• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computing Numerical Singular Points of Plane Algebraic Curves?

    2012-12-27 07:06:14LUOZHONGXUANFENGERBAOANDHUWENYU

    LUO ZHONG-XUAN,FENG ER-BAOAND HU WEN-YU

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024)

    (2.School of Software,Dalian University of Technology,Dalian, Liaoning,116620)

    Computing Numerical Singular Points of Plane Algebraic Curves?

    LUO ZHONG-XUAN1,2,FENG ER-BAO1AND HU WEN-YU1

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024)

    (2.School of Software,Dalian University of Technology,Dalian, Liaoning,116620)

    Given an irreducible plane algebraic curve of degree d≥3,we compute its numerical singular points,determine their multiplicities,and count the number of distinct tangents at each to decide whether the singular points are ordinary.The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision.It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out.Without using multiprecision arithmetic,extensive numerical experiments show that our numerical procedures are accurate,efficient and robust,even if the coefficients of plane algebraic curves are inexact.

    numerical singular point,multiplicity,ordinary,homotopy continuation

    1 Introduction

    Singular points and their related properties play an important role in the theory of plane algebraic curves(see[1–2]),such as the computation of the genus of an algebraic curve. Practically,singular points present some shape features,such as nodes,self-intersections or cusps of real curves arising from computer aided geometry design,robot motion planning and machine vision.And computing singular points helps to determine the geometric shape and topology of the real curves.

    Some of the existing research in CAGD on computing singular points considers rational parametric curves.The computation of singular points of a rational parametric curve is studied in[3].Chenet al.[3]surveyed other methods brie fl y therein.

    Singular points of the plane algebraic curve f(x,y)=0 can be computed by solving the polynomial system

    where fx(x,y)and fy(x,y)are the partial derivatives of f(x,y)with respect to x and y respectively.Most of the existing methods in[4–8]solved this polynomial system either by resultant computation,which required the exact input of coefficients of algebraic curves,or by the Grbner basis method described in[9].For singular points of high multiplicity or algebraic curves with complex structures,the resultants may become difficult to compute. Furthermore,coefficients of algebraic curves obtained by fi tting or interpolating the experimental data can seldom be exact.On the other hand,the reliance on symbolic manipulation of the Grbner basis method makes the induced method seem somewhat limited to relatively small problem.

    An algorithm can determine singular points of algebraic curves with rational coefficients, compute their multiplicities and count the number of distinct tangents at each using polynomial procedures(substitutions,resultants,greatest common divisors,etc.)in[10].However, this algorithm gave only a real isolating interval or an isolating rectangle in the complex plane where every singular point lies,and no exact coordinates for every singular point.

    For locating the singular points,Bajajet al.[11]pointed out that a problem for their tracing curves algorithm is how to determine the singular points accurately.Our numerical procedures including the application of homotopy continuation method,provide the singular points quickly and accurately.

    In this article,we compute the singular points indirectly by homotopy continuation method(see[12]),which is an efficient and reliable numerical algorithm for approximating all isolated zeros of polynomial systems.different from[11]which solves the intersections of (1.1)using the Newton iteration,the homotopy continuation method provides all the isolated solutions of the polynomial systems globally.As we obtain the numerical solutions of the polynomial systems,we say numerical singular points corresponding to the singular points with exact coordinates obtained by resultant computations or the Grbner basis method.

    Singular points at in fi nity are computed by solving a univariate polynomial.It is different from the methods given in[5–6],as they all homogenized plane algebraic curves to the projective plane algebraic curves and solved other two overdetermined polynomial systems similar to(1.1)for computing singular points at in fi nity.

    After all the numerical singular points are obtained,we calculate their multiplicities by examining derivatives of f(x,y).The singular point is non-ordinary if there are multiple roots of the corresponding univariate polynomial.Recently,a reliable method that calculates multiple roots of the univariate polynomials accurately by using standard machine precision was developed by Zeng[13].With the aid of this method,singular points at in fi nity and the related properties of all the singular points can be determined accurately.

    In the next section we recall some preliminaries about the algebraic curves and singular points.Section 3 is devoted to how to obtain the solutions of an overdetermined system from a related square system.Remarks for the e ff ect of tiny perturbations on the singular points and their related properties are provided.We also give detailed steps and some numerical issues regarding the computation of singular points,their multiplicities and characters. Section 4 presents the numerical results.We conclude the paper with a remark about the computation of the genus of algebraic curves and the efficiency of our numerical procedures in Section 5.

    2 Preliminaries

    For the convenience of readers,we review some preliminaries about algebraic curves and singular points first(see[2,6]).Let C be an irreducible plane algebraic curve with equation f(x,y)=0.Sometimes we use f(x,y)=0 to represent“an irreducible plane algebraic curve with equation f(x,y)=0”.Let P be a point of f(x,y)=0.

    If all derivatives of f(x,y)up to and including the(r?1)-th vanish at P,but at least one r-th derivative does not vanish at P,then P is said to be a point of f(x,y)=0 of multiplicity r.

    Let the tangents of f(x,y)=0 at P=(a,b)be(x(t),y(t))=(a+λt,b+μt).The tangents to f(x,y)=0 at P of multiplicity r are determined by the ratio λ:μand correspond to the roots of

    and are counted with multiplicities equal to the multiplicities of the corresponding roots of this equation(see[2]).

    A point of multiplicity two or more is said to be singular,and especially,the point of multiplicity two is called a double point.It is evident that a necessary and sufficient condition that a point(a,b)is singular is that

    A point P of multiplicity r is ordinary if the r tangents at the point P are distinct. Otherwise P is called non-ordinary.The property of the singular point P of being ordinary or non-ordinary is called the character of P.

    By a non-singular curve we mean a curve with no singular points.

    We denote f(x,y)in the form

    where fk(x,y),0≤k≤d,is a homogeneous polynomial of degree k,fd(x,y)is nonzero and d is called the degree of the plane algebraic curve f(x,y)=0.

    Associated with f(x,y)there exists a homogeneous polynomial F(x,y,z)of degree d, the homogenization of f(x,y),

    The projective plane algebraic curve D corresponding to C is de fi ned as the set

    where P2denotes the projective plane.

    Every point(a,b)on C corresponds to a point(a,b,1)on D.Every additional point (a,b,0)on D is a point at in fi nity.In other words,the first two coordinates of points at in fi nity are the nontrivial solutions of fd(x,y).So the curve f(x,y)=0 has only finitely many points at in fi nity.We call the points of f(x,y)=0 affine points.

    In terms of projective coordinate,the criteria for singular points can be put in a more convenience form.

    Proposition 2.1[2]The multiplicity of a pointQofF(x,y,z)=0isrif and only if all the(r?1)-th derivatives ofF(x,y,z),but not all ther-th derivatives,vanish atQ.

    As a corollary of this proposition we see that a point Q of F(x,y,z)=0 is singular if and only if

    3 Numerical Procedures and Issues

    3.1 Solving the Overdetermined Polynomial Systems

    The following proposition shows how to reduce an overdetermined polynomial system to a square system that most of the papers and softwares on continuation method deal with.All the solutions of an overdetermined system appear among the solutions of the corresponding square system,but the converse is not true.

    Let n and N be the number of equations and unknown respectively,and n>N.

    Proposition 3.1[14?15]There are nonempty Zariski open dense sets of parametersλi,j∈CN(n?N)orλi,j∈RN(n?N)such that every isolated solution of

    This is just a part of the original proposition and the rest presents the relation between the k≥1 dimensional solution components of the above two systems,however,a theorem in [2]about singular points is that if an irreducible algebraic curve of degree d has multiplicities riat points Pi,then

    This inequality implies that an irreducible algebraic curve has only finitely many singular points,so the singular point is isolated and the Proposition 3.1 is enough for our demands.

    Another technique to deal with the overdetermined polynomial system is to introduce the slack variables.For example,denote X=(x1,x2,x3)and let us consider f(X)= (f1(X),···,f5(X))=0 consisting of fi ve equations in three variables.This technique introduces two new variables y1and y2(so called slack variables)and adds random multiples of these variables to every equation:

    The former technique is more attractive for our problem,because fewer equations are left and the dimension of working space is smaller.These two advantages make it more e ff ective than adding the slack variables when solving polynomial systems by homotopy continuation method.

    3.2 Remarks for the E ff ect of Tiny Perturbations on the Singular Points

    The singular points of algebraic curves are unstable with respect to random perturbations, in other words,tiny perturbations might destroy singular points and their related properties (see[16]).

    If we perturb x3?y2=0 with double non-ordinarysingular point(0,0)to x3?y2+?x2=0 where ?>0 and is sufficiently small,the singular point is double ordinary singular point (0,0).

    The traditional symbolic manipulation may not give the satisfying results for the perturbed algebraic curve.When we give a perturbation 1/1000000 to a monomial coefficient of the algebraic curve with six singular points in Example 4.1 of this paper,the symbolic computation software,Maple,computes only one point by its command“singularities”.

    3.3 Computing the Numerical Singular Points,Their Multiplicities and Characters

    Given an irreducible plane algebraic curve f(x,y)=0,let its form and homogenous form be as(2.1)and(2.2)respectively,and d be its degree.The numerical procedures to compute the numerical singular points,their multiplicities and characters are as follows.

    Step 1.Randomization

    By Proposition 3.1,choosing the random complex numbers α and β,we add random multiples of the last equation to the first two equations of(1.1),

    Step 2.Computing the numerical affine singular points

    We solve(3.1)using the polyhedral homotopy continuation method first,and then select the numerical affine singular points from the solutions of(3.1)by evaluating these solutions to f(x,y)respectively.If the value is less than or equal to the given threshold,the corresponding solution is ascertained as a numerical affine singular point.

    Step 3.Computing the numerical singular points at in fi nity

    The first two coordinates of points at in fi nity are the nontrivial solutions of fd(x,y). Since fd(x,y)is a bivariate homogeneous polynomial of degree d,we can obtain all the numerical points at in fi nity by solving the corresponding univariate polynomial using the method in[13].By Proposition 2.1,we check whether these points at in fi nity are singular by evaluating them to Fx,Fyand Fz,respectively.If all three values are less than or equal to the given threshold,the corresponding point is judged as a numerical singular point at in fi nity.

    In the next two steps when we deal with a numerical singular point at in fi nity,the point is transferred to be an affine point by simple linear transformation.

    Step 4.Determining the multiplicity

    Evaluating the derivatives at a numerical singular point from order equal to 2,if the values of all derivatives of f(x,y)up to and including the(r?1)-th are less than or equal to the given threshold and at least one r-th derivative is greater than the given threshold, the multiplicity of this point will be determined as r.

    Step 5.Determining the character

    The tangents of f(x,y)=0 at a singular point P of multiplicity r correspond to the roots of

    Without a doubt,the coefficients of this polynomial are inexact.The character of the singular point will be determined by if there are multiple roots of this polynomial.

    3.4 Numerical Issues about the Procedures of Subsection 3.3

    In Step 1,since f is irreducible,f and fxhave no common factors and it holds also for f and fy.So f(x,y)+α·fy(x,y)and fx(x,y)+β·fy(x,y)have no common factors for a probability one set of the coefficients(α,β)of random multiples.All the solutions of(3.1) are isolated and the presented Proposition 3.1 is enough for our demands.

    In Step 2,the Jacobian of(3.1)is

    This matrix is singular at a singular point of multiplicity greater than two or almost singular at a numerical singular point of multiplicity greater than two.The numerical techniques of homotopy continuation method could deal with this well.

    Homotopy continuation method is a reliable and efficient numerical approach to solving the polynomial systems inCnwhereCis the complex field and is proposed by Garcia and Zangwill[17]in 1979 and Drexler[18]in 1977 independently.The employment of linear homotopies is standard in the early stage.In 1995 Huber and Sturmfels[19]present the polyhedral homotopies based on Bernshtein’s[20]combinatorial root count.For sparse polynomial systems,polyhedral homotopy produces amazing improvements over the classical linear homotopy.The related theories and state of the art techniques can be found in[12, 19,21–22].

    Since f(x,y)is not identically zero and has finite degree d,some derivative of order less than or equal to d must be less than or equal to the given threshold at a numerical singular point.Hence Step 4 ends for finitely many numerical singular points.

    Univariate polynimials need to be solved in Step 3 and Step 5.Finding the roots of univariate polynomials is one of the fundamental mathematical problems and arises in many scienti fi c and engineering applications.Several methods have been proposed,such as Laguerre’s method,Jenkins-Traub method and the QR algorithm with the companion matrix. However,no one can overcome a barrier of attainable accuracy on an m multiple root(see [23–24]).If there are k1digits machine precision and k2digits coefficients accuracy,the attainable accuracy is min{k1,k2}/m digits.For example,if we use the standard double precision of 16 decimal digits and the accuracy of the polynomial coefficients is 15 digits, only 3 correct digits can be obtained for a root of multiplicity 5.The above standard methods may not compute the multiple roots accurately for univariate polynomials with inexact coefficients,even if the multiprecision is used.A numerical algorithm was presented to calculate multiple roots of univariate polynomials with coefficients possibly being inexact in [13]without extending hardware precision.It is not subject to the accuracy barrier and a lot of numerical experiments have shown its efficiency and robustness.Using this method, we can compute the singular points at in fi nity accurately in Step 3 and the characters of all the singular points can be determined correctly in Step 5.

    4 Numerical Results

    It is impossible to find exact coefficients of algebraic curves obtained by fi tting or interpolating the experimental data in many fields of science and engineering.As mentioned above, the singular points and their related properties are unstable for the tiny perturbations.In this section some examples are presented to show the efficiency and robustness of numerical procedures in the last section,even if the coefficients of algebraic curves are inexact or perturbed.We also compare some results with those computed by symbolic software Maple. The numerical procedures are implemented in Matlab.

    For an irreducible plane algebraic curve with form(2.1)and homogeneous form(2.2),we choose the z=0 as the line at in fi nity,and let(x,y,z)denote a point of F(x,y,z)=0 in the projective plane.(x,y,1)is the point corresponding to a point in the affine plane and (x,y,0)is the point at in fi nity in the following.

    For convenience,we use the abbreviations“mult”and“ord”to represent the multiplicity and ordinary in the following tables,respectively.

    Example 4.1[25]

    There are six double ordinary affine singular points for this curve,i.e.,(?1,?1/2,1), (0,?1,1),(0,0,1),(1,?1/2,1),(?1/2,1,1),(1/2,1,1).Table 4.1 gives the results output by our numerical procedures.Table 4.2 provides the numerical singular points when the coefficient of 51344y5is perturbed to 51344+1/1000000;however,the command“singularities”of Maple gives only one singular point(0,0,1)for the perturbed curve.

