陳璐勔,羅艷琳,趙 麗,韓 松,李淑娟,李俊發(fā)*
(首都醫(yī)科大學(xué)1.神經(jīng)生物學(xué)系 北京腦重大疾病研究院,北京100069;2.附屬北京朝陽(yáng)醫(yī)院神經(jīng)內(nèi)科,北京 100020)
自噬是廣泛存在于真核細(xì)胞內(nèi)的一種溶酶體依賴性降解途徑,并被認(rèn)為是細(xì)胞進(jìn)行自我保護(hù)的一種重要機(jī)制[1]。關(guān)于自噬在腦缺血和缺血再灌注過(guò)程中的作用一直存在爭(zhēng)議,一些研究者認(rèn)為自噬在腦缺血損傷中起到保護(hù)作用;而另一些學(xué)者則認(rèn)為自噬加重腦缺血損傷。究其原因,可能主要與研究者所選擇的實(shí)驗(yàn)?zāi)P陀嘘P(guān),即缺血/低氧或再灌注時(shí)間的差異可能造成不同的實(shí)驗(yàn)結(jié)果。如在大鼠腦中動(dòng)脈阻塞(middle cerebral artery occlusion, MCAO)模型與原代培養(yǎng)皮質(zhì)神經(jīng)元中發(fā)現(xiàn),自噬在缺血/再灌注中起保護(hù)作用,且這種保護(hù)作用不因再灌注時(shí)間的長(zhǎng)短而改變[2- 4]。然而,其他研究者在不同實(shí)驗(yàn)條件下發(fā)現(xiàn),隨著氧-糖剝奪(oxygen glucose deprivation, OGD)時(shí)間的延長(zhǎng),自噬逐漸對(duì)細(xì)胞起損害作用[5- 6]。這些研究結(jié)果提示,缺血/低氧程度可能對(duì)于研究細(xì)胞自噬在腦缺血性損傷中作用有重要意義。據(jù)此,本實(shí)驗(yàn)擬利用原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元OGD模擬離體缺血模型,選擇不同OGD強(qiáng)度并利用自噬抑制劑巴弗洛霉素A1(BafA1),探討細(xì)胞自噬在OGD誘導(dǎo)神經(jīng)元缺血損傷中作用,并為深入研究神經(jīng)元在不同缺血強(qiáng)度狀態(tài)下,自噬的具體細(xì)胞信號(hào)激活機(jī)制打下基礎(chǔ)。
清潔級(jí), 出生24 h內(nèi)的C57BL/6J乳鼠,雌雄不拘。購(gòu)于首都醫(yī)科大學(xué)動(dòng)物部,SCXK(京)2012- 0001。
NeurobasalTM、B27、谷氨酰胺、雙抗(100 IU/mL青霉素、100 μg/mL鏈霉素)和無(wú)糖DMEM(Gibco公司);BCA蛋白定量試劑盒(Pierce公司),兔源性LC3多克隆抗體,Bafilomycin A1(Sigma-Aldrich公司),兔源性Beclin- 1多克隆抗體和鼠源性β-actin單克隆抗體(Proteintech公司),CytoTox 96?非放射性細(xì)胞毒性檢測(cè)試劑盒(Promega公司), 3-(4,5-二甲基噻唑-2)- 2,5-二苯基四氮唑溴鹽(MTT)(Applichem公司)。
選用培養(yǎng)8 d生長(zhǎng)狀態(tài)良好的神經(jīng)元,更換為無(wú)糖培養(yǎng)基,放入37 ℃、通有混合氣體(5% CO2, 2% O2和93% N2)的低氧培養(yǎng)箱。分別于15、30、60、90和120 min后取出,更換為正常培養(yǎng)液,并置于37 ℃、5% CO2飽和的常氧培養(yǎng)箱中繼續(xù)培養(yǎng)24 h。為明確自噬在神經(jīng)元OGD損傷中的作用,自噬抑制劑BafA1在細(xì)胞進(jìn)行OGD前即刻加入,并在細(xì)胞培養(yǎng)基中保持終濃度為100 nmol/L。
蛋白樣品制備、SDS-PAGE和Western blot參照文獻(xiàn)[14]。提取全細(xì)胞蛋白、BCA法定量。取30 g蛋白樣品,進(jìn)行電泳(12% SDS-PAGE,4 ℃,20~30 mA)和轉(zhuǎn)膜(PVDF膜,400 mA,1 h)。先后用兔源性抗Beclin- 1(1∶1 000)、LC3(1∶1 000)和β-actin(1∶10 000)一抗,辣根過(guò)氧化物酶(HRP)標(biāo)記山羊抗兔二抗(1∶4 000)進(jìn)行免疫雜交;然后用ECL發(fā)光,X-線片曝光、顯影、定影。Western blot結(jié)果用Quantity One軟件進(jìn)行定量分析。
將細(xì)胞接種于96孔板,經(jīng)OGD處理后加入MTT,并避光37 ℃溫浴4 h。MTT可被線粒體內(nèi)脫氫酶還原生成結(jié)晶狀深紫色產(chǎn)物甲臜(formazan),用DMSO將其完全溶解后,通過(guò)酶標(biāo)儀測(cè)定490 nm波長(zhǎng)的吸光度(A490),來(lái)計(jì)算細(xì)胞存活率。
在96孔板接種細(xì)胞,按照CytoTox 96?非放射性細(xì)胞毒性檢測(cè)試劑盒規(guī)定步驟,定量測(cè)量(A490)細(xì)胞LDH漏出率,來(lái)確定細(xì)胞損傷水平。
經(jīng)15~120 min OGD/復(fù)糖復(fù)氧(R)24 h處理后,原代培養(yǎng)神經(jīng)元內(nèi)Beclin- 1蛋白表達(dá)水平隨OGD處理時(shí)間延長(zhǎng)顯著升高,且于30 min達(dá)到峰值1.80±0.08倍 (P<0.05) (圖1)。同樣,代表自噬水平的LC3Ⅱ/Ⅰ比值在OGD處理后15~120 min的變化趨勢(shì)與Beclin- 1蛋白表達(dá)水平相似,均在30 min OGD處理后達(dá)到峰值1.60±0.02倍 (P<0.05) (圖2)。
