• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots

    2014-02-07 12:44:40YANGHuiDENGZongquanLIURongqiangWANGYanandGUOHongwei

    YANG Hui,DENG Zongquan,LIU Rongqiang,WANG Yan,and GUO Hongwei*

    State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150080,China

    1 Introduction*

    The deployment mechanisms for numerous systems on satellites,such as synthetic aperture radars(SARs),solar arrays and booms,must be packed into compact volume for launching and also be able to spread to the operational configuration.The ordinary stowage and deployable apparatuses always use standard pin-jointed hinges to realize connection,which have moving parts and are sensitive to the friction.The stored strain energy deployable structures can be folded elastically and deployed by releasing the strain energy.Thus they have several key attractions for space applications which include lower cost,lightness,and friction insensitiveness.Besides,the stored strain energy deployable structures,like the tape spring hinges,the integral hinge,and the thin-walled tube flexure hinges with slots could be latched elastically by themselves.Therefore,these structures arouse numerous interests in research.It is well known that the TWTF hinges have been used in the Mars Advanced Radar for Subsurface and Ionosphere Sounding(MARSIS)[1].

    To better comprehend the folding and deploying characters of tape spring hinges,relevant researches have been accomplished by using different analytical,numerical and experimental methods.MANSFIELD investigated that the tape spring like structures had the property of snap-through flexural buckling[2].SEFFEN,et al[3–5],investigated the deployment dynamics of the tape-spring hinge by the moment-rotation relationship.YEE,et al[6],discussed the relationship between longitudinal radius of the elastic folding scope and the transverse radius of the tape spring cross section for the composite tape springs.SILVER[7]analyzed the effects of shell geometry on tape-spring developed strength performance based on the Donnel-Mushtari-Vlasov shell theory for symmetric laminates.To improve the bending stiffness in the deployed allocation and the folding moment,several tape-springs were arranged in an offset or symmetric configuration by WARREN,et al[8]and BOESCH,et al[9].LANE,et al[10],tested one deployable structures of low-Earth-orbiting flight demonstration system which is connected by composite tape-spring hinges.To understand the impact of folding the tape-spring in three dimensions,WALKER,et al[11–12],studied the static moments by analytical methods and the development dynamics by experiments.KWOK[13]focused his study on the time and temperature dependent property stemming from the viscoelasticity and reciprocity with the geometrically response of the thin-walled structures.

    The Integral hinges can be more stable with the entire structures under elastic deforming.These structures include the storable tubular extendible member(STEM)[14],the extendable boom consisted by joining two omega-shaped thin metal shells at the longitudinal edges[15],folding large antenna tape spring(FLAT)[16–17],and the hollow solid reflector structures[18]as shown in Fig.1.Though,a better stiffness,thermal properties and simpler fabrication are important for some applications.The TWTF hinges with two or three parallel longitudinal slots can meet those needs,which were proposed by MARKS and investigated the deployed dynamics of the mars advanced radar for subsurface and ionosphere sounding(MARSIS)by MOBREM,et al[19–23].MALLIKARACHCHI,et al[24–25],carried out a study on the quasi-static folding and deploying of the composite TWTF hinges by numerical and experiment methods,and optimized the slot geometry on the folding maximum strain.However,the previous optimization studies may miss some optimal results since they just change the geometry parameters at regular intervals.Moreover,the post-buckling behavior of the TWTF hinges folding and deploying involves high nonlinearities of geometry and material.The surrogate model techniques are often used in the nonlinear finite element analysis for fast iteration.Thus,considering the computational burden caused by the large range of design varies and optimization efficiency,the response surface method(RSM)is employed to derive the surrogate model for the TWTF hinges.

    Fig.1.Hollow solid reflector

    The purpose of this study is to optimize the quasi-static folding and deploying behaviors of the TWTF hinge with double slots as shown in Fig.2.The maximum peak moment of folding and deploying as well as minimum mass of the TWTF hinge are set as objectives.The slots length and the slots width are considered as the design variables,while the maximum Mises stress is set not to exceed the allowable stress.The RSM is employed to construct the functions of peak moment and maximum Mises stress.Beside this,parameter studies are performed to investigate the effect of the slots length and the slots width on the quasi-static folding and deploying performances of the TWTF hinges.The 25 samples design points are analyzed by ABAQUS/Explicit solver,which are used to derive the response surface functions.The multidisciplinary optimization software ISIGHT is employed to perform the multi-objective optimization.

    Fig.2.Thin-walled tube flexure hinge

    2 Problem Description

    The hinges considered in this study are TWTF hinges with double symmetric slots,and the slots width is equal to the end semicircle diameter.Meanwhile,the aim is to find the optimal slots parameters of the TWTF hinges to provide higher peak moment during folding and deploying as well as lower mass.The slot length and the slot width are chosen as two design variables,while the hinge total length and the end-section diameter are set as constants,the basic configuration is shown in Fig.3.

    Fig.3.Dimensions of the TWTF hinge

    When antennae work,the hinges should have enough bending stiffness to resist any shock.Take into account the cost of launch,the antennae mass is also limited.Thus,the peak moment of folding(Mf)and deployment(Md),and the mass are set as the multi-objectives in this study.The Mfand Mdshould be maximized,but the mass should be minimized.The two design parameters l and w couldn’t beyond the upper bound and the lower bound.What’s more,the maximum stress(Smax)is chosen as the constraint.Therefore,the optimization problem modeled is as follows:

    The RSM is employed to create the surrogate models for the optimal design objectives and design constraint in the later sections.

    3 Response Surface Methodology(RSM)

    Response surface methodology,as presented by BOX and WILSON[26],is a collection of mathematical and statistical techniques,and is widely applied in the optimization problem and processes developing[27–31].To get the optimal folding and deploying behaviors of TWTF hinges with double slots and reduce the computational cost,the surrogate models are modeled by RSM.

    In the study,the responses of the TWTF hinges with double slots are Mf,Mdand Smax,which can be written in terms of a series basic function as

    is the responses of Mf,Mdand Smax,N is the number of the basic functionsφi(l,w),βiis the coefficients of the basic functions,εis the error between the RS approximation at the point and the response yifrom FEA results.To ensure precision,the quartic polynomials of basic functions are chosen,so the responses can be written as follows:

    The regression coefficients of quartic polynomials can be calculated by using the least-square method,which is

    Where coefficient b=(β1,β2,…,βn),matrixφis

    where M is the design points number.By substituting the Eq.(5)into Eq.(4),coefficient b can be determined.

    The accuracy of the responses should be evaluated by some criteria,such as relative error(RE),the coefficient of multiple determination(R2),the root mean square error(RMSE),and the adjusted coefficient of multiple determinationrespectively,as follows:

    where yiis the FEA results,SSTrepresents the total sum of squares,and SSErepresents the sum of squares of the residuals,respectively,as follows:

    For the RS model,the values of R2andvary from 0 to 1,which mean the level of correlation between FEA results and the responses,thus the bigger the values ofand the smaller the values of REand RMSE,the better the fitness[32].

    4 Design Optimization

    4.1 Design of experiment(DOE)

    For the purpose of deriving the function of Mf,Mdand Smax,finite element analyses(FEA)should be performed for a series of design points determined by design of experiment(DOE)within the design domain.There are some available DOE methods,such as orthogonal arrays,central composite design,Latin hypercube,full factorial,etc[33].The five-level full factorial design is employed in the following study,the slots length is changed from 40 mm to 80 mm by every 10 mm,and the slots width is changed from 8 mm to 12 mm by every 1 mm as shown in Table 1,which resulted in 5×5 sampling design points evenly distributed within the design ranges.Then,the coefficients of polynomial βiare calculated from the FEA results by using Eq.(4)and Eq.(5).

    Table 1.Step size and range of design variables of TWTF hinge with double slots

    4.2 Finite element modeling

    The material of TWTF hinges with double slots is titanium-nickel alloy Ni36CrTiAl with mass density ρ=8.0×103kg/m3,Young’s modulus E=20 GPa,Poisson’s ratio ν=0.35,yield stress σy=0.98 GPa,Ultimate stress σu=1.194 GPa.The total length of TWTF hinges is fixed as 180 mm,and the end-section diameter D is 19.5 mm and the thickness t is 0.12 mm.Both the folding time and deployment time of TWTF hinges are set as 1s.

    As mentioned before,the FE models are set up in the ABAQUS/Explicit with four nodes fully reduced integrated shell elements(S4R)with element size 1.8 mm.To simulate the quasi-static folding and deploying of TWIF hinges,the end rotation two reference nodes 1 and 2 are located on each end and set as kinematic coupling constraint to either end surface.Node 1 is restrained all of the freedom except the rotation about the global y-axis,and node 2 is allowed to rotate about the y-axis as well as translate along the global z-axis.The bending angle α of the hinge is the sum of the rotational angle of the two reference nodes.To prevent damage,a small equal and opposite pinching load is applied to the middle of hinges before rotating to 170°as plotted in Fig.4.The little pinching load will be released during deployment step.In order to apply loads as smoothly as possible,the Smooth-Step is employed to apply and remove loads.To analyze the contact among the surfaces of TWTF hinge,the general contact is assigned to the whole model.

    Fig.4.Finite element model for TWTF hinge with double slots

    The deformation modes of the TWTF hinges with two typical deform configurations under a von Mises stress on different bending angle α can be depicted in Fig.5,the quasi-static deployment of the TWTF hinges is similar to the inverse process of folding.The FEA results of 25 design points are listed in Table 2.

    Fig.5.Two typical deformed configuration of TWTF hinges under a von Mises stress

    Table 2.FEA results for the selected 25 design points

    4.3 Response surface method

    After getting the sample points of the quasi-static folding and deploying,the responses surface models for the TWTF hinges then can be derived by Eqs.(4)and(5)based on the simulation results in Table 2.So the quartic response polynomial functions of Mf,Mdand Smaxare derived as follows:

    According to Fig.3,mass of the TWTF hinge(M)with double slots can be calculated by

    According to Eqs.(6)–(11)based on section 3,the total errors between response surface model and FEA analysis are derived.The RMSE,R2and R2adjfor maximum stress are RMSE=0.006 016,R2=0.996 157,R2adj=0.991 615,Mfare RMSE=0.061 211,R2=0.985 659,R2adj=0.968 710 and Mdare RMSE=0.008 806,R2=0.982 983,R2adj=0.962 871.

    The values of R2andare much closed to 1,and the RMSEis small enough to evaluate the precise of the RS model.Hence,the regression models of the 25 design points are validated to be accurate for this study.The response surface of Mf,Mdand Smaxis plotted the slots length and slots width in Fig.6.

    Fig.6.Response surface of Mf,Mdand Smax

    The modified Non-Dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is employed for the multi-objectives optimization.The population size and the generation are set to 48 and 50 respectively.The feasible designs of the optimization are depicted in Table 3,the indexes of Mdand Smaxis dominated,so the optimal design is selected as No.6,i.e.the slots length is 65.611 mm and the slots width is 9.873 mm.In this configuration,the maximum stress is lower and the peak moment is greater.So the deploying capacity of TWTF hinge is better and the stress distribution is smoother.Meanwhile,the numerical simulation of the optimal design is performed by ABAQUS/Explicit to ensure the correctness.The relative errors between the FEA results and optimal design of Md,Mfand Smaxare less than 7% which could be calculated from Table 4.

    Table 3.Feasible designs of the TWTF hinge folding and deploying behaviors

    Table 4.Relative errors between the FEA results and optimal design

    5 Parametric Studies

    Influences of the thin-walled hinges slots length l and slots width w on Mf,Mdand Smaxare investigated in this section based on Table 2.The baseline hinge geometry is used for the parametric study with D=19.5 mm,L=180 mm and t=0.12 mm.The slots width w equals to the slots end semicircle diameter ranging from 8 mm to 12 mm,and the slots length l ranging from 40 mm to 80 mm.Therefore,it is possible to reveal the effects of the design parameters l and w on the TWTF hinges quasi-static folding and deploying behaviors from Fig.7–Fig.9.

    Fig.7.Variation of Mfwith slots length l and slots widt h w

    5.1 Effects of slots length and slots width on Mf

    Fig.7 shows the peak moment during TWTF hinges quasi-static folding versus different slots length and slots width.It can be observed that the shorter the slots length is or the narrower the slots width is,the greater the peak moment of folding is.It should be pointed out that when the slots width is smaller to 10 mm,the peak moment is increased with the slots length changing from l=50 mm to l=60 mm as shown in Fig.7(a).In addition to this,when the slots length is below 60 mm and the slot width below 10 mm,the wider the slots width,the greater the peak moment of folding as depicted in Fig.7(b).It can be found that the peak moment during folding is very sensitive to both the slots length and the slot width.When the slots length is changed from 40 mm to 80 mm,Mfis decreased by 24.2%–61.3%.When the slots width is changed from 8 mm to 12 mm,Mfis decreased by 8.9%–53%.

    Fig.8.Variation of Mdwith slots length l and slots width w

    Fig.9.Variation of Smaxwith slots length l and slots width w

    5.2 Effects of slots length and slots width on Md

    Fig.8 shows the peak moment during TWTF hinges quasi-static deployment versus different slots length and slots width.It can be seen that the longer the slots length is,the lower the peak moment of deployment.But for l=40 mm the peak moment is lower than that for l=50 mm as shown in Fig.8(a).The reason is that the slots length is too small to fold the TWIF hinges.Moreover,it should be revealed that the narrower the slots width,the greater the peak moment of deployment as shown in Fig.8(b).When the slots length is changed from 40 mm to 80 mm,Mdis decreased from–23.8% to 17%.When the slots width is changed from 8 mm to 12 mm,Mdis decreased by 16.9%–26%.