    Table 4.1 Singular points,their multiplicities and characters of the curve in Example 4.1

    Table 4.2 Singular points,their multiplicities and characters of the curve in Example 4.1 when the coefficient of 51344y5is perturbed to 51344+1/1000000

    Example 4.2[10]

    There are four double ordinary affine singular points

    where αi,i=1,2,and βj,j=1,2,are roots of the univariate polynomials

    respectively.

    Table 4.3 lists the results obtained in our numerical procedures.The singular points are accurate and their multiplicities and characters are correct.

    Table 4.3 Singular points,their multiplicities and characters of the curve in Example 4.2

    We perturbed the coefficient of 3x5y to 3+1/10000000,3+1/1000000,3+1/100000,3+ 1/10000,3+1/1000 respectively.Tables 4.4–4.8 present our results.Since the multiplicities and characters are all correct,we provide only the numerical singular points and the correct digits are underlined in these fi ve tables.

    Table 4.4 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/10000000

    Table 4.5 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/1000000

    Table 4.6 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/100000

    Table 4.7 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/10000

    Table 4.8 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/1000

    The command“singularities”in Maple provides nothing when the algebraic curve is perturbed in the above fi ve situations.The CPU time of our numerical procedures is almost neglected on the same Lenovo PC with Pentium Dual Core,CPU of 2.5GHZ,memory of 1.99GB.

    We usually choose 10?6as the three thresholds in the Step 2,Step 3 and Step 4 of the numerical procedures in Subsection 3.3.When we perturb some coefficients of algebraic curves,the three thresholds may be larger than 10?6.The larger the perturbations are,the larger the thresholds we choose.

    Example 4.3[2]

    There are no singular points for this algebraic curve.Our numerical procedures output nothing,even if the coefficient of y2x is perturbed to 1+1/100000.

    Example 4.4

    This is a curve with one double non-ordinary affine singular point(0,0,1)and one double ordinary singular point at in fi nity(0,1,0).Table 4.9 presents the results for f(x,y)=0 and Table 4.10 shows the results for the perturbed curve(1+1/1000000)x4+x2y2?y2=0.

    Table 4.9 Singular points,their multiplicities and characters of the curve in Example 4.4

    Table 4.10 Singular points,their multiplicities and characters of the curve in Example 4.4 when the coefficient of x4is perturbed to 1+1/1000000

    Example 4.5[6]

    This curve has one ordinary affine singular point(0,0,1)of multiplicity 4,three double ordinary affine singular points(1,1,1),(3/2,1/2,1),(?1/3,1/3,1),one ordinary singular point at in fi nity(0,1,0)of multiplicity 3 and one non-ordinary singular point at in fi nity (1,0,0)of multiplicity 3.

    The fractions are truncated in Matlab,so the coefficients of this curve are inexact when we input them,but we still obtain satisfactory results in Table 4.11.

    Table 4.11 Singular points,their multiplicities and characters of the curve in Example 4.5

    Although non-ordinary is the unstable property for tiny perturbations,the results of Examples 4.4 and 4.5 show that our numerical procedures overcame this barrier and gave the correct character.

    5 Concluding Remarks

    In cases where the singular points of algebraic curves are all ordinary,the numerical procedures of Section 3 can also determine the genus g of algebraic curves,since

    where the summation is over all singular points of multiplicities ri.However,if there exist non-ordinary singular points,the contribution of non-ordinary singular point of multiplicity m to the summation in(5.1)is not simple m(m?1)/2 and in general we need quadratic transformations in[2]to reduce the non-ordinary singular points.

    In this paper we present numerical procedures to compute the numerical singular points of irreducible plane algebraic curves and determine their multiplicities and characters.The numerical procedures contain the combined application of homotopy continuation method to solve polynomial systems and calculating the multiple roots of univariate polynomials. The polyhedral homotopy continuation method is the most efficient method to solve the polynomial systems.The method in[13]seems to be the first blackbox to find the roots of univariate polynomials with inexact coefficients using the standard precision arithmetic.

    Our numerical procedures can obtain the results accurately and also provide enough correct digits,even if the coefficients of algebraic curves are perturbed.Thus our numerical procedures are not only efficient,but also robust.

    AcknowledgementWe thank Li Tien-yien and Zeng Zhong-gang for providing the software packages(HOM4PS-2.0 and MULROOT)on their homepages respectively.

    [1]Coolidge J L.A Treatise on Algebraic Plane Curves.New York:Dover,1959.

    [2]Walker R J.Algebraic Curves.New York:Springer-Verlag,1978.

    [3]Chen F,Wang W,Liu Y.Computing sigular points of plane rational curves.J.Symbolic. Comput.,2008,43:92–117.

    [4]Sederberg T W,Anderson D C,Goldman R N.Implicit representation of parametric curves and surfaces.Comput.Vis.Graph.Image Process.,1984,28:72–84.

    [5]Abhyankar S S,Bajaj C L.Automatic parameterization of rational curves and surfaces III: Algebraic plane curves.Comput.Aided Geom.Design.,1988,5:309–321.

    [6]Sendra J R,Winkler F.Symbolic parametrization of curves.J.Symbolic.Comput.,1991,12: 607–631.

    [7]Cox D.Curves,surfaces,and syzygies,topics in algebraic geometry and geometric modeling.Contemp.Math.,2003,334:131–149.

    [8]Sun Y,Yu J.Implicitization of parametric curves via Lagrange interpolation.Computing,2006, 77:379–386.

    [9]Cox D,Little J,O’Shea D.Ideals,Varieties,and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra.2nd ed.New York:Springer-Verlag, 1997.

    [10]Sakkalis T,Farouki R T.Singular points of algebraic curves.J.Symbolic.Comput.,1990,9: 405–421.

    [11]Bajaj C L,Ho ff mann C M,Lynch R E,Hopcroft J E H.Tracing surface intersecitons.Comput. Aided Geom.Design.,1988,5:285–307.

    [12]Li T Y.Solving Polynomial Systems by the Homotopy Continuation Method.In:Ciarlet P G. Handbook of Numerical Analysis.vol.XI.Amsterdam:North-Holland,2003.

    [13]Zeng Z.Computing multiple roots of inexact polynomials.Math.Comput.,2005,74:869–903.

    [14]Sommese A J,Wampler C W.Numerical Algebraic Geometry.In:Renegar J,Shub M,Smale S.The Mathematics of Numerical Analysis:Lectures in Appl.Math.vol.32.Utah:AMS, 1996.

    [15]Morgan A P,Sommese A J.Coefficient-parameter polynomial continuation.Appl.Math.Comput.,1989,29:123–160.

    [16]Farouki R T,Rajan V T.On the numerical conditions of algebraic curves and surfaces I: implicit equations.Comput.Aided Geom.Design.,1988,5:215–252.

    [17]Garcia C B,Zangwill W I.Finding all solutions to polynomial systems and other systems of equations.Math.Program.,1979,16:159–176.

    [18]Drexler F J.Eine Methode zur Berechnung samtlicher Losungen von Polynongleichungssystemen.Numer.Math.,1977,29:45–58.

    [19]Huber B,Sturmfels B.A Polyhedral method for solving sparse polynomial systems.Math. Comput.,1995,64:1541–1555.

    [20]Bernshtein D N.The number of roots of a system of equations.Funct.Anal.Appl.,1975,9: 183–185.

    [21]Lee T L,Li T Y,Tsai C H.HOM4PS-2.0:A software package for solving polynomial systems by the polyhedral homotopy continuation method.Computing,2008,83:109–133.

    [22]Li T Y,Wang X.The BKK root count in Cn.Math.Comp.,1996,65:161–181.

    [23]Pan V Y.Solving polynomial equations:some history and recent progress.SIAM Rev.,1997, 39:187–220.

    [24]Igarashi M,Ypma T.Relationships between order and efficiency of a class of methods for multiple zeros of polynomials.J.Comput.Appl.Math.,1984,60:101–113.

    [25]Florida State Univ.Department of Math.http://www.math.fsu.edu/hoeij/algcurves.html.

    Communicated by Ma Fu-ming

    65D99,13D15,14Q05

    A

    1674-5647(2012)02-0146-13

    date:Oct.22,2010.

    The NSF(61033012,10801023,11171052,10771028)of China.

    欧美一区二区国产精品久久精品| 久久亚洲精品不卡| 两个人的视频大全免费| 亚洲最大成人中文| 最近最新中文字幕大全电影3| 国产美女午夜福利| 最后的刺客免费高清国语| 少妇猛男粗大的猛烈进出视频 | 成人毛片a级毛片在线播放| 国产视频一区二区在线看| 国产成人一区二区在线| 日日摸夜夜添夜夜添av毛片 | 99热只有精品国产| 亚洲成人中文字幕在线播放| 欧美又色又爽又黄视频| 12—13女人毛片做爰片一| 精品福利观看| 少妇高潮的动态图| 欧美+日韩+精品| 亚洲三级黄色毛片| 国产成人a区在线观看| 亚洲美女搞黄在线观看 | 久久午夜亚洲精品久久| videossex国产| 天天躁日日操中文字幕| 最近视频中文字幕2019在线8| 免费不卡的大黄色大毛片视频在线观看 | 3wmmmm亚洲av在线观看| 日韩精品青青久久久久久| 两个人的视频大全免费| 欧美日韩黄片免| 色哟哟哟哟哟哟| 国产午夜福利久久久久久| 三级男女做爰猛烈吃奶摸视频| 在线观看免费视频日本深夜| 在线a可以看的网站| 国产高清不卡午夜福利| 成年版毛片免费区| 亚洲av五月六月丁香网| 久久精品国产亚洲av涩爱 | 欧美成人性av电影在线观看| 日韩强制内射视频| 亚洲狠狠婷婷综合久久图片| 精品午夜福利在线看| 国产精品一及| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久噜噜老黄 | 国产精品一及| 丰满的人妻完整版| 好男人在线观看高清免费视频| 男女做爰动态图高潮gif福利片| 自拍偷自拍亚洲精品老妇| 国产av在哪里看| 日韩欧美国产一区二区入口| 日本免费一区二区三区高清不卡| 日本黄色视频三级网站网址| 全区人妻精品视频| 波野结衣二区三区在线| 又黄又爽又免费观看的视频| 国产白丝娇喘喷水9色精品| 麻豆成人av在线观看| 国产精品久久久久久久电影| 国内精品一区二区在线观看| 亚洲最大成人中文| 一个人看的www免费观看视频| 亚洲中文字幕日韩| 九九在线视频观看精品| 免费无遮挡裸体视频| 女同久久另类99精品国产91| 看十八女毛片水多多多| 亚洲专区国产一区二区| 婷婷精品国产亚洲av| 亚洲专区国产一区二区| 麻豆久久精品国产亚洲av| 日本-黄色视频高清免费观看| 91久久精品电影网| 神马国产精品三级电影在线观看| 神马国产精品三级电影在线观看| 三级国产精品欧美在线观看| 永久网站在线| 三级国产精品欧美在线观看| 精品人妻偷拍中文字幕| 日韩欧美国产一区二区入口| 无遮挡黄片免费观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久成人免费电影| 久久人人精品亚洲av| 大型黄色视频在线免费观看| 大型黄色视频在线免费观看| 日韩欧美精品v在线| 亚洲成人精品中文字幕电影| av在线观看视频网站免费| 亚洲精品在线观看二区| 久久久午夜欧美精品| 色在线成人网| 国产高清激情床上av| 精品一区二区免费观看| 高清日韩中文字幕在线| 亚洲av.av天堂| 色哟哟·www| 一夜夜www| 嫩草影院入口| 国产精华一区二区三区| 嫁个100分男人电影在线观看| 麻豆成人午夜福利视频| 午夜激情福利司机影院| 女人被狂操c到高潮| 国产久久久一区二区三区| 九色国产91popny在线| 精品久久久久久久久久免费视频| 免费人成在线观看视频色| 国产精品亚洲美女久久久| 搞女人的毛片| 国产精品久久久久久久电影| 日本免费一区二区三区高清不卡| 91午夜精品亚洲一区二区三区 | 国产亚洲av嫩草精品影院| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 国产精品伦人一区二区| 黄色丝袜av网址大全| 日本一本二区三区精品| 天天一区二区日本电影三级| 人人妻,人人澡人人爽秒播| 免费不卡的大黄色大毛片视频在线观看 | 国产美女午夜福利| 久久精品国产99精品国产亚洲性色| 国内久久婷婷六月综合欲色啪| 午夜精品一区二区三区免费看| 99精品在免费线老司机午夜| 国产午夜精品论理片| 伦精品一区二区三区| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 久久精品夜夜夜夜夜久久蜜豆| 国产成年人精品一区二区| 日本爱情动作片www.在线观看 | 欧美xxxx黑人xx丫x性爽| 久久久色成人| 国产视频内射| 亚洲久久久久久中文字幕| 国产欧美日韩精品一区二区| 91在线观看av| 色综合色国产| 色哟哟哟哟哟哟| 搡老岳熟女国产| 久久这里只有精品中国| 五月玫瑰六月丁香| 欧美在线一区亚洲| 乱系列少妇在线播放| 国产一区二区在线观看日韩| 亚洲一区二区三区色噜噜| 欧美日本亚洲视频在线播放| 一进一出好大好爽视频| 国产精品爽爽va在线观看网站| 亚洲黑人精品在线| 精品久久久噜噜| 中出人妻视频一区二区| 99热这里只有是精品50| 中文资源天堂在线| 熟女电影av网| 婷婷精品国产亚洲av在线| 国产成年人精品一区二区| 日本免费a在线| 久久九九热精品免费| 男人狂女人下面高潮的视频| 国产色爽女视频免费观看| 欧美精品啪啪一区二区三区| 日日啪夜夜撸| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区三区| 国产高清有码在线观看视频| 国产成人av教育| 99久久成人亚洲精品观看| 亚洲,欧美,日韩| 日本-黄色视频高清免费观看| 久久人人精品亚洲av| 亚洲国产欧洲综合997久久,| 亚洲av第一区精品v没综合| 午夜精品在线福利| 如何舔出高潮| 日韩大尺度精品在线看网址| 黄色一级大片看看| 欧美一区二区精品小视频在线| 色综合亚洲欧美另类图片| 91久久精品国产一区二区三区| 俺也久久电影网| 久久精品国产99精品国产亚洲性色| 天堂网av新在线| 99久久九九国产精品国产免费| 国产乱人视频| 国产精品免费一区二区三区在线| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器| av黄色大香蕉| 国产探花极品一区二区| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 日韩欧美免费精品| 好男人在线观看高清免费视频| 久久久久久久久久久丰满 | 欧美日韩综合久久久久久 | 欧美一区二区亚洲| 最近在线观看免费完整版| 亚洲美女搞黄在线观看 | 韩国av一区二区三区四区| 永久网站在线| 他把我摸到了高潮在线观看| 日本免费a在线| 狂野欧美白嫩少妇大欣赏| 九色国产91popny在线| 亚洲av五月六月丁香网| 午夜免费成人在线视频| 亚洲精品色激情综合| 免费搜索国产男女视频| 欧美色欧美亚洲另类二区| 国产色婷婷99| 变态另类成人亚洲欧美熟女| 亚洲精品日韩av片在线观看| 亚洲无线在线观看| 国产精品嫩草影院av在线观看 | 三级男女做爰猛烈吃奶摸视频| 日本色播在线视频| 舔av片在线| 亚洲欧美日韩高清专用| 国产综合懂色| 亚洲经典国产精华液单| 亚洲成人中文字幕在线播放| 听说在线观看完整版免费高清| 久99久视频精品免费| 十八禁国产超污无遮挡网站| 特级一级黄色大片| 精品人妻偷拍中文字幕| 午夜福利欧美成人| 超碰av人人做人人爽久久| 精品一区二区三区视频在线| 乱码一卡2卡4卡精品| 天天一区二区日本电影三级| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 制服丝袜大香蕉在线| 成人av在线播放网站| 一卡2卡三卡四卡精品乱码亚洲| 窝窝影院91人妻| 亚洲人成网站在线播放欧美日韩| 99久久久亚洲精品蜜臀av| 国产蜜桃级精品一区二区三区| 精品免费久久久久久久清纯| 51国产日韩欧美| 国产精品永久免费网站| 人妻制服诱惑在线中文字幕| 亚洲专区中文字幕在线| 欧美黑人欧美精品刺激| 级片在线观看| 午夜免费男女啪啪视频观看 | 中文亚洲av片在线观看爽| 久久精品国产自在天天线| 亚洲精品国产成人久久av| 精品人妻熟女av久视频| 成人欧美大片| ponron亚洲| 十八禁网站免费在线| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 国内精品宾馆在线| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| 在线免费观看的www视频| 亚洲精华国产精华精| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 日韩大尺度精品在线看网址| 日本黄大片高清| 国产欧美日韩精品亚洲av| 国产精华一区二区三区| 九色国产91popny在线| 在线天堂最新版资源| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 级片在线观看| 久久香蕉精品热| 高清日韩中文字幕在线| 久久久色成人| 免费看日本二区| 国产亚洲欧美98| 亚洲性久久影院| 成人三级黄色视频| 免费观看人在逋| 精品午夜福利视频在线观看一区| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 久久草成人影院| 在线国产一区二区在线| 久久国产精品人妻蜜桃| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 联通29元200g的流量卡| 深夜a级毛片| 国产精品免费一区二区三区在线| 丝袜美腿在线中文| 亚洲人成网站在线播| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 国产成人影院久久av| 淫妇啪啪啪对白视频| 日本-黄色视频高清免费观看| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 亚洲午夜理论影院| 自拍偷自拍亚洲精品老妇| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 婷婷色综合大香蕉| 久久午夜福利片| 国内精品久久久久精免费| 国产高清视频在线播放一区| 亚洲内射少妇av| 国产麻豆成人av免费视频| 色综合婷婷激情| 欧美又色又爽又黄视频| 极品教师在线免费播放| 国产精品久久久久久久久免| 麻豆成人av在线观看| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久 | 亚洲av二区三区四区| 日韩欧美三级三区| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 国产黄片美女视频| 国产男人的电影天堂91| 在线看三级毛片| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 久久久久久久久久成人| 国产免费av片在线观看野外av| 亚洲最大成人手机在线| 搡老熟女国产l中国老女人| 午夜a级毛片| 亚洲欧美日韩高清专用| 国产亚洲精品综合一区在线观看| 日本色播在线视频| www.www免费av| 看片在线看免费视频| 精品人妻视频免费看| 欧美成人a在线观看| 成人欧美大片| 91av网一区二区| 中国美女看黄片| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 国产综合懂色| 国产高潮美女av| 国产精品自产拍在线观看55亚洲| 美女高潮的动态| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 波多野结衣高清作品| 狂野欧美白嫩少妇大欣赏| 欧美精品啪啪一区二区三区| 高清日韩中文字幕在线| 熟女人妻精品中文字幕| 又黄又爽又免费观看的视频| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 日韩国内少妇激情av| 性欧美人与动物交配| 日本成人三级电影网站| 欧美性猛交黑人性爽| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 九色成人免费人妻av| 一级av片app| 一级黄色大片毛片| 国产成人福利小说| 久久久国产成人精品二区| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 免费看av在线观看网站| 99视频精品全部免费 在线| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 老熟妇乱子伦视频在线观看| 国产av不卡久久| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 色视频www国产| 中文亚洲av片在线观看爽| 91久久精品国产一区二区三区| 内地一区二区视频在线| 一进一出抽搐gif免费好疼| 日本免费a在线| 男女那种视频在线观看| 深夜a级毛片| 真人一进一出gif抽搐免费| 内射极品少妇av片p| 国产亚洲91精品色在线| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 一个人免费在线观看电影| 久久久久久久亚洲中文字幕| 欧美日本亚洲视频在线播放| 中国美女看黄片| 国产亚洲精品av在线| 久久久久久伊人网av| 日本撒尿小便嘘嘘汇集6| 