徐小涵,田國(guó)慶
糖尿病對(duì)星形膠質(zhì)細(xì)胞功能影響的實(shí)驗(yàn)研究進(jìn)展①
徐小涵,田國(guó)慶
糖尿病可以引起中樞神經(jīng)系統(tǒng)的功能障礙。星形膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)的重要組成部分,亦受糖尿病的影響而改變,主要表現(xiàn)在星形膠質(zhì)細(xì)胞的體積、細(xì)胞間縫隙連接、蛋白表達(dá)、糖原貯存等方面。
糖尿??;星形膠質(zhì)細(xì)胞;神經(jīng)膠質(zhì)原纖維酸性蛋白;S100b蛋白;綜述
[本文著錄格式] 徐小涵,田國(guó)慶.糖尿病對(duì)星形膠質(zhì)細(xì)胞功能影響的實(shí)驗(yàn)研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐,2014,20(5): 442-445.
糖尿病是以慢性血葡萄糖水平增高為特征的常見代謝類疾病,可以導(dǎo)致大血管、視網(wǎng)膜、腎臟、周圍神經(jīng)等多種并發(fā)癥。近年的研究發(fā)現(xiàn),糖尿病對(duì)于中樞神經(jīng)系統(tǒng)的神經(jīng)傳導(dǎo)物代謝、腦血流量、血腦屏障、微血管功能等存在一定影響,可以導(dǎo)致中樞神經(jīng)系統(tǒng)功能障礙,如學(xué)習(xí)、記憶、理解、推理等能力的下降[1-2]。
星形膠質(zhì)細(xì)胞是維持中樞神經(jīng)系統(tǒng)神經(jīng)元存活與正常生理功能必不可少的一類神經(jīng)膠質(zhì)細(xì)胞,對(duì)神經(jīng)元起支持和營(yíng)養(yǎng)作用,參與血腦屏障的形成與維護(hù),影響突觸活性,釋放神經(jīng)遞質(zhì)和神經(jīng)活性肽,貯存糖原,參與葡萄糖等多種物質(zhì)的代謝等。同時(shí),星形膠質(zhì)細(xì)胞由一系列縫隙結(jié)合部,連接成網(wǎng)狀結(jié)構(gòu),對(duì)于Ca2+的轉(zhuǎn)運(yùn)起重要作用。另外,星形膠質(zhì)細(xì)胞運(yùn)送突觸間隙神經(jīng)遞質(zhì),如谷氨酸鹽、γ-氨基丁酸、去甲腎上腺素、多巴胺、乙酰膽堿等[3]。目前,糖尿病導(dǎo)致中樞神經(jīng)系統(tǒng)功能障礙的機(jī)制尚不明確,而星形膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)的重要組成部分,參與多種物質(zhì)的代謝。研究糖尿病導(dǎo)致星形膠質(zhì)細(xì)胞的改變,對(duì)于研究糖尿病中樞神經(jīng)系統(tǒng)病變的機(jī)制或有裨益。
1.1 體積
糖尿病可以引起星形膠質(zhì)細(xì)胞體積變化。Lebed等通過(guò)腹腔注射鏈脲佐菌素(streptozotocin,STZ)誘導(dǎo)糖尿病大鼠,與對(duì)照組相比,病程3 d時(shí),大鼠海馬CA1區(qū)的神經(jīng)膠質(zhì)原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陽(yáng)性的星形膠質(zhì)細(xì)胞體積明顯下降;7 d時(shí),GFAP陽(yáng)性的星形膠質(zhì)細(xì)胞體積增大,14 d時(shí)與對(duì)照組相比增大更為明顯;大鼠海馬CA2區(qū)的GFAP陽(yáng)性的星形膠質(zhì)細(xì)胞在3 d時(shí)體積減小,7 d時(shí)與對(duì)照組相似,14 d時(shí)與對(duì)照組相比體積增大;CA3區(qū)GFAP陽(yáng)性的星形膠質(zhì)細(xì)胞在3 d和7 d時(shí)體積均小于對(duì)照組,14 d時(shí)體積與對(duì)照組相比增大[4]。國(guó)內(nèi)研究顯示,應(yīng)用STZ誘導(dǎo)糖尿病大鼠,與對(duì)照組比較,GFAP陽(yáng)性的星形膠質(zhì)細(xì)胞胞體腫大、突起增粗增多。其中病程1個(gè)月組以尾殼核區(qū)、海馬區(qū)明顯,3個(gè)月組各腦區(qū)均明顯[5]。由此推測(cè),糖尿病早期星形膠質(zhì)細(xì)胞體積減??;隨著病情進(jìn)展、病程延長(zhǎng),星形膠質(zhì)細(xì)胞的體積增大。