    5.3 Effects of slots length and slots width on Smax

    Fig.9.shows the effects of the slots length and the slots width on Smaxin the complete folded configurations.It can be seen that the maximum stress is more sensitive to the slots length than the slots width.The Smaxcontinuously decrease as slots length increase with fixed slots width as seen from Fig.9(a).But when l=40 mm and l=50 mm the last value of Smaxfor each curve increase obviously,the reason is that when w≤11 mm and l≤50 mm the maximum stress locates in the middle of the dominates,and when w=12 mm or l≥60 mm the maximum stress locates on the transition from the slots length to the slots end circle.It is interesting to note that when l=60 mm all the Smaxapproximately equal with each other as shown in Fig.9(b),that’s because the special slots length l=60 mm of all the design points is most closed to the perimeter of the half circle described by the hinge in the folded position.If the slots length is closed to the perimeter,there would be a semicircle in the folding region,so the stress distribution is smoother.When the slots length is changed from 40 mm to 80mm,Smaxis decreased by 35%– 45%.When the slots width is changed from 8 mm to 12 mm,Smaxis decreased from–3% to 12%.

    From the above results,it can be seen that both the slots length and the slots width have significant influences on Mfand Md,but Smaxis more sensitive to the slots length than the slots width.What’s more,an increase in Mdand Mfdue to a parameter change often leads to an increase in Smaxas well.But in some ways,Md,Mfand Smaxmay conflict with each other.

    6 Conclusions

    (1)The surrogate models of Mf,Mdand Smaxare obtained by RSM.These empirical equations is proven to be precise for this study.

    (2)The optimal design is obtained by RSM polynomials for the TWTF hinge,this configuration has lower maximum stress,greater peak moment and smoother stress distribution.

    (3)For the TWTF hinge,with greater slots length and slots width,Mfand Mdare generally lower.A greater slots length can lead to a much lower Smax,but the relationship is not observed between the slot width and the Smax.

    [1]MARKS G W,REILLY M T,HUFF R L.The lightweight deployable antennas for the MARSIS experiment on the Mars express spacecraft[C]//Proceeding of the 36th Aerospace Mechanisms Symposium,Glenn Research Center,NASA CP-2002-211 506,April 2002:183–196.

    [2]MANSFIELD E H.Large-deflexion torsion and flexure of initially curved strips[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1973,334(1598):279–298.

    [3]SEFFEN K A,PELLEGRINO S.Deployment dynamics of tape springs[J].Proceedings of the Royal Society of London Series A,1999,455(1983):1003–1048.

    [4]SEFFEN K A.On the behavior of folded tape-springs[J].Journal of Applied Mechanics-Transactions of the ASME,2001,68(3):369–375.

    [5]SEFFEN K A,YOU ZHONG,PELLEGRINO S.Folding and deployment of curved tape springs[J].International Journal of Mechanical Sciences,2000,42:2055–2073.

    [6]YEE J C H,PELLEGRINO S.Composite tube hinges[J].Journal of Aerospace Engineering,2005,18(4):224–231.

    [7]SILVER M.Buckling of curved shells with free edges under multi-axis loading[D].Colorado:University of Colorado,2005.

    [8]WARREN P A,SILVER M J,DOBSON B J,et al.Experimental characterization of deployable outer barrel assemblies for large space telescopes[C]//Proceedings of SPIE,UV/Optical/IR Space Telescopes and Instruments:Innovative Technologies and Concepts VI 886 008,October 29,2013.

    [9]BOESCH C,PEREIRA C,JOHN R,et al.Ultra light self-motorized mechanism for deployment of light weight space craft appendages[C]//Proceedings of 39th Aerospace Mechanisms Symposium,Newport,NASA Marshall Space Flight Center,May,7–9,2008.

    [10]LANE S A,MURPHEY T W,ZATMAN M.Overview of the innovative space-based radar antenna technology program[J].Journal of Spacecraft and Rockets,2011,48(1):135–145.

    [11]WALKER S J I,AGLIETTI G.Study the dynamics of threedimensional tape spring folds[J].Journal of AIAA,2004,42(4):850–856.

    [12]WALKER S J I,AGLIETTI G.Experimental Investigation of tape springs folded in three dimensions[J].Journal of AIAA,2006,44(1):151–159.

    [13]KWOK K.Mechanics of visoelastic thin-walled structures[D].California:California Institute of Technology,2013.

    [14]RIMROTT F P J,FRITSCHE G.Fundamentals of stem mechanics[C]//Pellegrino S and Guest S D,eds,IUTAM-IASS Symposium on Deployable Structures:Theory and Applications,Cambridge,UK,September,1998:321–333.

    [15]BLOCK J,STRAUBEL M,WIEDEMANN M.Ultralight deployable booms for solar sails and other large gossamer structures in space[J].Acta Astronautica,2011,68(7–8):984–992.

    [16]SOYKASAP O,PELLEGRINO S,HOWARD P,et al.Folding large antenna tape spring[J].Journal of Spacecraft and Rockets,2008,45(3):560–567.