選取自噬最為活躍的時(shí)間點(diǎn),OGD 30和60 min/R 24 h,觀察神經(jīng)元損傷情況。MTT結(jié)果(圖3A)示,30和60 min OGD/R 24 h神經(jīng)元的存活率分可使神經(jīng)元死亡率分別為(33.1±1.9)%和(39.9±1.4)%。然而,在終濃度100 nmol/L自噬抑制劑BafA1作用下,60 min OGD/R 24 h處理的神經(jīng)元存活率下降為(49.3±1.5)%,較單純60 min OGD/R 24 h處理神經(jīng)元的存活率顯著下降(P<0.05),同樣,LDH漏出率結(jié)果顯示,BafA1抑制自噬后,30和60 min OGD/R 24 h處理神經(jīng)元死亡率分別增加至(36.8±0.6)%和(51.2±1.5)%,且60 min OGD/R 24 h組神經(jīng)元死亡率顯著增加 (P<0.05) (圖3B)。此外,進(jìn)一步明確了BafA1對(duì)OGD處理神經(jīng)元存活率和死亡率的影響是通過(guò)對(duì)細(xì)胞自噬的抑制作用(P<0.05) (圖4)。
A.the typical result of Western blot showed the changes of Beclin- 1 (60 ku) expression in primary cultured cortical neurons with oxygen-glucose deprivation (OGD) treatment; B.the results of quantitative analysis demonstrated that the Beclin- 1 expression increased;*P<0.05 conpared with 0 min OGD (normoxic control)
圖1不同OGD處理時(shí)間對(duì)原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元內(nèi)Beclin-1表達(dá)水平的影響
Fig1EffectofOGDexposuretimeonBeclin-1expressionlevelinprimaryculturedcorticalneuronsofmice(n=6)
A.the typical result of Western blot showed the changes of LC3Ⅰ (17 ku) and LC3Ⅱ (14 ku) expressions in primary cultured cortical neurons with OGD treatment; B.the results of quantitative analysis demonstrated that the ratio of LC3Ⅱ/LC3Ⅰ increased significantly with OGD exposure time;*P<0.05 compared with 0 min OGD (normoxic control)
圖2不同OGD處理時(shí)間對(duì)原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元內(nèi)LC3Ⅱ/Ⅰ比值的影響
Fig2EffectofOGDexposuretimeonLC3Ⅱ/Ⅰratioinprimaryculturedcorticalneuronsofmice(n=6)
細(xì)胞自噬在腦缺血病理生理變化中扮演著重要的角色,明確自噬在腦缺血中發(fā)揮的作用是挽救缺血性腦卒中患者生命的關(guān)鍵[7- 10]。OGD致離體細(xì)胞缺血模型可解決整體動(dòng)物實(shí)驗(yàn)難以解決的問(wèn)題,并避免了諸多體內(nèi)因素的干擾,非常便于觀察藥物的作用, 以及進(jìn)一步探討保護(hù)或損傷的細(xì)胞分子機(jī)制。
A.the results of MTT(cell survival); B.LDH(cell death) assaies demonstrated that autophagy inhibitor BafA1could significantly aggravate 60 min OGD/24 h R-induced ischemic injury in primary cultured cortical neuron of mice;*P<0.05 compared with normoxia;#P<0.05 compared with 60min OGD without BafA1treatment
圖3自噬抑制劑BafA1對(duì)30~60minOGD處理神經(jīng)元缺血性損傷的影響
Fig3EffectofautophagyinhibitorBafA1on30~60minOGD-inducedischemicinjuriesinprimaryculturedcorticalneuronofmice(n=6)
The results of typical Western blot and quantitative analysis showed that the autophagy inhibitor BafA1, which is a specific inhibitor of vacuolar H+ ATPase to prevent the fusion between autophagosomes and lysosomes, could significantly induce the accumulation of LC3II in primary cultured cortical neurons after 60 min OGD/24 h R;*P<0.05 compared with normoxia;#P<0.05 compared with 60 min OGD
圖4自噬抑制劑BafA1對(duì)60minOGD處理神經(jīng)元內(nèi)LC3Ⅱ/Ⅰ比值的影響
Fig4EffectofautophagyinhibitorBafA1ontheLC3Ⅱ/Ⅰrationinprimaryculturedcorticalneuronsafter60minOGDtreatment(n=6)