1.2 縫隙連接
星形膠質(zhì)細(xì)胞間的縫隙連接對(duì)于中樞神經(jīng)系統(tǒng)神經(jīng)遞質(zhì)、能量和血液的傳遞具有重要的作用。體外高糖(15~25 mmol/L)培養(yǎng)星形膠質(zhì)細(xì)胞與正常血糖組(5.5 mmol/L)相比,細(xì)胞間縫隙連接的生成更加緩慢,存在幾乎不可逆的細(xì)胞縫隙連接代謝產(chǎn)物轉(zhuǎn)運(yùn)的減退[6]。STZ誘導(dǎo)糖尿病大鼠20~24周后,與對(duì)照組比較,細(xì)胞間縫隙連接代謝產(chǎn)物轉(zhuǎn)運(yùn)減退[6]??梢婇L(zhǎng)期慢性高血糖和STZ誘導(dǎo)的糖尿病可以顯著減少星形膠質(zhì)細(xì)胞縫隙連接代謝產(chǎn)物的轉(zhuǎn)運(yùn)。細(xì)胞間物質(zhì)轉(zhuǎn)運(yùn)受損緩慢發(fā)生,且不易逆轉(zhuǎn)。糖尿病可能通過(guò)影響星形膠質(zhì)細(xì)胞縫隙連接,進(jìn)而影響中樞神經(jīng)系統(tǒng)的物質(zhì)轉(zhuǎn)運(yùn),造成中樞神經(jīng)系統(tǒng)的功能障礙。
1.3 蛋白表達(dá)
1.3.1 GFAP GFAP是由波形蛋白、巢蛋白及其他蛋白構(gòu)成的一種蛋白質(zhì)[7],是星形膠質(zhì)細(xì)胞主要的細(xì)胞骨架蛋白。對(duì)于轉(zhuǎn)基因鼠的研究表明,GFAP是星形膠質(zhì)細(xì)胞活化和神經(jīng)膠質(zhì)瘢痕形成的標(biāo)志[7-8]。關(guān)于糖尿病所導(dǎo)致中樞神經(jīng)系統(tǒng)星形膠質(zhì)細(xì)胞GFAP的變化,不同研究者應(yīng)用不同的研究方法所得的結(jié)果不盡相同。
Lebed等通過(guò)腹腔注射STZ誘導(dǎo)糖尿病大鼠,與對(duì)照組相比,病程3 d時(shí),大鼠海馬CA1區(qū)的GFAP表達(dá)明顯下降;7 d時(shí),GFAP表達(dá)上升,14 d時(shí)與對(duì)照組相似;大鼠海馬CA2和CA3區(qū)GFAP的變化與CA1區(qū)相似,只是14 d時(shí)CA2和CA3區(qū)GFAP表達(dá)多于對(duì)照組[4]。此實(shí)驗(yàn)表明糖尿病早期(3 d)即對(duì)大鼠海馬區(qū)星形膠質(zhì)細(xì)胞有影響,病程早期GFAP表達(dá)逐漸減少,后期表達(dá)增多。
Coleman等通過(guò)尾靜脈注射STZ誘導(dǎo)1型糖尿病大鼠,與對(duì)照組相比,糖尿病大鼠的海馬和小腦在病程4周時(shí)GFAP明顯下降;8周時(shí),大腦皮層、海馬和小腦的GFAP均明顯下降[9]。Dennis等應(yīng)用靜脈注射STZ誘導(dǎo)糖尿病大鼠,病程8周時(shí),大腦嗅球和嗅神經(jīng)的GFAP含量降低[10]。Nardin等應(yīng)用體外高糖(12 mmol/L)原代培養(yǎng)大鼠腦皮層星形膠質(zhì)細(xì)胞,GFAP的含量較正常血糖組(6 mmol/L)明顯降低[11]。
Revsin等[12]及Baydas等[13]發(fā)現(xiàn),腹腔注射STZ誘導(dǎo)糖尿病大鼠病程4周和6周時(shí),海馬區(qū)GFAP陽(yáng)性細(xì)胞的數(shù)量增多。國(guó)內(nèi)研究表明,應(yīng)用STZ誘導(dǎo)糖尿病大鼠,與對(duì)照組比較,GFAP陽(yáng)性細(xì)胞數(shù)增多,其中病程1個(gè)月以尾殼核區(qū)、海馬區(qū)增多明顯,3個(gè)月組各腦區(qū)表達(dá)均明顯增多[5],提示糖尿病腦損害首先以灰質(zhì)區(qū)受累為主,隨著病情發(fā)展逐漸累及白質(zhì)區(qū)。另有研究者通過(guò)尾靜脈注射四氧嘧啶誘導(dǎo)糖尿病小鼠,病程1個(gè)月時(shí),小鼠海馬區(qū)除CA2區(qū)外,糖尿病組GFAP陽(yáng)性細(xì)胞在CA1、CA3和CA4區(qū)的密度較生理鹽水組明顯增加[14]。
Lechuga-Sancho等發(fā)現(xiàn),STZ誘導(dǎo)的糖尿病大鼠病程1周時(shí),小腦GFAP和增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)含量增加,4周時(shí)開始減少,8周時(shí)與對(duì)照組相比,小腦GFAP和PCNA含量明顯減少,caspases-9、caspases-6、caspases-3、磷酸化p53、抗凋亡蛋白Bcl-2a和Bcl-XL增多,細(xì)胞凋亡明顯增多而細(xì)胞增殖明顯減少[15]。推測(cè)第1周GFAP上升可能與糖尿病導(dǎo)致的小腦損傷所誘導(dǎo)的星形膠質(zhì)細(xì)胞反應(yīng)性活化有關(guān);而后來(lái)的研究表明,長(zhǎng)期糖尿病會(huì)導(dǎo)致星形膠質(zhì)細(xì)胞數(shù)量減少,可能與細(xì)胞增殖的減少和細(xì)胞凋亡的增多有關(guān)。
上述研究結(jié)果的不同可能與不同動(dòng)物品種對(duì)糖尿病的反應(yīng)不同、不同動(dòng)物血糖波動(dòng)的范圍不同、糖尿病的嚴(yán)重程度不同,或不同的固定技術(shù)、使用的抗體不同相關(guān)。當(dāng)然,研究者選取的糖尿病病程時(shí)間點(diǎn)、星形膠質(zhì)細(xì)胞的來(lái)源區(qū)域(如大腦皮層、小腦、海馬)不同對(duì)結(jié)果的影響可能更大。
盡管STZ是一種針對(duì)胰島β細(xì)胞的特異性毒素,但也可能會(huì)導(dǎo)致其他細(xì)胞死亡,因此STZ注射的部位、劑量不同對(duì)實(shí)驗(yàn)的影響也較大。然而,STZ半衰期較短,胰島β細(xì)胞通常在幾個(gè)小時(shí)后開始失去活性[16-17],那些延遲4周才出現(xiàn)的細(xì)胞凋亡增加應(yīng)該不是STZ的直接作用。
應(yīng)用分離細(xì)胞體外培養(yǎng)的方法,剝奪了星形膠質(zhì)細(xì)胞自然環(huán)境下與神經(jīng)元及中樞神經(jīng)系統(tǒng)其他細(xì)胞之間的聯(lián)系,可能也是導(dǎo)致結(jié)果不同的原因。
通過(guò)大范圍實(shí)驗(yàn)動(dòng)物的觀察發(fā)現(xiàn),星形膠質(zhì)細(xì)胞的活化是一個(gè)連續(xù)漸變的過(guò)程[18]。輕微星形膠質(zhì)細(xì)胞活化是一種可變的GFAP和一些基因表達(dá)的上調(diào),以及個(gè)別星形膠質(zhì)細(xì)胞體積和突起的增大[19],沒有星形膠質(zhì)細(xì)胞的增殖;當(dāng)去除誘因時(shí),活化的星形膠質(zhì)細(xì)胞有恢復(fù)正常形態(tài)的潛能[18]。在正常中樞神經(jīng)系統(tǒng)中,有些成熟的星形膠質(zhì)細(xì)胞并不表達(dá)可檢測(cè)的GFAP,所以當(dāng)輕微的星形膠質(zhì)細(xì)胞活化導(dǎo)致GFAP表達(dá)上調(diào)時(shí),容易造成星形膠質(zhì)細(xì)胞數(shù)目增多的假象[18,20]。