    [17]SOYKASAP O,KARAKAYA S,TURKMEN D.Curved large tape springs for an ultra-thin shell deployable reflector[J].Journal of Reinforced Plastics and Composites,2012,31(10):691–703.

    [18]SOYKASAP O,WATT A,PELLEGRINO S.New deployable reflector concept[C]//Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,California,April,19–22,2004:1574.

    [19]MARKS G.Flattenable foldable boom hinge:USA,6343442[P].2002-02-05.

    [20]MOBREM M,ADAMS D S.Deployment analysis of lenticular jointed antennas onboard the mars express spacecraft[J].Journal of Spacecraft and Rockets,2009,46(2):394–402.

    [21]SILVER M J,HINKLE J D,PETERSON L D.Modeling of snap-back bending response of doubly slit cylindrical shells[C]//Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Palm Springs,California,April,19–22,2004:1820.

    [22]YEE J C H.Thin CFRP composite deployable structures[D].Cambridge:University of Cambridge,2006.

    [23]SOYKASAP O.Deployment analysis of a self-deployable composite boom[J].Composite Structures,2009,89(3):374–381.

    [24]MALLIKARACHCHI H M Y C,PELLEGRINO S.Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J].Journal of Spacecraft and Rockets,2011b,48(1):187–198.

    [25]MALLIKARACHCHI H M Y C,PELLEGRINO S.Optimized designs of composite booms with integral tape-spring hinges[C]//Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Orlando,Florida,April,12–15,2010:1–16.

    [26]BOX G E P,WILSON K B.On the experimental attainment of optimum conditions[J].Journal of the Royal Statistical Society,1951,13:1–45.

    [27]LIU Yucheng.Design optimization of taped thin-walled square tubes[J].International Journal of Crashworthiness,2008,13(5):543–550.

    [28]LI Meng,DENG Zongquan,LIU Rongqiang,et al.Crashworthiness design optimization of metal honeycomb energy absorber used in lunar lander[J].International Journal of crashworthiness,2011,16(4):411–419.

    [29]QI Chang,YANG Shu,DONG Fangliang.Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading[J].Thin-walled Structures,2012,59,103–119.

    [30]LI Meng,DENG Zongquan,GUO Hongwei,et al.Crashworthiness analysis on alternative square honeycomb structure under axial loading[J].Chinese Journal of Mechanical Engineering,2013,26(4):784–792.

    [31]GUO Hongwei,ZHANG Jing,LIU Rongqiang,et al.Effects of joint on dynamics of space deployable structure[J].Chinese Journal of Mechanical Engineering,2013,26(5):861–872.

    [32]LINDMAN H R.Analysis of variance in experimental design[M],Springer,New York,1992.

    [33]MYERS R H,MONTGOMERY D C.Response surface methodology:process and product optimization using designed experiments[M].New York:Wiley,1995.

