馬志霞, 宋建成, 雷開彬
(西南民族大學(xué)計算機科學(xué)與技術(shù)學(xué)院, 四川 成都 610041)
具有時滯的中立型泛函微分方程解的漸近性
馬志霞, 宋建成, 雷開彬
(西南民族大學(xué)計算機科學(xué)與技術(shù)學(xué)院, 四川 成都 610041)
提出了算子一致有界和一致終結(jié)有界的概念,討論了具有限時滯的中立型泛函微分方程解的一致有界和一致終結(jié)有界性,利用Lyapunov泛函方法得到了一致有界和一致終結(jié)有界性的充分條件, 給出了具有限時滯中立型泛函微分方程的解一致有界和一致終結(jié)有界性的新判據(jù).一些近期文獻中的結(jié)果得到了推廣,并給出了一個實例說明其結(jié)論的應(yīng)用.
中立型泛函微分方程; 一致有界; 一致終結(jié)有界
關(guān)于時滯泛函微分方程解的漸近性,國內(nèi)外學(xué)者已進行了卓有成效的研究[1-5].而對于解的漸近性,尤其是關(guān)于周期解的存在性更為人們所關(guān)注[6-11].而微分系統(tǒng)解的一致有界和一致終結(jié)有界, 與判斷該系統(tǒng)是否存在周期解有很密切聯(lián)系.在近幾十年中, 有關(guān)微分系統(tǒng)解的有界性已有不少討論[12-13],但對中立型微分系統(tǒng)的討論甚少.本文給出具有限時滯的中立型泛函微分方程解的一致有界和一致終結(jié)有界的充分條件,將近期文獻中關(guān)于滯后型微分系統(tǒng)解的一致有界性與一致終結(jié)有界性推廣到中立型時滯微分系統(tǒng).
考慮具有限時滯的中立型泛函微分系統(tǒng)
定義1[14]稱(1)的解是
(i) 一致有界的, 如果對每一個B1> 0, 存在B2> 0, 使得任意
(ii) 關(guān)于界B是一致終結(jié)有界的, 如果對任意B3> 0, 存在T > 0, 使得任意
并使得
(i) 算子D一致有界;
則(1)的解一致有界.如果條件(i)改為算子D一致終結(jié)有界, 則(1)的解一致終結(jié)有界.
下面證明解的一致終結(jié)有界性.
由情形Ⅱ, 矛盾.
考慮如下標(biāo)量方程
則(3)的解一致有界和一致終結(jié)有界.
交換積分次序可得
于是, 在所假定條件下, 定理中的條件全部滿足, 因此, (3)之解一致有界和一致終結(jié)有界.
[1]HALE J K.Theory of Functional Differential Equations[M].New York: Springer-Verlag, 1977:61-66.
[2]李森林, 溫立志.泛函微分方程[M].長沙:湖南出版社, 1987:45-60.
[3]鄭祖庥.泛函微分方程[M].合肥:安徽教育出版社, 1994:71-74.
[4]馬志霞, 吳曉丹.中立型泛函微分方程零解的一致漸近穩(wěn)定性[J].西南民族大學(xué): 自然科學(xué)版, 2004, 30(3) : 264-268.
[5]LOGEMANN H, RYAN E P.Asymptotic behavior of nonlinear system[J].The American Mathematical Monthly, 2004, 111(8): 864-889.
[6]LIU J H, NAITO T, MINH N V.Bounded and periodic solutions of infinite delay evolution equations[J].J Math Anal Appl, 2003, 286(7): 705-712.
[7]YANG Z, XU D.Existence and exponential stability of periodic solution for impulsive delay differential equations and applications, Nonlinear Anal, 2006, 64(2): 130-145.
[8]XU D Y, YANG Z.Existence theorems for periodic Markov process and stochastic functional differential equations[J].Discrete Contin Dyn Syst, 2009, 24(6): 1005-1023.
[9]ZHAO H.Existence and global attract of almost periodic solution for cellular neural network with distributed delays[J].Appl Math Comput, 2004, 154(6): 689-695.
[10]LIU B, HUANG L.Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equations [J].J Math Anal Appl, 2006, 322(3): 121-132.
[11]YE D, FAN M, WANG H.Periodic solutions for scalar functional differential equations[J].Nonlinear Anal, 2005, 62(6): 1157-1181.
[12]馬志霞.中立型泛函微分方程的有界性[J].四川師范大學(xué): 自然科學(xué)版, 1997, 20(6):32-37.
[13]FU X L, LIN X Z.Uniform boundedness and stability criteria in term of two measures for impulsive integro-differential equations[J].Appl Math Comput, 1999, 102(2): 237-255.
[14]BURTON T A.Stability and periodic solutions o f ordinary and functional differential equations[M].Orlando: Academic press, 1985: 56-62.
[15]XU D Y.Uniform asymptotic stability in terms of two measures functional differential equations[J].Nonlinear Anal, 1996, 27(4): 413-427.
Asymptotic property of neutral functional differential equation with delays
MA Zhi-xia, SONG Jian-cheng, LEI Kai-bin
(School of Computer Science & Technology, Southwest University for Nationalities, Chengdu 610041, P.R.C.)
This paper proposes concepts of uniform boundedness and uniform ultimate boundedness of operator. The uniform boundedness and uniform ultimate boundedness for neutral functional differential equation with finite delay is studied by using Lyapunov functional methods. A sufficient condition for uniform boundedness and uniform ultimate boundedness is obtained, given the neutral functional differential equation with finite delay solutions uniform boundedness and uniform ultimate boundedness new criterion. Some known results in recent literature are extended. An example is also discussed to illustrate the efficiency of the obtained retained results.
neutral functional differential equation; uniform boundedness; uniform ultimate boundedness
O175
A
1003-4271(2014)06-0895-05
10.3969/j.issn.1003-4271.2014.06.17
2014-09-01
馬志霞(1962-), 女, 漢族, 四川新都人, 教授, 研究方向: 微分方程與控制論; Email: mazx@swun.cn.
國家民委科研項目(12XNZ003); 西南民族大學(xué)重點項目(10NZD003); 中央高?;究蒲袠I(yè)務(wù)費專項資金項目優(yōu)秀科研團隊及重大孵化項目(12NZYTH04)