程度較重的星形膠質(zhì)細(xì)胞活化則表現(xiàn)為GFAP和一些基因表達(dá)的顯著上調(diào),以及星形膠質(zhì)細(xì)胞體積和突起明顯增大,伴有星形膠質(zhì)細(xì)胞的增殖,不限于個(gè)別星形膠質(zhì)細(xì)胞,而是導(dǎo)致相鄰細(xì)胞突起的疊加,這會(huì)導(dǎo)致長(zhǎng)效的組織結(jié)構(gòu)再機(jī)化,在壞死組織的周圍形成神經(jīng)膠質(zhì)瘢痕[18]。一些研究發(fā)現(xiàn),活化的星形膠質(zhì)細(xì)胞具有保護(hù)中樞神經(jīng)系統(tǒng)的細(xì)胞和組織的作用,例如通過(guò)產(chǎn)生谷胱甘肽保護(hù)細(xì)胞的氧化應(yīng)激[21-23],通過(guò)下調(diào)β-淀粉樣蛋白起神經(jīng)保護(hù)作用[24],促進(jìn)血腦屏障修復(fù),限制炎癥細(xì)胞和炎性細(xì)胞因子的擴(kuò)散[25-27]。此外,臨床和實(shí)驗(yàn)研究表明,在特殊情況下,星形膠質(zhì)細(xì)胞的活化還能通過(guò)細(xì)胞因子加重炎癥反應(yīng)[28-29],產(chǎn)生具有神經(jīng)毒性的活性氧[23,30],釋放興奮性毒素谷氨酸鹽[31],通過(guò)產(chǎn)生血管內(nèi)皮生長(zhǎng)因子影響血腦屏障的功能[32]等。結(jié)合研究者對(duì)糖尿病導(dǎo)致星形膠質(zhì)細(xì)胞GFAP的變化結(jié)果,糖尿病早期星形膠質(zhì)細(xì)胞的活化和糖尿病晚期星形膠質(zhì)細(xì)胞的凋亡可能解釋了眾多糖尿病動(dòng)物GFAP表達(dá)水平的不同。
1.3.2 S100b S100b是一種星形膠質(zhì)細(xì)胞鈣結(jié)合蛋白,參與調(diào)控細(xì)胞骨架與細(xì)胞周期[33-34]。細(xì)胞培養(yǎng)觀察,細(xì)胞外S100b的作用與其濃度有關(guān),當(dāng)S100b是nmol水平(10~30 ng/ml)時(shí),表現(xiàn)為神經(jīng)營(yíng)養(yǎng)作用,刺激神經(jīng)膠質(zhì)細(xì)胞增生,保護(hù)神經(jīng)元抵御谷氨酸鹽的興奮毒性[35];當(dāng)為μmol水平(1 μg/ml)時(shí)則促進(jìn)細(xì)胞凋亡[36]。因此,細(xì)胞外S100b含量被用作衡量膠質(zhì)細(xì)胞活化和大腦損傷的參數(shù)。與糖尿病導(dǎo)致星形膠質(zhì)細(xì)胞GFAP的變化類似,不同研究者對(duì)于S100b含量變化的研究也有爭(zhēng)議。
Lebed等應(yīng)用腹腔注射STZ誘導(dǎo)糖尿病大鼠,與對(duì)照組相比,病程為3 d時(shí),大鼠海馬S100b表達(dá)增多,7 d、14 d時(shí)較3 d時(shí)減少,仍然比對(duì)照組多[4]。Baydas等應(yīng)用腹腔內(nèi)注射STZ誘導(dǎo)糖尿病大鼠,病程6周時(shí),大腦皮層、海馬和小腦S100b表達(dá)增多[13]。Zimmer等發(fā)現(xiàn),STZ誘導(dǎo)糖尿病大鼠4~6周時(shí),大腦S100b表達(dá)明顯增多[37]。
Hovsepyan等的研究表明,2型糖尿病患者血清中S100b含量下降[38]。體外高糖(12 mmol/L)原代培養(yǎng)大鼠腦皮層星形膠質(zhì)細(xì)胞24 h,較正常血糖(6 mmol/L)組細(xì)胞增殖速度降低,S100b含量降低,推測(cè)S100b的降低會(huì)影響星形膠質(zhì)細(xì)胞的增殖速度[11]。有研究表明,細(xì)胞外S100b含量的降低會(huì)導(dǎo)致糖尿病大鼠中樞神經(jīng)元的凋亡[39-40],同時(shí)導(dǎo)致糖尿病患者腦功能紊亂,如認(rèn)知功能下降、抑郁和腦卒中[41]。
Coleman等[9]及Dennis等[10]研究STZ誘導(dǎo)糖尿病大鼠,病程4周和8周時(shí),大腦星形膠質(zhì)細(xì)胞S100b數(shù)量與對(duì)照組相比沒有明顯區(qū)別。
上述研究所得結(jié)果有較大差異。但不可否認(rèn),糖尿病不同時(shí)期可以導(dǎo)致星形膠質(zhì)細(xì)胞S100b變化,繼而影響中樞神經(jīng)系統(tǒng)的功能。
1.3.3 載脂蛋白E 星形膠質(zhì)細(xì)胞增生通常與神經(jīng)變性和衰老相關(guān)。載脂蛋白E是主要局限于星形膠質(zhì)細(xì)胞的一類載脂蛋白,參與脂質(zhì)的轉(zhuǎn)運(yùn)和代謝,與阿爾茨海默病大腦淀粉質(zhì)斑塊中淀粉樣蛋白相關(guān)。載脂蛋白E的基因型與1型糖尿病患者的認(rèn)知功能障礙相關(guān)[42],神經(jīng)元變性與海馬區(qū)星形膠質(zhì)細(xì)胞載脂蛋白E水平升高相關(guān)[43]。
STZ誘導(dǎo)的糖尿病大鼠在病程1個(gè)月時(shí),載脂蛋白E陽(yáng)性星形膠質(zhì)細(xì)胞數(shù)較對(duì)照組明顯增多[12]??梢娞悄虿】梢栽黾有切文z質(zhì)細(xì)胞載脂蛋白E的表達(dá),而周圍神經(jīng)系統(tǒng)和中樞神經(jīng)系統(tǒng)的損害往往與非神經(jīng)元細(xì)胞表達(dá)載脂蛋白E增多有關(guān)[44],所以糖尿病可以通過(guò)影響星形膠質(zhì)細(xì)胞載脂蛋白E表達(dá),造成中樞神經(jīng)系統(tǒng)功能障礙。
1.3.4 內(nèi)質(zhì)網(wǎng)相關(guān)蛋白 葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)是內(nèi)質(zhì)網(wǎng)中最常見的伴侶蛋白,與內(nèi)質(zhì)網(wǎng)蛋白的折疊、鈣結(jié)合、控制內(nèi)質(zhì)網(wǎng)應(yīng)激的傳感器有關(guān)。STZ誘導(dǎo)的C57/BL6J大鼠糖尿病病程4周時(shí),可見海馬區(qū)星形膠質(zhì)細(xì)胞GRP78表達(dá)減少;高糖(12~35 mmol/L)作用于C6細(xì)胞系48 h,可見GRP78、GRP94、鈣網(wǎng)織蛋白、鈣聯(lián)接蛋白等內(nèi)質(zhì)網(wǎng)相關(guān)蛋白mRNA表達(dá)降低[45]。
1.4 糖原貯存
中樞神經(jīng)系統(tǒng)的糖原儲(chǔ)存于星形膠質(zhì)細(xì)胞,星形膠質(zhì)細(xì)胞對(duì)于大腦葡萄糖穩(wěn)態(tài)的維持起非常重要的作用[46]。大腦的糖原數(shù)量雖少,但對(duì)于學(xué)習(xí)、記憶和神經(jīng)信號(hào)傳導(dǎo)過(guò)程起著重要作用[47-50]。實(shí)驗(yàn)觀察,糖尿病大鼠小腦糖原水平明顯少于對(duì)照組[51]。提示糖尿病影響星形膠質(zhì)細(xì)胞葡萄糖的代謝,減少糖原貯藏,可能更易造成中樞神經(jīng)系統(tǒng)低血糖,損害中樞神經(jīng)系統(tǒng)功能。
另外,糖尿病還可以影響星形膠質(zhì)細(xì)胞分泌炎癥性細(xì)胞因子,如白細(xì)胞介素-1(interleukin-1,IL-1)、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等[52],產(chǎn)生炎癥反應(yīng),進(jìn)而影響中樞神經(jīng)系統(tǒng)的功能。
綜上所述,糖尿病所導(dǎo)致的星形膠質(zhì)細(xì)胞結(jié)構(gòu)和功能異常,在中樞神經(jīng)系統(tǒng)功能障礙的發(fā)生、發(fā)展中具有重要作用。星形膠質(zhì)細(xì)胞的體積變化、細(xì)胞間縫隙連接的變化,以及星形膠質(zhì)細(xì)胞表達(dá)GFAP、S100b、載脂蛋白E等蛋白的變化、糖原等多種物質(zhì)的代謝異常等參與其中。
糖尿病導(dǎo)致的中樞神經(jīng)系統(tǒng)功能障礙的病理生理機(jī)制復(fù)雜,星形膠質(zhì)細(xì)胞通過(guò)復(fù)雜的機(jī)制維持正常神經(jīng)元的活性。到目前為止,它們?cè)谔悄虿≈兴鸬淖饔貌⒉皇智宄P切文z質(zhì)細(xì)胞的改變發(fā)生在糖尿病病程的早期,是中樞神經(jīng)系統(tǒng)功能障礙的表現(xiàn),亦可能對(duì)后續(xù)糖尿病導(dǎo)致的中樞神經(jīng)系統(tǒng)功能障礙起作用。多數(shù)研究者觀察到糖尿病導(dǎo)致的星形膠質(zhì)細(xì)胞GFAP表達(dá)變化各不相同,星形膠質(zhì)細(xì)胞的活化亦可能產(chǎn)生不同的作用,糖尿病早期星形膠質(zhì)細(xì)胞的活化究竟對(duì)中樞神經(jīng)系統(tǒng)損害起了促進(jìn)作用還是抑制作用,星形膠質(zhì)細(xì)胞活化是中樞神經(jīng)系統(tǒng)損害的原因還是結(jié)果,這些問(wèn)題仍需要進(jìn)一步研究。
以星形膠質(zhì)細(xì)胞為靶點(diǎn)可能為治療糖尿病中樞神經(jīng)系統(tǒng)功能障礙帶來(lái)新的方法。目前相關(guān)研究較少,質(zhì)量也尚待提高。中草藥是我國(guó)傳統(tǒng)醫(yī)藥寶庫(kù)的一個(gè)重要組成部分,具有多途徑、多靶點(diǎn)、低毒副作用的優(yōu)點(diǎn),對(duì)中樞神經(jīng)系統(tǒng)疾病星形膠質(zhì)細(xì)胞結(jié)構(gòu)和功能障礙的干預(yù)研究較多,但對(duì)糖尿病時(shí)星形膠質(zhì)細(xì)胞結(jié)構(gòu)與功能障礙的干預(yù)研究較少。充分利用現(xiàn)代化技術(shù)和設(shè)備,深入探討中藥對(duì)糖尿病星形膠質(zhì)細(xì)胞的作用和作用機(jī)制,具有很大的理論和臨床意義。
[1]Brands AM,Kessels RP,de Haan EH,et al.Cerebral dysfunction in type 1 diabetes:effects of insulin,vascular risk factors and blood-glucose levels[J].Eur J Pharmacol,2004,490(1-3):159-168.
[2]Gispen WH,Biessels GJ.Cognitive and synaptic plasticity in diabetes mellitus[J].Trends Neurosci,2000,23(11):542-549.
[3]Anderson CM,Swanson RA.Astrocyte glutamate transport:review of properties,regulation,and physiological functions[J].Glia,2000,32 (1):1-14.
[4]Lebed YV,Orlovsky MA,Nikonenko AG,et al.Early reaction of astroglial cells in rat hippocampus to streptozotocin-induced diabetes[J]. Neurosci Lett,2008,444(2):181-185.
[5]林永忠,孫長(zhǎng)凱,吳旻,等.胰島素對(duì)糖尿病大鼠認(rèn)知功能及腦星形膠質(zhì)細(xì)胞GFAP表達(dá)的影響[J].大連醫(yī)科大學(xué)學(xué)報(bào),2012,34(4): 324-328.
[6]Gandhi GK,Ball KK,Cruz NF,et al.Hyperglycaemia and diabetes impair gap junctional communication among astrocytes[J].ASN Neuro, 2010,2(2):57-73.
[7]Pekny M,Pekna M.Astrocyte intermediate filaments in CNS pathologies and regeneration[J].J Pathol,2004,204(4):428-437.
[8]Herrmann JE,Imura T,Song B,et al.STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury[J].J Neurosci, 2008,28(28):7231-7243.
[9]Coleman E,Judd R,Hoe L,et al.Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS[J].Glia,2004,48 (2):166-178.