    一本综合久久免费| 91字幕亚洲| 成人av一区二区三区在线看| 麻豆久久精品国产亚洲av| 国产午夜福利久久久久久| 成年女人看的毛片在线观看| 亚洲第一区二区三区不卡| 国产主播在线观看一区二区| а√天堂www在线а√下载| 18禁黄网站禁片午夜丰满| 天堂网av新在线| 国产白丝娇喘喷水9色精品| 日韩欧美精品v在线| 国产成人福利小说| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 我的老师免费观看完整版| 美女黄网站色视频| 久久久色成人| 九色国产91popny在线| 欧美最新免费一区二区三区 | 午夜福利免费观看在线| 精品欧美国产一区二区三| 级片在线观看| 亚洲精品成人久久久久久| 美女大奶头视频| 最新在线观看一区二区三区| 精品欧美国产一区二区三| 极品教师在线视频| 午夜精品一区二区三区免费看| 少妇的逼水好多| 欧美绝顶高潮抽搐喷水| 中文资源天堂在线| 91在线精品国自产拍蜜月| 久久天躁狠狠躁夜夜2o2o| 久99久视频精品免费| 中文字幕免费在线视频6| 如何舔出高潮| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 国产精品乱码一区二三区的特点| 成年女人看的毛片在线观看| 精品久久久久久久久亚洲 | 在线a可以看的网站| 大型黄色视频在线免费观看| 香蕉av资源在线| 午夜亚洲福利在线播放| 在线免费观看不下载黄p国产 | 亚洲三级黄色毛片| 免费一级毛片在线播放高清视频| 搞女人的毛片| 成人av一区二区三区在线看| 九九久久精品国产亚洲av麻豆| 90打野战视频偷拍视频| 欧美成狂野欧美在线观看| 成人鲁丝片一二三区免费| 亚洲人成网站在线播| 亚洲不卡免费看| 国产欧美日韩精品一区二区| 亚洲最大成人中文| 神马国产精品三级电影在线观看| av天堂在线播放| 久久亚洲精品不卡| 少妇的逼好多水| 亚洲欧美日韩卡通动漫| 一区二区三区四区激情视频 | 中文字幕久久专区| 成人欧美大片| 老熟妇乱子伦视频在线观看| 99视频精品全部免费 在线| 男人舔奶头视频| 国产欧美日韩精品亚洲av| 亚洲黑人精品在线| 久久6这里有精品| 久久久久国内视频| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区久久| 国产精品日韩av在线免费观看| 一夜夜www| 十八禁人妻一区二区| 精品久久久久久久末码| 岛国在线免费视频观看| 综合色av麻豆| 性色avwww在线观看| 久久午夜福利片| 午夜激情欧美在线| 直男gayav资源| 久久草成人影院| 天堂影院成人在线观看| 看免费av毛片| 欧美高清成人免费视频www| 亚洲最大成人中文| .国产精品久久| 午夜福利18| 我的女老师完整版在线观看| 免费av毛片视频| 亚洲美女视频黄频| 色吧在线观看| 九九热线精品视视频播放| 久久久久久久精品吃奶| 一个人免费在线观看电影| 性插视频无遮挡在线免费观看| 日日干狠狠操夜夜爽| a在线观看视频网站| 精品一区二区三区视频在线| 亚洲av免费高清在线观看| 午夜激情福利司机影院| 日本撒尿小便嘘嘘汇集6| 亚洲av不卡在线观看| 国产 一区 欧美 日韩| 国产aⅴ精品一区二区三区波| 天堂av国产一区二区熟女人妻| 国产午夜精品论理片| 国产成+人综合+亚洲专区| 99精品久久久久人妻精品| 在线免费观看不下载黄p国产 | 久久久久久大精品| 国语自产精品视频在线第100页| 少妇熟女aⅴ在线视频| 亚洲成人免费电影在线观看| 村上凉子中文字幕在线| 婷婷精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 在线国产一区二区在线| 三级男女做爰猛烈吃奶摸视频| 国产成人a区在线观看| 国产av一区在线观看免费| 亚洲第一欧美日韩一区二区三区| 国模一区二区三区四区视频| 热99re8久久精品国产| 男女之事视频高清在线观看| 1024手机看黄色片| 久久人妻av系列| 韩国av一区二区三区四区| 日韩精品中文字幕看吧| 欧美一区二区精品小视频在线| 国产精品综合久久久久久久免费| 日韩中文字幕欧美一区二区| 亚洲精品亚洲一区二区| ponron亚洲| 2021天堂中文幕一二区在线观| 2021天堂中文幕一二区在线观| 国产高清激情床上av| 国产欧美日韩精品亚洲av| 天美传媒精品一区二区| 最近中文字幕高清免费大全6 | 日韩欧美 国产精品| 精品一区二区免费观看| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 中文字幕免费在线视频6| 99国产精品一区二区三区| 97碰自拍视频| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品久久久com| 日韩 亚洲 欧美在线| 精品熟女少妇八av免费久了| 欧美丝袜亚洲另类 | 一本久久中文字幕| 亚洲欧美激情综合另类| 99久国产av精品| 精品久久久久久成人av| 国产综合懂色| 免费观看精品视频网站| 亚洲中文日韩欧美视频| 搡老熟女国产l中国老女人| 日韩国内少妇激情av| .国产精品久久| 国产三级中文精品| 男女下面进入的视频免费午夜| 我的女老师完整版在线观看| 国产黄a三级三级三级人| 69人妻影院| 午夜免费激情av| 国产精品美女特级片免费视频播放器| 99热6这里只有精品| 最新在线观看一区二区三区| 亚洲av电影不卡..在线观看| 日韩大尺度精品在线看网址| 成人高潮视频无遮挡免费网站| 永久网站在线| 91av网一区二区| 免费看美女性在线毛片视频| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品在线观看 | 国产成人影院久久av| 欧美xxxx性猛交bbbb| 尤物成人国产欧美一区二区三区| 久久久久久久亚洲中文字幕 | 宅男免费午夜| 久久久久久国产a免费观看| 亚洲狠狠婷婷综合久久图片| 欧美成人一区二区免费高清观看| 国产视频内射| 国产精品电影一区二区三区| 国产伦一二天堂av在线观看| av福利片在线观看| 国内少妇人妻偷人精品xxx网站| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 亚洲欧美清纯卡通| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 亚洲专区国产一区二区| 午夜福利欧美成人| 欧美性猛交黑人性爽| 久9热在线精品视频| 又黄又爽又刺激的免费视频.