• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reversed-phase fused-core HPLC modeling of peptides

    2013-12-23 06:14:58MtthisHondtBertGevertSofieStlmnsSylviVnDorpeEvelienWynendeleKthelijnePeremnsChristinBurvenichBrtDeSpiegeleer
    Journal of Pharmaceutical Analysis 2013年2期

    Mtthis D'Hondt, Bert Gevert, Sofie Stlmns, Sylvi Vn Dorpe,Evelien Wynendele, Kthelijne Peremns, Christin Burvenich,Brt De Spiegeleer,*

    aDrug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University,Harelbekestraat 72, B-9000 Ghent, Belgium bDepartments of Medical Imaging and Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133,B9820 Merelbeke, Belgium

    1. Introduction

    Peptides are of growing pharmaceutical interest because of their biomedical activity attributed to their great diversity in size, shape and chemical functionalities. They constitute an emerging class of therapeutic agents, possessing greater efficacy and selectivity, as well as an inherent lower toxicity profile compared to the conventional small molecules [1].For the separation of peptides,reversed-phase high performance liquid chromatography (RP-HPLC) has been most widely employed [2-5]. In order to identify peptides in complex mixtures, RP-HPLC is combined with mass spectrometry (LCMS), having an excellent sensitivity and selectivity [6,7].

    Significant progress in RP-HPLC was achieved with the development of smaller, sub-2 μm particles enabling higher resolutions and reduced analysis time [8]. Alternatively,monolithic columns were constructed to speed up the separation and enhance the separating power[9,10].Recently,fusedcore particles, comprising a 0.5 μm porous outer shell(‘‘HALO?'') fused to a 1.7 μm solid silica core (i.e. fusedcore, core-shell or core-enhanced technology) were developed by Kirkland as an alternative to sub-2 μm particles [11-13].Different fused-core column chemistries are available: C18,C8, RP-amide, Phenyl-hexyl, Hydrophilic Interaction Liquid Chromatography (HILIC), and most recently Peptide ES-C18 and pentafluorophenyl (PFP) phases (see Table 1).

    Literature survey related to fused-core particle technology demonstrated that most of the reports deal with the kinetic performance evaluation of such columns using classic organic model compounds [14-17]. Fused-core columns have been characterized based on their Van Deemter curves,demonstrating high plate numbers, reduced mass transfers, and better resolutions [14,18-20]. In order to demonstrate the superior efficiency, performance and capacity of the fused-core stationary phases, those columns were compared to UPLC,monolithic and conventional columns [21-25]. