曹啟民,王 華,張永北,劉志崴,張廣宇,趙春梅
1. 海南省農(nóng)墾科學(xué)院,海南 海口 570206;2. 中國熱帶農(nóng)業(yè)科學(xué)院興隆香料飲料研究所,海南 萬寧 571737
熱帶磚紅壤生長的小白菜吸收和累積PAHs的特征
曹啟民1*,王 華2,張永北1,劉志崴1,張廣宇1,趙春梅1
1. 海南省農(nóng)墾科學(xué)院,海南 ???570206;2. 中國熱帶農(nóng)業(yè)科學(xué)院興隆香料飲料研究所,海南 萬寧 571737
為了了解和掌握熱帶土壤栽培的小白菜(Brassica rapa L. Chinensis Group.)對多環(huán)芳烴(PAHs)污染物的吸收和累積規(guī)律,為熱帶土壤的安全利用及農(nóng)產(chǎn)品安全生產(chǎn)提供科學(xué)依據(jù),于2013年5—9月在海南省農(nóng)墾科學(xué)院??谠囼炚揪W(wǎng)室內(nèi)進行了小白菜盆栽試驗。各處理土壤分別施加3種單體 PAHs 的質(zhì)量分數(shù)梯度為0、0.4、0.8、1.6、3.2 mg·kg-1,撒播小白菜種子出苗后,每盆留苗6株,自然條件,常規(guī)管理,各處理小白菜培養(yǎng)30 d后收獲。小白菜和土壤樣品,用超聲水浴萃取,層析小柱凈化后,利用氣相色譜-質(zhì)譜法測定樣品中的3種PAHs。結(jié)果表明,小白菜根和葉中3種PAHs累積量隨土壤施加質(zhì)量分數(shù)的升高而增加,根部和葉對Phe最大累積量分別為86.25 ng·g-1和37.18 ng·g-1,而對 BaP的最大累積量分別為20.78 ng·g-1和3.56 ng·g-1;小白菜根對Phe與Fla的生物富集系數(shù)較大,且二者無明顯差異,但對 BaP 的生物富集系數(shù)較小,且差異顯著(P=0.006);3種PAHs單體在各種處理土壤中的殘留在 84.49% ~ 94.03%之間,各單體之間無明顯差異,各處理之間也無明顯差異。說明熱帶土壤生長的小白菜根和葉中3種單體 PAHs 濃度顯著低于其土壤中的濃度,且根部積累3種單體PAHs的濃度顯著高于其葉中的濃度;小白菜葉對BaP的吸收和累積量極少;小白菜根更易吸收和累積Phe和Fla;小白菜生長30 d后,絕大部分PAHs仍殘留在土壤中。
多環(huán)芳烴;小白菜;累積;生物富集系數(shù);磚紅壤
多環(huán)芳烴(Polycyclic aromatic hydrocarbons, PAHs)是世界各國優(yōu)先控制的“三致”有機污染物,是我國土壤中來源較廣,污染程度較重的持久性有毒污染物(趙其國,2004)。它們極易被植物吸收累積,不僅影響植物的生長發(fā)育,而且還會通過食物鏈威脅人類的健康(宋玉芳等,1995)。PAHs進入土壤環(huán)境慢慢累積而形成污染(Hunk等, 2000; Maliszewska-Kordybach and Srnreczak, 2003; Mielke等, 2001; Shen等, 2005)。蔬菜是人們生活中必不可少的食物。近年來,人們對蔬菜的品質(zhì)提出了更高的要求,蔬菜的質(zhì)量安全受到了高度的關(guān)注。已有研究表明,世界許多地區(qū)土壤PAHs已導(dǎo)致蔬菜污染并威脅人類健康(Khan等, 2008; Sams?e–Petersen等, 2002; 宋波等,2006)。土壤中的PAHs可抑制陸生植物的早期生長發(fā)育(Sverdrup等, 2003),使植物表觀出現(xiàn)根毛減少,葉片黃化等癥狀,還會造成組織和細胞壞死等(Alkia等, 2005),直接影響植株高(宋雪英等,2006)和根外部形態(tài)等(陸志強等,2005),導(dǎo)致葉綠素含量(宋雪英等,2006)和酶活性(劉宛等,2003)等生理生化指標的改變。
海南是“全國冬季菜藍子基地”,小白菜(Brassica rapa L. Chinensis Group.)是人們?nèi)粘I钪惺秤幂^多綠葉蔬菜,因此本研究以最常見的小白菜為研究對象,開展典型的盆栽實驗,系統(tǒng)地研究菲(Phenanthrene, Phe)、熒蒽(Fluoranthene, Fla)和苯并a芘(Benzo (a) Pyrene, BaP)污染的磚紅壤中小白菜吸收、積累PAHs的規(guī)律,以期為染熱帶土壤的安全利用及農(nóng)產(chǎn)品安全生產(chǎn)提供科學(xué)依據(jù)。
1.1 試驗材料
1.1.1 土壤和種子
供試土壤為海南典型土壤類型磚紅壤(未檢測到PAHs),其基本理化性質(zhì)見表1,供試小白菜種子購買于市售,生產(chǎn)廠家為合肥合豐種業(yè)。
1.1.2 主要試劑和儀器
供試試劑菲(Phe)、熒蒽(Fla)和苯并a芘(BaP) (Supelco, USA),二氯甲烷、正己烷和丙酮(均為農(nóng)殘級,Sigma-aldrich, Germany);100~200目硅膠(超純, Silicycle, Canada)。
氣相色譜-質(zhì)譜聯(lián)用儀 (Thermo-Ultra Trace GC-DSQ, GC/MS),配備自動進樣器、TR-5ms毛細管色譜柱 (30 m×0.25 mm×0.25 μm)和Thermo化學(xué)工作站(X-calibur)。凍干機(LABCONCO4.5L, LABCONCO公司)。
1.2 試驗設(shè)計
盆栽試驗于2013年7—9月海南省農(nóng)墾科學(xué)院??谠囼炚揪W(wǎng)室內(nèi)進行,將預(yù)先制成的有機污染物丙酮溶液倒入2 kg土壤中,試驗各處理質(zhì)量分數(shù)為0、0.4、0.8、1.6、3.2 mg·kg-1,重復(fù)3次,攪拌均勻,置于黑暗條件下,待丙酮揮發(fā)干凈,將含各質(zhì)量分數(shù)有機物的土壤裝于瓦盆 (內(nèi)徑12 cm×高15 cm)中,加等量去離子水調(diào)節(jié)土壤含水量為最大持水量的60%,搗碎土壤以防止結(jié)塊,整平后往盆內(nèi)撒播小白菜種子,出苗后,每盆留苗6株。各處理置于自然條件下避雨培養(yǎng),常規(guī)管理。各處理培養(yǎng)30天后收獲。
1.3 提取與凈化
1.3.1 小白菜樣品
小白菜樣品提取與凈化:超聲萃取,層析柱凈化法(曹啟民,2009a)。
1.3.2 土壤樣品
土壤樣品提取與凈化:超聲萃取,層析柱凈化法(曹啟民,2009b;Cao等,2011)。
1.4 色譜條件
GC-MS檢測條件:GC-MS初溫設(shè)定為35 ℃,保持1 min,以30 ℃·min-1的速率升到150 ℃,再以10 ℃·min-1的速率升到290 ℃,保持15 min。離子源、氣-質(zhì)傳輸線溫度、進樣口和檢測器溫度分別設(shè)定為230、280、250、300 ℃。高純氦載氣流速為1 mL·min-1,無分流自動進樣1 μl。
1.5 數(shù)據(jù)的統(tǒng)計分析
數(shù)據(jù)統(tǒng)計分析及繪圖軟件采用SPSS 19.0 for windows、Origin 8.0和Excel 2010等。
表1 供試土壤理化性質(zhì)Table 1 Physicochemical properties of the tested soils
圖1 小白菜根和葉中累積3種單體PAHs的質(zhì)量分數(shù)Fig. 1 Three individual PAHs concentration in roots and leaves of pakchoi cabbage
2.1 3種PAHs在小白菜根和葉中的累積
3種PAHs在小白菜根部和地上部質(zhì)量分數(shù)見圖1。由圖1可知,小白菜根和葉中3種PAHs累積量隨土壤施加質(zhì)量分數(shù)的升高而增加,且不同處理間差異顯著(P=0.047)。3種PAHs在根中的質(zhì)量分數(shù)顯著大于葉中的質(zhì)量分數(shù)(P=0.009),表明小白菜吸收PAHs主要累積于根部。Simonich等(1995)指出部分PAHs到達根表皮后很難到達內(nèi)部的木質(zhì)部,就很難從根部向上莖葉運輸。Phe和Fla在小白菜體內(nèi)的累積相似,根部累積Phe和Fla的量在相同處理間無明顯差異,葉中Phe和Fla的質(zhì)量分數(shù)在相同處理間也無明顯差異。但BaP與前二者不同,無論根部和葉對BaP累積量都明顯減少,相同處理間與Phe和Fla累積量差異顯著(P=0.035),根部和葉對Phe最大累積量分別為86.25 ng·g-1和37.18 ng·g-1,而對BaP的最大累積量分別為20.78 ng·g-1和3.56 ng·g-1,小白菜根和葉中Phe的質(zhì)量分數(shù)分別是BaP質(zhì)量分數(shù)的4.15倍和10.44倍,表明相對于BaP,小白菜更容易吸收Phe。Phe和Fla不具致癌性,而BaP是16種PAHs中致癌性最強的化合物(段小麗等,2002),這就意味著,本試驗中在PAHs污染土壤中生長的小白菜對于強致癌物BaP吸收較少。我國食品污染限量標準(GB 2726—2012)規(guī)定食品中BaP的含量不得超過50 μg·kg-1,而對Phe和Fla沒有做出規(guī)定。從試驗結(jié)果可以看出,小白菜葉對BaP的累積量沒有超過我國食品質(zhì)量標準,進一步表明小白菜對土壤PAHs污染具有一定食品安全性。
Pearson相關(guān)性分析結(jié)果表明(表2)小白菜根和葉中3種單體PAHs的累積量與土壤中施加的3種單體PAHs污染物的量有極顯著的相關(guān)性,表明在一定的質(zhì)量分數(shù)范圍內(nèi),土壤中污染物量越多,生長在其中的植物累積的污染物就越多。說明控制環(huán)境中污染物的量在治理環(huán)境污染問題中具有重要的意義。
表2 土壤施加PAHs質(zhì)量分數(shù)與小白菜根和葉累積PAHs質(zhì)量分數(shù)Pearson相關(guān)分析Table 2 Pearson correlation analysis between PAHs concentrations in soils and those in roots and leaves of pakchoi cabbage
2.2 PAHs生物有效性
根是污染物進入植物體的關(guān)鍵部位。研究者發(fā)現(xiàn)用植物根富集系數(shù)(Root concentration factor, RCF)可以很好地反映植物根對有機污染物的吸收積累能力(Khana等, 2008)。RCF計算表達式為:
式中:Croot為根中PAHs的質(zhì)量分數(shù),Csoil為土壤中PAHs的質(zhì)量分數(shù)。依據(jù)公式(1)和實測的各項指標數(shù)據(jù),計算得出小白菜根對各單體 PAH 化合物的富集系數(shù),見表3。由表3可以看出,同一PAHs單體在不同質(zhì)量分數(shù)處理下,小白菜根的生物富集系數(shù)無明顯差異。小白菜根對Phe與Fla的生物富集系數(shù)也無明顯差異。但與Phe和Fla相比,小白菜根對BaP的生物富集系數(shù)較小,且差異顯著(P=0.006)。表明Phe和Fla更易被小白菜根部吸收累積。Phe和Fla是低環(huán)PAHs,BaP是高環(huán)PAHs。Kipopoulou等(1999)研究表明,低環(huán)PAHs在土壤中的移動性較強,更容易吸附在根表面而被吸收。Wild等(1994)試驗顯示,低環(huán)PAHs較高環(huán)PAHs有更大水溶性所以植物對低環(huán)PAHs的吸收較高。本試驗低環(huán)PAHs的RCF值要顯著高于高環(huán)PAHs的對應(yīng)值,也進一步說明低環(huán)PAHs更易被蔬菜根部吸收和積累。
2.3 PAHs在土壤中的殘留
將每處理土壤作為一個比較單位,計算每處理土壤種植小白菜后PAHs的殘留量,結(jié)果見表4,從表4中可以看出,三種PAHs單體在各種處理中的殘留在84.49% ~ 94.03%之間,各單體之間無明顯差異,各處理之間也無明顯差異,表明大部分PAHs仍殘留在土壤中。從上節(jié)分析可知,小白菜吸收累積的3種PAHs遠小于其土壤。另外,除去土壤殘留PAHs及小白菜吸收而帶走PAHs,即得出約有5.4%~10.17%的PAHs損失,PAHs的揮發(fā)、光降解、化學(xué)分解及微生物代謝及實驗室分析誤差等途徑可能是導(dǎo)致這些PAHs消失的原因。
表3 不同處理下小白菜根對各PAHs單體的生物富集因子(均值±標準偏差)Table 3 Root PAHs concentration factors (±SD) of pakchoi roots in different treatment soils
表4 土壤中殘留PAHs與其相應(yīng)土壤中PAHs初始施加量的比Table 4 Percentage of PAHs residues in soils and initial applied amount of PAHs in soils %
1)熱帶土壤生長的小白菜根和葉中3種單體PAHs濃度顯著低于其土壤中的濃度,且根部積累3種單體PAHs的濃度顯著高于其葉中的濃度;小白菜葉對BaP的吸收和累積量極少,低于國家食品質(zhì)量安全標準。
2)熱帶土壤生長的小白菜根更易吸收累積Phe和Fla,且二者無明顯差異。
3)熱帶土壤生長小白菜后,3種單體PAHs絕大部分仍殘留在土壤中。
ALKIA M, TAHUCHI T M, WANG X C, et al. 2005. Stress responses topolycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms [J]. Journal of Experimental Botany, 56(421): 2983-2994.
CAO Q M, WANG H, CHEN G Z. 2011. Source apportionment of PAHs using two mathematical models for mangrove sediments in Shantou Coastal Zone,China [J]. Estuaries and Coasts, 34:950-960.
HUNK P, FAISAL M, ROBERTS M H. 2000. Interactive effects of cadmium and benzo [a] pyrene on metallothionein induction in mummichog (Fundulus heteroclitus) [J]. Marine Environmental Research, 50:83-87.
KHAN S, AIJUN L, ZHANG S, et al. 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation[J]. Journal of Hazardous Materials, 152: 506-515.
KIPOPOULOU A M, MANOLI E, SAMARA C. 1999. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area [J]. Environmental Pollution, 106(3): 369-380.
MALISEWSKA-KORDYBACH B, SMRECZAK B. 2003. Habitat function of agricultural sails as affected by heavy metals and polycyclic aromatic hydrocarbons contamination [J]. Environmental international, 28: 719-728.
MIELKE H, WANG G, GONZALES C, et al. 2001. PAH and metal mixtures in New Orleans soils and sediments [J]. Science of the Total Environment, 281:217-227.
SAMS?E-PETERSEN L, LARSEN E H, LARSEN P B, et al. 2002. Uptake of tract elements and PAHs by fruit and vegetables from contaminated soils [J]. Environmental Science & Technology, 36: 3057-3063.
SHEN G, LU Y, ZHOU Q, et al. 2005. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 6:1175-1182.
SIMONICH S L, HITES R A. 1995. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 29(12): 2905-2914.
SVERDRUP L E, KROGH P H, NIELSEN T, et al. 2003. Toxicity of tight polycyclic aromatic hydrocarbons to red clover (Trifolium pretense), ryegrass (Lolium perenne) and mustard (Sinapsis alba) [J]. Chemosphere, 53: 993-1003.
WILD S R, JONES K C. 1994. The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the UK [J] .Waste Management Research, 12(1): 49-59.
曹啟民, 王華, 伍卡蘭, 等. 2009b. 汕頭紅樹林濕地表層沉積物環(huán)境因子對PAHs分布的影響[J]. 生態(tài)環(huán)境學(xué)報, 18(3): 844-850.
曹啟民. 2009a. 汕頭紅樹林濕地 PAHs分布特征、遷移和來源[D]. 廣州:中山大學(xué): 36-40.
段小麗, 魏復(fù)盛. 2002. 苯并(a)花的環(huán)境污染健康危害及研究熱點問題[J]. 世界科技研究與發(fā)展, 24: 11-17.
劉宛, 李培軍, 周啟星, 等. 2003. 短期菲脅迫對大豆幼苗超氧化物歧化酶活性及丙二醛含量的影響[J]. 應(yīng)用生態(tài)學(xué)報, 14(4): 581-554.
陸志強, 鄭文教, 馬麗. 2005. 不同濃度萘和芘處理對紅樹植物秋茄胚軸萌發(fā)和幼苗生長的影響[J]. 廈門大學(xué)學(xué)報: 自然科學(xué)版, 44: 580-583.
