线观看| 午夜福利欧美成人| 中文字幕色久视频| 波多野结衣高清无吗| 给我免费播放毛片高清在线观看| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲综合一区二区三区_| 黄色a级毛片大全视频| 婷婷六月久久综合丁香| 亚洲男人的天堂狠狠| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 午夜福利视频1000在线观看 | 在线观看日韩欧美| 国产高清视频在线播放一区| 麻豆国产av国片精品| 亚洲五月色婷婷综合| 国产成人精品无人区| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频 | 91在线观看av| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区免费| 亚洲无线在线观看| 久久国产亚洲av麻豆专区| 91精品三级在线观看| av天堂久久9| av在线播放免费不卡| 久久精品国产99精品国产亚洲性色 | 一进一出抽搐gif免费好疼| 日韩大码丰满熟妇| 麻豆成人av在线观看| 欧美在线一区亚洲| 老司机在亚洲福利影院| 一级片免费观看大全| 无限看片的www在线观看| 国产一区二区三区在线臀色熟女| 精品国产国语对白av| 琪琪午夜伦伦电影理论片6080| 久久热在线av| 欧美黑人欧美精品刺激| 国产片内射在线| 在线观看一区二区三区| 午夜久久久在线观看| 美女免费视频网站| 欧美成人免费av一区二区三区| 国产野战对白在线观看| 女人被狂操c到高潮| 最好的美女福利视频网| x7x7x7水蜜桃| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产麻豆69| 大型黄色视频在线免费观看| 国内精品久久久久久久电影| 嫩草影视91久久| 在线观看日韩欧美| 韩国精品一区二区三区| 免费不卡黄色视频| 在线视频色国产色| 久久草成人影院| 国产三级在线视频| 国产97色在线日韩免费| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 男人舔女人的私密视频| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 97碰自拍视频| e午夜精品久久久久久久| av中文乱码字幕在线| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 婷婷丁香在线五月| 婷婷六月久久综合丁香| 国产日韩一区二区三区精品不卡| www.999成人在线观看| 亚洲在线自拍视频| 天堂√8在线中文| 精品国产乱子伦一区二区三区| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 久久精品亚洲熟妇少妇任你| 免费人成视频x8x8入口观看| 久久国产精品影院| 日本 欧美在线| 欧美日韩精品网址| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 久久久久久免费高清国产稀缺| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| 久久九九热精品免费| 色哟哟哟哟哟哟| 好男人在线观看高清免费视频 | 亚洲熟妇熟女久久| 国产成人免费无遮挡视频| 91成年电影在线观看| 精品国产国语对白av| 久久中文字幕一级| 激情在线观看视频在线高清| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 欧美在线黄色| 精品久久久久久成人av| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 亚洲熟妇熟女久久| 国产亚洲精品av在线| 久久人妻福利社区极品人妻图片| 美女国产高潮福利片在线看| 又大又爽又粗| 亚洲一区二区三区色噜噜| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 成人国语在线视频| 日本 av在线| 亚洲天堂国产精品一区在线| 天堂动漫精品| 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区| 成人国产综合亚洲| 一区二区三区精品91| 亚洲中文字幕一区二区三区有码在线看 | 精品卡一卡二卡四卡免费| 免费看美女性在线毛片视频| 手机成人av网站| 午夜福利在线观看吧| 精品国产超薄肉色丝袜足j| av福利片在线| 亚洲成人精品中文字幕电影| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 午夜福利视频1000在线观看 | 精品久久蜜臀av无| 亚洲视频免费观看视频| 国产精品电影一区二区三区| 丝袜美腿诱惑在线| av免费在线观看网站| a在线观看视频网站| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 国产日韩一区二区三区精品不卡| 成人免费观看视频高清| 中文字幕精品免费在线观看视频| 欧美成人一区二区免费高清观看 | 久久性视频一级片| 日韩精品青青久久久久久| 99久久精品国产亚洲精品| 欧美在线黄色| 久久热在线av| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 高清毛片免费观看视频网站| 少妇粗大呻吟视频| 国产单亲对白刺激| 国产私拍福利视频在线观看| 91精品国产国语对白视频| 国产精品av久久久久免费| 在线十欧美十亚洲十日本专区| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 日韩一卡2卡3卡4卡2021年| 亚洲自拍偷在线| 日韩欧美在线二视频| 男女床上黄色一级片免费看| 咕卡用的链子| 麻豆av在线久日| 少妇粗大呻吟视频| 成年女人毛片免费观看观看9| 国产高清激情床上av| 九色国产91popny在线| 久久久久久久午夜电影| 日韩精品中文字幕看吧| 亚洲成av人片免费观看| 涩涩av久久男人的天堂| 久久久久精品国产欧美久久久| 亚洲熟妇熟女久久| 亚洲va日本ⅴa欧美va伊人久久| 一边摸一边抽搐一进一小说| 亚洲 国产 在线| 亚洲成国产人片在线观看| 精品国产美女av久久久久小说| 一级毛片精品| 亚洲一码二码三码区别大吗| 身体一侧抽搐| 欧美中文日本在线观看视频| 精品国产美女av久久久久小说| 一级毛片精品| 大型av网站在线播放| 精品一区二区三区视频在线观看免费| 操美女的视频在线观看| 精品国产美女av久久久久小说| 日日摸夜夜添夜夜添小说| 香蕉丝袜av| 国产精品亚洲一级av第二区| 精品无人区乱码1区二区| 在线观看免费视频网站a站| 黄片播放在线免费| 精品国产乱码久久久久久男人| 麻豆成人av在线观看| 国产麻豆成人av免费视频| 国产又色又爽无遮挡免费看| 日韩大尺度精品在线看网址 | 国产亚洲精品久久久久久毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品999在线| 亚洲国产精品久久男人天堂| 国产精品日韩av在线免费观看 | 在线观看免费日韩欧美大片| 最好的美女福利视频网| 制服人妻中文乱码| 久久久精品欧美日韩精品| 国产精品免费视频内射| 久99久视频精品免费| 丁香欧美五月| 国产在线精品亚洲第一网站| 少妇裸体淫交视频免费看高清 | 国产精品一区二区在线不卡| 亚洲狠狠婷婷综合久久图片| 女同久久另类99精品国产91| 精品一区二区三区四区五区乱码| 黄色女人牲交| 亚洲av成人一区二区三| 老鸭窝网址在线观看| 999精品在线视频| 国产97色在线日韩免费| 99热只有精品国产| 欧美绝顶高潮抽搐喷水| 亚洲成av人片免费观看| 在线视频色国产色| 精品国产乱子伦一区二区三区| 日本a在线网址| 麻豆久久精品国产亚洲av| 久久久久国产一级毛片高清牌| 亚洲成av片中文字幕在线观看| av电影中文网址| 在线观看免费日韩欧美大片| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 叶爱在线成人免费视频播放| 亚洲电影在线观看av| 欧美中文日本在线观看视频| 91精品三级在线观看| 在线十欧美十亚洲十日本专区| 久9热在线精品视频| 国产又色又爽无遮挡免费看| 免费一级毛片在线播放高清视频 | 午夜视频精品福利| 色综合欧美亚洲国产小说| 啦啦啦 在线观看视频| 欧美不卡视频在线免费观看 | 国产精品久久视频播放| 此物有八面人人有两片| 正在播放国产对白刺激| 一个人免费在线观看的高清视频| 亚洲人成网站在线播放欧美日韩| bbb黄色大片| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区免费| www.www免费av| 日本五十路高清| 亚洲情色 制服丝袜| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 欧美日韩中文字幕国产精品一区二区三区 | 免费少妇av软件| 亚洲色图综合在线观看| 大型av网站在线播放| 久久人人97超碰香蕉20202| 亚洲欧洲精品一区二区精品久久久| 亚洲av电影在线进入| 亚洲五月色婷婷综合| 欧美黄色淫秽网站| 免费高清视频大片| 老司机在亚洲福利影院| 免费在线观看亚洲国产| 岛国视频午夜一区免费看| 757午夜福利合集在线观看| 久久香蕉激情| 婷婷六月久久综合丁香| 欧美乱码精品一区二区三区| 国产av又大| 久久精品aⅴ一区二区三区四区| 亚洲精品av麻豆狂野| 一级,二级,三级黄色视频| 国产亚洲精品第一综合不卡| 一级毛片女人18水好多| 日本 欧美在线| 涩涩av久久男人的天堂| 看免费av毛片| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3 | 日韩高清综合在线| 丁香欧美五月| 亚洲中文日韩欧美视频| 日韩大码丰满熟妇| 巨乳人妻的诱惑在线观看| 波多野结衣巨乳人妻| 久久久久九九精品影院| 成人三级黄色视频| 窝窝影院91人妻| 在线观看午夜福利视频| 一级a爱片免费观看的视频| 久久 成人 亚洲| 亚洲五月婷婷丁香| 男女下面进入的视频免费午夜 | 老熟妇乱子伦视频在线观看|