| 又紧又爽又黄一区二区| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图 | 日日摸夜夜添夜夜添小说| 国产精品永久免费网站| 亚洲男人的天堂狠狠| 色视频www国产| 黄色丝袜av网址大全| 精品日产1卡2卡| 99热这里只有是精品在线观看 | 亚洲国产精品合色在线| 亚洲第一区二区三区不卡| 亚洲av五月六月丁香网| 99国产极品粉嫩在线观看| 日韩中字成人| 少妇裸体淫交视频免费看高清| 欧美xxxx性猛交bbbb| av专区在线播放| 欧美日韩黄片免| 丰满的人妻完整版| 乱人视频在线观看| 好男人在线观看高清免费视频| 久久久久精品国产欧美久久久| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 亚洲无线在线观看| 国内精品久久久久久久电影| 日韩大尺度精品在线看网址| 精品一区二区三区视频在线观看免费| 好男人电影高清在线观看| 久久久久久久久大av| 欧美成人a在线观看| 简卡轻食公司| 午夜福利成人在线免费观看| 精品一区二区三区av网在线观看| 欧美高清成人免费视频www| 在线观看66精品国产| 精品人妻偷拍中文字幕| 五月伊人婷婷丁香| 欧美日韩乱码在线| 国产v大片淫在线免费观看| 成人国产综合亚洲| 看十八女毛片水多多多| 熟女电影av网| 一区二区三区高清视频在线| 久久久久久大精品| 很黄的视频免费| 久久久久久久久中文| 永久网站在线| 色吧在线观看| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 亚洲无线在线观看| 中文字幕免费在线视频6| 麻豆成人av在线观看| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 如何舔出高潮| 小说图片视频综合网站| 国产成人福利小说| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 日本免费a在线| 99热这里只有是精品在线观看 | 久久久久久国产a免费观看| 麻豆av噜噜一区二区三区| 在线天堂最新版资源| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆 | 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 九色成人免费人妻av| 特大巨黑吊av在线直播| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 午夜精品久久久久久毛片777| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 日韩 亚洲 欧美在线| 亚洲国产日韩欧美精品在线观看| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 99视频精品全部免费 在线| 欧美性感艳星| 亚洲三级黄色毛片| 村上凉子中文字幕在线| 国产欧美日韩一区二区精品| 人妻制服诱惑在线中文字幕| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| 日韩精品中文字幕看吧| 欧美性猛交黑人性爽| 国产 一区 欧美 日韩| 91av网一区二区| 国产淫片久久久久久久久 | 少妇的逼水好多| 男人舔奶头视频| 丝袜美腿在线中文| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 精品乱码久久久久久99久播| 午夜精品在线福利| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| а√天堂www在线а√下载| 日本三级黄在线观看| 免费在线观看影片大全网站| 性插视频无遮挡在线免费观看| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 宅男免费午夜| 精品午夜福利视频在线观看一区| 国产极品精品免费视频能看的| 欧美zozozo另类| 看片在线看免费视频| 久久99热这里只有精品18| 欧美xxxx性猛交bbbb| av福利片在线观看| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 国产高清激情床上av| 欧美色欧美亚洲另类二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美性猛交黑人性爽| 欧美高清性xxxxhd video| 久久精品人妻少妇| 一本久久中文字幕| 国产熟女xx| 亚洲18禁久久av| 国产69精品久久久久777片| 国产精品98久久久久久宅男小说| 乱人视频在线观看| av专区在线播放| 色吧在线观看| 亚洲精品456在线播放app | 大型黄色视频在线免费观看| 欧美一区二区国产精品久久精品| 一级作爱视频免费观看| 在线播放无遮挡| www.色视频.com| 成年免费大片在线观看| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 成人欧美大片| 亚洲欧美日韩东京热| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 午夜影院日韩av| 国产人妻一区二区三区在| 一个人看的www免费观看视频| 欧美一区二区亚洲| 亚洲在线观看片| 国产主播在线观看一区二区| 日本黄色片子视频| 午夜两性在线视频| av视频在线观看入口| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 精品熟女少妇八av免费久了| 99久久成人亚洲精品观看| 自拍偷自拍亚洲精品老妇| 性色av乱码一区二区三区2| 欧美高清性xxxxhd video| 99国产极品粉嫩在线观看| 成人无遮挡网站| 99热这里只有精品一区| 国产精品野战在线观看| 美女大奶头视频| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 永久网站在线| av视频在线观看入口| 免费在线观看日本一区| av欧美777| 老司机午夜十八禁免费视频| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 久久久久久久亚洲中文字幕 | 欧美精品国产亚洲| 亚洲精品粉嫩美女一区| 一级黄片播放器| 黄色日韩在线| 有码 亚洲区| 国产成人欧美在线观看| 99热精品在线国产| 国产主播在线观看一区二区| 99在线视频只有这里精品首页| 9191精品国产免费久久| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 最近视频中文字幕2019在线8| 久久久精品大字幕| 最新中文字幕久久久久| 99热6这里只有精品| 亚洲电影在线观看av| 日本 欧美在线| 久久精品国产亚洲av涩爱 | 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 亚洲激情在线av| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| 噜噜噜噜噜久久久久久91| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 亚洲avbb在线观看| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 午夜免费激情av| 成人性生交大片免费视频hd| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件 | 精品久久久久久久人妻蜜臀av| 97超视频在线观看视频| 亚洲人成电影免费在线| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 老司机福利观看| www.色视频.com| 国内精品久久久久精免费| 麻豆国产97在线/欧美| 久久久久免费精品人妻一区二区| 久久亚洲真实| 日本黄大片高清| 一级黄片播放器| 亚洲精品成人久久久久久| 国产精品永久免费网站| 国产国拍精品亚洲av在线观看| 亚洲午夜理论影院| 久久久久久久精品吃奶| 不卡一级毛片| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 久久久精品大字幕| 美女xxoo啪啪120秒动态图 | 国产亚洲精品久久久com| 亚洲专区中文字幕在线| 欧美成人免费av一区二区三区| 亚洲激情在线av| av专区在线播放| 亚洲av一区综合| 亚洲经典国产精华液单 | 色在线成人网| 色尼玛亚洲综合影院| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 免费搜索国产男女视频| 人妻夜夜爽99麻豆av| 国产亚洲欧美98| 亚洲片人在线观看| 国产大屁股一区二区在线视频| 香蕉av资源在线| 色尼玛亚洲综合影院| avwww免费| 久久草成人影院| 自拍偷自拍亚洲精品老妇| 成人av在线播放网站| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 亚洲色图av天堂| 亚洲av熟女| 久久午夜福利片| 在线国产一区二区在线| 久久久久久国产a免费观看| 成人欧美大片| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 热99在线观看视频| 国产成人啪精品午夜网站| 一级a爱片免费观看的视频| 久久亚洲精品不卡| 国产成人aa在线观看| 不卡一级毛片| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 国内毛片毛片毛片毛片毛片| 内射极品少妇av片p| 51午夜福利影视在线观看| 国产精品野战在线观看| 永久网站在线| 国产亚洲精品久久久com| 国产老妇女一区| 国产欧美日韩一区二区精品| av福利片在线观看| 欧美乱妇无乱码| 成人永久免费在线观看视频| 欧美性感艳星| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 老熟妇乱子伦视频在线观看| 欧美成人a在线观看| 国产老妇女一区| 国产亚洲精品久久久com| 国产免费一级a男人的天堂| 成人性生交大片免费视频hd| 大型黄色视频在线免费观看| 无人区码免费观看不卡| 成人三级黄色视频| 国产精品亚洲av一区麻豆| 亚洲精品一区av在线观看| 极品教师在线视频| 国产伦精品一区二区三区视频9| 国产精品永久免费网站| 亚州av有码| 精品国内亚洲2022精品成人| 国产黄a三级三级三级人| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费| 色播亚洲综合网| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 精品人妻1区二区| 亚洲精品456在线播放app | 国产午夜精品久久久久久一区二区三区 | 国产主播在线观看一区二区| 国产综合懂色| 有码 亚洲区| 好看av亚洲va欧美ⅴa在| 欧美zozozo另类| 中文字幕av在线有码专区| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 亚洲专区中文字幕在线| xxxwww97欧美| 美女大奶头视频| 国产久久久一区二区三区| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 欧美日韩瑟瑟在线播放| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 乱码一卡2卡4卡精品| 九色成人免费人妻av| 国产精品不卡视频一区二区 | 看免费av毛片| 九九热线精品视视频播放| 国产免费男女视频| 亚洲五月天丁香| 国内精品美女久久久久久| 可以在线观看的亚洲视频| 亚洲成人精品中文字幕电影| 亚洲男人的天堂狠狠| 高清日韩中文字幕在线| 中文字幕久久专区| 黄片小视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 日本免费a在线| 亚洲av五月六月丁香网| 啪啪无遮挡十八禁网站| 狂野欧美白嫩少妇大欣赏| 日韩中文字幕欧美一区二区| 真人一进一出gif抽搐免费| 日韩中字成人| 丰满人妻熟妇乱又伦精品不卡| 亚洲av免费在线观看| 麻豆一二三区av精品| 在线观看美女被高潮喷水网站 | 欧美又色又爽又黄视频| 成年女人毛片免费观看观看9| 久久99热这里只有精品18| 高潮久久久久久久久久久不卡| 噜噜噜噜噜久久久久久91| 国产毛片a区久久久久| 欧美乱妇无乱码| 免费看a级黄色片| 别揉我奶头 嗯啊视频| 波多野结衣高清作品| 9191精品国产免费久久| 国产精品久久久久久人妻精品电影| 亚洲精品在线美女|