因此,原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元OGD模型,可研究缺血/缺氧時(shí)神經(jīng)元自噬是否被激活及其激活程度,更重要的是能更直接地研究神經(jīng)元自噬在缺血/缺氧性損傷中作用,為深入研究腦缺血/低氧性損傷和適應(yīng)機(jī)制打下了良好基礎(chǔ)[11- 14]。本研究結(jié)果表明,離體培養(yǎng)神經(jīng)元經(jīng)OGD/24 h R處理后, OGD1 5 min即可誘發(fā)原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元的自噬發(fā)生,OGD 30 min即可使神經(jīng)元內(nèi)自噬水平達(dá)到峰值,然而隨著時(shí)間的延長(zhǎng),神經(jīng)元自噬水平略微下降,損傷情況加重,提示神經(jīng)元的損傷方式可能已發(fā)生了改變,即凋亡和壞死途徑被觸發(fā)。而細(xì)胞自噬可緩解OGD致小鼠腦皮質(zhì)神經(jīng)元的缺血性損傷,并在60 min OGD/R 24 h的保護(hù)作用更明顯。
總之,本實(shí)驗(yàn)在原代培養(yǎng)神經(jīng)元的缺血性損傷中證實(shí),自噬可以對(duì)抗OGD致神經(jīng)元的損傷作用,且這種作用與時(shí)間密切相關(guān),隨著OGD時(shí)間的延長(zhǎng),其他細(xì)胞死亡方式被觸發(fā),自噬的保護(hù)作用被削弱。提示臨床上治療缺血性腦卒中不僅要在合適的時(shí)間點(diǎn)發(fā)揮自噬的保護(hù)作用,還要注意抑制其他細(xì)胞死亡方式的發(fā)生??傊琌GD可誘發(fā)原代培養(yǎng)小鼠腦皮質(zhì)神經(jīng)元自噬發(fā)生,且細(xì)胞自噬可緩解OGD處理腦皮質(zhì)神經(jīng)元的缺血損傷。
[1] Liu C, Gao Y, Barrett J,etal. Autophagy and protein aggregation after brain ischemia [J]. Neurochem,2010, 115: 68- 78.
[2] Zhang X, Yan H, Yuan Y,etal. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance [J]. Autophagy, 2013,9: 1321- 1333.
[3] Yan W, Zhang H, Bai X,etal. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats [J]. Brain Res, 2011,1402:109- 121.
[4] Shi R, Weng J, Zhao L,etal. Excessive autophagy contributes to neuron death in cerebral ischemia [J]. CNS Neurosci Ther,2012, 18:250- 260.
[5] Cui D, Wang L, Qi A,etal. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia- reperfusion injury in rats [J]. PLoS One, 2012,10.1371/journal.pone.0035324.
[6] Ginet V, Spiehlmann A, Rummel C,etal. Involvement of autophagy in hypoxic- excitotoxic neuronal death [J]. Autophagy, 2014,10:846- 860.
[7] Chen J, Lin F, Qin Z,etal. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases [J]. Neurosci Bull, 2008,24:183- 194.
[8] Rami A, Langhagen A, Steiger S,etal. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death [J]. Neurobiol Dis, 2008, 29:132- 141.
[9] Zheng Y, Liu J, Li X,etal. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats [J]. Acta Pharmacol Sin, 2009,30:919- 927.
[10] Mo Z, Fang Y, He Y,etal. Beta-asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin- 1-dependent autophagy [J]. Acta Pharmacol Sin, 2012,33:737- 742.
[11] Sheng R, Liu X, Zhang L,etal. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning [J]. Autophagy, 2012,8:310- 325.
[12] Qin A, Liu C, Qin Y,etal. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia [J]. Autophagy, 2010,6:738- 753.
[13] Zheng Y, Hou J, Liu J,etal. Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats [J]. J. Pharmacol Sci, 2014, 124:354- 364.
[14] Wang P, Liang J, Li Y,etal. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing Beclin 1-mediated autophagy [J]. Neurochem Res, 2014, 39:1279- 1291.