摘 要:在初中數(shù)學(xué)教學(xué)中,如何滲透數(shù)學(xué)基本思想呢?筆者認(rèn)為:經(jīng)歷參與學(xué)習(xí)的過程,滲透基本思想;提高發(fā)現(xiàn)和解決問題的能力,揭示基本思想;學(xué)會(huì)分享與合作,激活基本思想;培養(yǎng)科學(xué)的態(tài)度和科學(xué)的道德,概括基本思想。
關(guān)鍵詞:數(shù)學(xué)教學(xué) 滲透 數(shù)學(xué)基本思想
中圖分類號(hào):G63 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1673-9795(2013)04(c)-0166-01
2011年版的《數(shù)學(xué)課程標(biāo)準(zhǔn)》中把傳統(tǒng)雙基修訂為四基,即基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn)。這充分說明了基本思想是數(shù)學(xué)課程的重要目標(biāo)之一,是發(fā)展學(xué)生智力的關(guān)鍵所在,是培養(yǎng)學(xué)生數(shù)學(xué)創(chuàng)新意識(shí)的基礎(chǔ),也是一個(gè)人數(shù)學(xué)素養(yǎng)的重要組成部分。
滲透數(shù)學(xué)基本思想是數(shù)學(xué)教師中的主要任務(wù)之一。數(shù)學(xué)課程固然應(yīng)教會(huì)學(xué)生需要的數(shù)學(xué)知識(shí),但是絕不能僅僅以此為目標(biāo),更重要的是讓學(xué)生在學(xué)習(xí)這些結(jié)論的過程中去學(xué)習(xí)數(shù)學(xué)基本思想,數(shù)學(xué)基本思想是數(shù)學(xué)學(xué)科發(fā)展的根本,是探索和研究數(shù)學(xué)的基礎(chǔ),也是數(shù)學(xué)課程教學(xué)的精髓。
課堂是學(xué)生學(xué)習(xí)的主戰(zhàn)場。筆者認(rèn)為,在課堂教學(xué)中有效地滲透數(shù)學(xué)基本思想是我們探索的關(guān)鍵。
1 經(jīng)歷參與學(xué)習(xí)的過程,滲透基本思想
數(shù)學(xué)概念既是數(shù)學(xué)思維的基礎(chǔ),又是數(shù)學(xué)思維的結(jié)果。所以概念數(shù)學(xué)不應(yīng)簡單地給出定義,而應(yīng)當(dāng)引導(dǎo)學(xué)生感受或領(lǐng)悟隱含于概念形成之中的基本思想。比如負(fù)數(shù)概念的教學(xué),初一代數(shù)上冊借助于溫度計(jì)給出描述性定義,學(xué)生對負(fù)數(shù)概念往往難以透徹理解。若設(shè)計(jì)一個(gè)揭示概念與新問題間矛盾的實(shí)例,使學(xué)生感到“負(fù)數(shù)”產(chǎn)生的合理性和必要性,領(lǐng)悟其中的數(shù)學(xué)符號(hào)化思想的價(jià)值,則無疑有益于激發(fā)學(xué)生探究概念的興趣,從而更深刻、全面地理解概念。筆者在演示溫度計(jì)時(shí)提出這樣一個(gè)問題:今年冬季某天北京白天的最高氣溫是零上11℃,夜晚的最低氣溫是零下6℃,問這一天的最高氣溫比最低氣溫高多少度。學(xué)生知道應(yīng)該通過減法來求出問題的答案,但是在具體列算式時(shí)遇到了困惑:是“11~6”嗎?不對!是“零上11~零下6”嗎?似乎對,但又無法進(jìn)行運(yùn)算,于是,一個(gè)關(guān)于“負(fù)數(shù)”及其表示的思考由此而展開了。再通過現(xiàn)實(shí)生活中大量表示相反意義的量,抽象概括出相反意義的量可用數(shù)學(xué)符號(hào)“+、-”來表示,從而解決了實(shí)際生活和數(shù)學(xué)中的一系列運(yùn)算問題,教學(xué)也達(dá)到了知識(shí)與思想?yún)f(xié)調(diào)發(fā)展的目的。
2 提高發(fā)現(xiàn)和解決問題的能力,揭示基本思想
數(shù)學(xué)課堂教學(xué)必須充分暴露思維過程,讓學(xué)生參與教學(xué)實(shí)踐活動(dòng),揭示其中隱含的基本思想,才能有效的發(fā)展學(xué)生的數(shù)學(xué)基本思想,提高其數(shù)學(xué)素養(yǎng)。下面以如何激發(fā)學(xué)生發(fā)現(xiàn)問題和解決問題方面發(fā)展簡要說明。
2.1 要營造民主氛圍,促使學(xué)生敢問
教師應(yīng)該對學(xué)生多進(jìn)行感情投資,多深入到學(xué)生中去和他們聊天,講講數(shù)學(xué)領(lǐng)域中各種各樣的奇聞趣事,幫助學(xué)生解答生活中的一些疑難問題;還應(yīng)營造寬松、自由和民主的教學(xué)氛圍,建立平等、民主的師生關(guān)系,鼓勵(lì)學(xué)生求新求異新,挖掘其可貴之處。這樣,學(xué)生自然會(huì)喜歡老師,進(jìn)而喜歡這門學(xué)科,問題意識(shí)就會(huì)得以激發(fā)。
2.2 創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生想問