[10]Dennis JC,Coleman ES,Swyers SE,et al.Changes in mitotic rate and GFAP expression in the primary olfactory axis of streptozotocin-induced diabetic rats[J].J Neurocytol,2005,34(1-2):3-10.
[11]Nardin P,Tramontina F,Leite MC,et al.S100B content and secretion decrease in astrocytes cultured in high-glucose medium[J].Neurochem Int,2007,50(5):774-782.
[12]Revsin Y,Saravia F,Roig P,et al.Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes[J].Brain Res,2005,1038(1):22-31.
[13]Baydas G,Nedzvetskii VS,Tuzcu M,et al.Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E[J].Eur J Pharmacol,2003,462(1-3):67-71.
[14]楊力,趙培園,戰(zhàn)雅,等.糖尿病小鼠海馬星形膠質(zhì)細(xì)胞GFAP表達(dá)的變化[J].昆明醫(yī)學(xué)院學(xué)報(bào),2010,(6):28-31.
[15]Lechuga-Sancho AM,Arroba I,Frago M,et al.Activation of the intrinsic cell death pathway,increased apoptosis and modulation of astro-cytes in the cerebellum of diabetic rats[J].Neurobiol Dis,2006,23(2): 290-299.
[16]Koulmanda M,Qipo A,Chebrolu S,et al.The effect of low versus high dose of streptozotocin in cynomolgus monkeys(Macaca fascilularis)[J].Am J Transplant,2003,3(3):267-272.
[17]Morimoto S,Mendoza-Rodriguez CA,Hiriart M,et al.Protective effect of testosterone on early apoptotic damage induced by streptozotocin in rat pancreas[J].J Endocrinol,2005,187(2):217-224.
[18]Sofroniew MV.Molecular dissection of reactive astrogliosis and glial scar formation[J].Trends Neurosci,2009,32(12):638-647.
[19]Wilhelmsson U,Bushong EA,Price DL,et al.Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury[J].Proc Natl Acad Sci USA,2006,103(46): 17513-17518.
[20]Sofroniew MV,Vinters HV.Astrocytes:biology and pathology[J].Acta Neuropathol,2010,119(1):7-35.
[21]Chen Y,Vartiainen NE,Ying W,et al.Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism[J].J Neurochem,2001,77(6):1601-1610.
[22]Shih AY,Johnson DA,Wong G,et al.Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress[J].J Neurosci,2003,23(8): 3394-3406.
[23]Swanson RA,Ying W,Kauppinen TM.Astrocyte in fl uences on ischemic neuronal death[J].Curr Mol Med,2004,4(2):193-205.
[24]Koistinaho M,Lin S,Wu X,et al.Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides[J].Nat Med,2004,10(7):719-726.
[25]Drogemuller K,Helmuth U,Brunn A,et al.Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis[J].J Immunol,2008,181(4):2683-2693.
[26]Li L,Lundkvist A,Andersson D,et al.Protective role of reactive astrocytes in brain ischemia[J].J Cereb Blood Flow Metab,2008,28(3): 468-481.
[27]Myer DJ,Gurkoff GG,Lee SM,et al.Essential protective roles of reactive astrocytes in traumatic brain injury[J].Brain,2006,129(Pt 10): 2761-2772.
[28]Brambilla R,Bracchi-Ricard V,Hu WH,et al.Inhibition of astroglial nuclear factor kappa B reduces inflammation and improves functional recovery after spinal cord injury[J].J Exp Med,2005,202(1):145-156.
[29]Brambilla R,Persaud T,Hu X,et al.Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system in fl ammation[J].J Immunol,2009,182(5):2628-2640.
[30]Hamby ME,Hewett JA,Hewett SJ.TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2[J].Glia,2006,54(6):566-577.
[31]Takano T,Kang J,Jaiswal JK,et al.Receptor-mediated glutamate release from volume sensitive channels in astrocytes[J].Proc Natl Acad Sci USA,2005,102(45):16466-16471.
[32]Argaw AT,Gurfein BT,Zhang Y,et al.VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown[J].Proc NatlAcad Sci USA,2009,106(6):1977-1982.
[33]Donato R.S100:a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles[J].Int J Biochem Cell Biol,2001,33(7):637-668.
[34]Van Eldik LJ,Wainwright MS.The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain[J].Restor Neurol Neurosci,2003,21(3-4):97-108.
[35]Ahlemeyer B,Beier H,Semkova I,et al.S-100beta protects cultured neurons against glutamate-and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT(1A)-receptor agonist, Bay x 3702[J].Brain Res,2000,858(1):121-128.
[36]Fulle S,Mariggio MA,Belia S,et al.Nerve growth factor inhibits apoptosis induced by S-100 binding in neuronal PC12 cells[J].Neuroscience,1997,76(1):159-166.
[37]Zimmer DB,Chessher J,Wilson GL,et al.S100A1 and S100B expression and target proteins in type I diabetes[J].Endocrinology,1997,138 (12):5176-5183.
[38]Hovsepyan MR,Haas MJ,Boyajyan AS,et al.Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus[J]. Neurosci Lett,2004,369(3):224-227.
[39]Beauquis J,Roig P,Homo-Delarche F,et al.Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice:reversion by antidepressant treatment[J].Eur J Neurosci, 2006,23(6):1539-1546.
[40]Li ZG,Zhang W,Grunberger G,et al.Hippocampal neuronal apoptosis in type 1 diabetes[J].Brain Res,2002,946(2):221-231.
[41]Bauduceau B,Bourdel-Marchasson I,Brocker P,et al.The brain of the elderly diabetic patient[J].Diabetes Metab,2005,31(2):5S92-5S97.
[42]Ferguson SC,Deary IJ,Perros P,et al.Apolipoprotein-E influences aspects of intellectual ability in type 1 diabetes[J].Diabetes,2003,52(1): 145-148.
[43]Grootendorst J,Mulder M,Haasdijk E,et al.Presence of apolipoprotein E immunoreactivity in degenerating neurones of mice is dependent on the severity of kainic acid-induced lesion[J].Brain Res,2000,868 (2):165-175.
[44]Boschert U,Merlo-Pich E,Higgins G,et al.Apolipoprotein E expression by neurons surviving excitotoxic stress[J].Neurobiol Dis,1999,6 (6):508-514.
[45]Wong DP,Chu JM,Hung VK,et al.Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells[J].Neurochem Int, 2013,63(6):551-560.
[46]Brown AM,Sickmann HM,Fosgerau K,et al.Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter[J].J Neurosci Res,2005,79(1-2):74-80.
[47]Cruz NF,Dienel GA.High glycogen levels in brains of rats with minimal environmental stimuli:implications for metabolic contributions of working astrocytes[J].J Cereb Blood Flow Metab,2002,22(12): 1476-1489.
[48]Gibbs ME,Anderson DG,Hertz L.Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens[J].Glia, 2006,54(3):214-222.
[49]Suh SW,Bergher JP,Anderson CM,et al.Astrocyte glycogen sustains neuronal activity during hypoglycemia:studies with the glycogen phosphorylase inhibitor CP-316,819([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide)[J].J Pharmacol Exp Ther,2007,321 (1):45-50.
[50]Suzuki A,Stern SA,Bozdagi O,et al.Astrocyte-neuron lactate transport is required for long-term memory formation[J].Cell,2011,144 (5):810-823.
[51]Sickmann HM,Waagepetersen HS,Schousboe A,et al.Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis[J].J Cereb Blood Flow Metab,2010,30(8): 1527-1537.
[52]Yirmiya R,Goshen I.Immune modulation of learning,memory,neural plasticity and neurogenesis[J].Brain Behav Immun,2011,25(2): 181-213.
Experiments about Effect of Diabetes Mellitus on Function of Astrocyte(review)
XU Xiao-han,TIAN Guo-qing.Peking Union Medical College Hospital,Peking Union Medical College,Chinese Academy of Medical Science,Beijing 100730,China
Diabetes mellitus can cause central nervous system dysfunction.Astrocyte,as an important part of the central nervous system,is affected by diabetes,which involve the volume of astrocyte,intercellular gap junctions,the expression of protein,glycogen storage and so on.
diabetes mellitus;astrocyte;glial fibrillary acidic protein;S100b;review
10.3969/j.issn.1006-9771.2014.05.012
R747.9
A
1006-9771(2014)05-0442-04
2013-10-11
2014-03-13)
北京市中醫(yī)藥科技項(xiàng)目(No.SF-2009-III-29)。
中國(guó)醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院,北京協(xié)和醫(yī)院中醫(yī)科,北京市100730。作者簡(jiǎn)介:徐小涵(1988-),女,山東泰安市人,碩士研究生,主要研究方向:糖尿病及其慢性并發(fā)癥的中西醫(yī)結(jié)合治療。通訊作者:田國(guó)慶,教授。