宋波, 陳同斌, 鄭袁明, 等. 2006. 北京市菜地土壤和蔬菜鎘含量及其健康風(fēng)險分析[J]. 環(huán)境科學(xué)學(xué)報, 1343-1353.
宋雪英, 宋玉芳, 孫鐵珩, 等. 2006. 柴油污染土壤對小麥種子萌發(fā)及幼苗生長的生態(tài)毒性效應(yīng)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 554-559.
宋玉芳, 孫鐵珩, 張麗珊. 1995. 土壤—植物系統(tǒng)中多環(huán)芳烴和重金屬的行為研究[J]. 應(yīng)用生態(tài)學(xué)報, 417-422.
趙其國. 2004. 土地資源大地母親——必須高度重視我國上地資源的保護、建設(shè)與可持續(xù)利用問題[J]. 土壤, 337-339, 345.
Characters of Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Pakchoi Cabbage in Tropical Latosol
CAO Qimin1*, WANG Hua2, ZHANG Yongbei1, LIU Zhiwei1, ZHANG Guangyu1, ZHAO Chunmei1
1. Hainan State Farms Academy of Science, 13 Haixiu Road, Haikou 570206, China; 2. Institute of Spice and Beverage Research, CATAS, Wanning, Hainan 571737, China
To investigate the absorption and accumulation of pakchoi cabbage to polycyclic aromatic hydrocarbons (PAHs) in tropical soils, and to provide the scientific basis for Chinese people's food safety, the pot experiment of pakchoi cabbage was tested in greenhouse from July to September in 2013. The concentration gradient of PAHs (including Phenanthrene (Phe), Fluoranthene (Fla) and Benzo(a)Pyrene(BaP)) was 0, 0.4, 0.8, 1.6, 3.2 mg·kg-1, and 6 seedlings were cultivated in each pot in natural conditions and routine management, the samples of pakchoi cabbage were harvested after 30 days. The samples of soil and pakchoi cabbage were extracted and purified using ultrasonic water bath and column chromatography in lab, and then 3 individual PAH were determined by gas chromatography-mass spectrometry. The results showed that the concentrations of 3 individual PAH accumulated in roots and leaves were increased with the increasing of the concentrations of the PAHs applied in soils, the maximum accumulation of Phe in roots and leaves was of 86.25 ng·g-1and 37.18 ng·g-1respectively, but the maximum accumulation of BaP was 20.78 ng·g-1and 3.56 ng·g-1; the root concentration factors of Phe and Fla were larger, and the differences were not significant, whereas the root concentration factor of BaP was small, and there were significant difference between Phe and BaP; The residues of the 3 PAHs in soils were from percentage 84.49 to percentage 94.03, and there were no significant difference among 3 individual PAH, as well as among different treatments, suggesting that after 30 days cultivation, the concentrations of the 3 individual PAH in roots and leaves were significantly lower than their concentrations in soils, and their concentrations in roots were significantly higher than those of in leaves; the Phe and Fla were more easily accumulated in pakchoi roots than BaP; the most of the 3 individual PAH were still residual in the soils.
polycyclic aromatic hydrocarbons (PAHs); pakchoi cabbage; accumulation; root concentration factor; latosol
X173;S131.3
A
1674-5906(2014)09-1478-04
曹啟民,王華,張永北,劉志崴,張廣宇,趙春梅. 熱帶磚紅壤生長的小白菜吸收和累積PAHs的特征[J]. 生態(tài)環(huán)境學(xué)報, 2014, 23(9): 1478-1481.
CAO Qimin, WANG Hua, ZHANG Yongbei, LIU Zhiwei, ZHANG Guangyu, ZHAO Chunmei. Characters of Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Pakchoi Cabbage in Tropical Latosol [J]. Ecology and Environmental Sciences, 2014, 23(9): 1478-1481.
海南省自然科學(xué)基金項目(313106);海南省引進集成創(chuàng)新項目(YJJC20130008);海南省產(chǎn)學(xué)研一體化專項資金(CXY20130052)
曹啟民(1974年生),男,副研究員,博士,主要研究方向土壤和環(huán)境。E-mail:271093491@qq.com
*通信作者,E-mail:271093491@qq.com
2014-05-28