比如,學(xué)習(xí)《有理數(shù)的乘方》一節(jié)時(shí),筆者設(shè)置這樣一個(gè)問題:有一張厚度是0.1毫米的紙,將它對折一次,厚度是多少?對折2次,厚度是多少?3次呢?20次呢?通過對折,學(xué)生就會(huì)發(fā)現(xiàn)很多的問題,同時(shí),發(fā)現(xiàn)他們手中的紙根本就折不了20次。這時(shí),筆者再提出問題,猜猜如果這張紙足夠大,那么折完20次后,和珠穆朗瑪峰相比,誰高呢?學(xué)生的興趣一下子提了起來,也就順理成章地進(jìn)入《有理數(shù)的乘方》一課的教學(xué)。
2.3 建構(gòu)自主探索,培養(yǎng)學(xué)生會(huì)問、善問
教師要注意適時(shí)教給學(xué)生一些提問的技巧,提高其思維能力;還可以在教學(xué)中引導(dǎo)學(xué)生針對教科書的客體、重要原理等內(nèi)容有意識(shí)地多問一些“是什么、為什么、怎樣做”,促進(jìn)其思維發(fā)展,提高學(xué)生發(fā)現(xiàn)問題和提出問題的能力。
3 學(xué)會(huì)分享與合作,激活基本思想
如何提升合作學(xué)習(xí)的有效性呢?首先可以分組合作,在數(shù)學(xué)課堂中建立合作學(xué)習(xí)小組要考慮到學(xué)生的學(xué)習(xí)成績、學(xué)習(xí)能力、興趣愛好等多方面因素,其目的是形成一種互補(bǔ)。建立好小組后,要對每一個(gè)成員做出具體明確的分工,要求每個(gè)小組成員在組內(nèi)承擔(dān)相應(yīng)的角色。過一段時(shí)間,小組內(nèi)各成員的角色應(yīng)進(jìn)行相互調(diào)換,以保證所有的組員機(jī)會(huì)均等,都能在不同的位置上得到一定的體驗(yàn)、鍛煉和提高,以充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
再者可以任務(wù)合作。開展合作學(xué)習(xí)的任務(wù)選擇非常重要,即教師須提出合適的問題,然后在此基礎(chǔ)上進(jìn)行。不同的問題是從不同的維度上提出來的,不同維度的問題相互之間不能彼此取代,但能相互補(bǔ)充,以形成全方位考察對象的思維態(tài)勢。有了這樣的系列問題學(xué)生就能明確學(xué)習(xí)的目的;反之,沒有問題也就沒有討論的內(nèi)容,合作學(xué)習(xí)與交流就會(huì)流于形式。所以,必須選擇具有一定的挑戰(zhàn)性、開放性、探索性的問題才能開展好合作學(xué)習(xí)。選擇具有挑戰(zhàn)性的問題,有些問題對于個(gè)人而言較難獨(dú)立完成,在合作中大家共同分析問題,相互交流,教師作適當(dāng)?shù)闹笇?dǎo),使得問題變得越來越清晰,這樣相對于個(gè)人獨(dú)立解決問題變得容易而且深刻。選擇開放型問題和解決途徑多樣化的問題,學(xué)生可以用不同的方法從不同的角度去解決,基礎(chǔ)知識(shí)的不同思維方式的差異可得到不同的結(jié)論。合作學(xué)習(xí)形式使學(xué)生有機(jī)會(huì)提出自己的觀點(diǎn)和方法,給他人提供展示自己、了解別人的機(jī)會(huì),因此能相互促進(jìn)、共同提高。交流的過程是學(xué)生間思維碰撞的過程,時(shí)常會(huì)有思維的火花閃現(xiàn)。這種火花可能是一種獨(dú)具特色的解法,也可能是一個(gè)富有創(chuàng)意的想法,還可能是富有哲理的話。這樣持之以恒,學(xué)生的數(shù)學(xué)思想就會(huì)產(chǎn)生質(zhì)的飛躍。
4 培養(yǎng)科學(xué)的態(tài)度和科學(xué)的道德,概括基本思想
數(shù)學(xué)教材是采用蘊(yùn)含披露的方式將基本思想融于數(shù)學(xué)知識(shí)體系中,因此,適時(shí)對基本思想做出歸納、概括是十分必要的。概括基本思想方法要納入教學(xué)計(jì)劃,應(yīng)有目的、有步驟地引導(dǎo)學(xué)生參與基本思想的提煉過程,尤其是在章節(jié)結(jié)束或單元復(fù)習(xí)中對知識(shí)復(fù)習(xí)的同時(shí),將統(tǒng)攝知識(shí)的基本思想方法概括出來,可以加深學(xué)生對數(shù)學(xué)思想方法的運(yùn)用意識(shí),也使其對運(yùn)用數(shù)學(xué)思想解決問題的具體操作方式有更深刻的了解,有利于活化所學(xué)知識(shí),形成獨(dú)立發(fā)現(xiàn)、提出、分析、解決問題的能力。
概括基本思想一般可分兩步進(jìn)行:一是揭示基本思想的內(nèi)容、規(guī)律,即將數(shù)學(xué)對象共同具有屬性或關(guān)系抽取出來;二是明確基本思想方法與知識(shí)的聯(lián)系,即將抽取出來的共性推廣到同類的全部對象上去,從而實(shí)現(xiàn)個(gè)別性認(rèn)識(shí)上升為一般性認(rèn)識(shí)。
總之,初中數(shù)學(xué)教學(xué)要根植于課堂,著眼于提高,注重基本思想的滲透與培養(yǎng),這將有助于提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力,有助于提高學(xué)生的數(shù)學(xué)能力和水平,從而形成良好的思維品質(zhì)。
參考文獻(xiàn)
[1]汪國華.數(shù)學(xué)應(yīng)用意識(shí)培養(yǎng)路在何方[J].中學(xué)數(shù)學(xué)教學(xué)參考,2004(7):57-58.