国产熟女欧美一区二区| 两个人视频免费观看高清| 中文字幕高清在线视频| 久久精品久久久久久噜噜老黄 | 亚洲国产色片| 日本熟妇午夜| 亚洲av成人av| 成人亚洲精品av一区二区| 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 免费在线观看日本一区| 成人三级黄色视频| 好男人在线观看高清免费视频| ponron亚洲| 精品久久国产蜜桃| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 中国美女看黄片| 国产精品99久久久久久久久| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 国产精品一区二区性色av| а√天堂www在线а√下载| 久久久久久久久中文| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 午夜免费男女啪啪视频观看 | 亚洲av美国av| 精品99又大又爽又粗少妇毛片 | x7x7x7水蜜桃| 全区人妻精品视频| 一区二区三区四区激情视频 | 深爱激情五月婷婷| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 成人鲁丝片一二三区免费| 22中文网久久字幕| 桃红色精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 国产美女午夜福利| av天堂中文字幕网| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜添小说| 久久久久久伊人网av| 亚洲欧美精品综合久久99| 精品人妻1区二区| 99精品久久久久人妻精品| 在线观看66精品国产| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 丰满人妻一区二区三区视频av| 欧美成人免费av一区二区三区| 午夜福利在线在线| 国产真实乱freesex| 国产高清不卡午夜福利| а√天堂www在线а√下载| 国产在线男女| 长腿黑丝高跟| 日本三级黄在线观看| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 午夜福利高清视频| 国产精华一区二区三区| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 久久中文看片网| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 日本一二三区视频观看| 免费无遮挡裸体视频| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 国产亚洲91精品色在线| 欧美国产日韩亚洲一区| 最新中文字幕久久久久| 久久草成人影院| 精品人妻1区二区| 国产成人av教育| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 伦理电影大哥的女人| 日韩欧美免费精品| 色综合婷婷激情| 亚洲国产欧美人成| 天堂网av新在线| 五月玫瑰六月丁香| 级片在线观看| 他把我摸到了高潮在线观看| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 在线看三级毛片| 波多野结衣高清无吗| 午夜爱爱视频在线播放| av在线蜜桃| 久久国内精品自在自线图片| 三级男女做爰猛烈吃奶摸视频| 欧美成人性av电影在线观看| netflix在线观看网站| 综合色av麻豆| 黄色欧美视频在线观看| 88av欧美| 久久久久久久亚洲中文字幕| 热99在线观看视频| 如何舔出高潮| 亚洲av二区三区四区| 夜夜爽天天搞| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 91在线观看av| 亚洲av日韩精品久久久久久密| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 国产色爽女视频免费观看| 美女黄网站色视频| 国产色爽女视频免费观看| 久久99热这里只有精品18| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久电影中文字幕| 日韩欧美精品v在线| 中出人妻视频一区二区| 美女大奶头视频| 欧美极品一区二区三区四区| 午夜福利欧美成人| 中出人妻视频一区二区| 亚洲美女黄片视频| 又爽又黄无遮挡网站| 国产精品久久久久久亚洲av鲁大| bbb黄色大片| 日日啪夜夜撸| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| xxxwww97欧美| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 亚洲美女黄片视频| 国产成人aa在线观看| 日本五十路高清| 免费看日本二区| 国产高清激情床上av| 久久久久精品国产欧美久久久| 久久中文看片网| 黄色欧美视频在线观看| 国产精品三级大全| 日日夜夜操网爽| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 少妇猛男粗大的猛烈进出视频 | 欧美日本亚洲视频在线播放| 成人二区视频| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产伦精品一区二区三区视频9| 一本精品99久久精品77| 国产国拍精品亚洲av在线观看| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 天天一区二区日本电影三级| 夜夜爽天天搞| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 欧美又色又爽又黄视频| 欧美中文日本在线观看视频| 男女下面进入的视频免费午夜| 直男gayav资源| 亚洲av免费在线观看| 国产激情偷乱视频一区二区| 观看美女的网站| 白带黄色成豆腐渣| a在线观看视频网站| 日韩欧美 国产精品| aaaaa片日本免费| 亚洲成人中文字幕在线播放| 精品久久久久久久久久久久久| 亚洲av成人av| 在线国产一区二区在线| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 1024手机看黄色片| 免费看a级黄色片| 欧美极品一区二区三区四区| 我的女老师完整版在线观看| 啦啦啦韩国在线观看视频| 久久久精品欧美日韩精品| 99久久九九国产精品国产免费| 一本久久中文字幕|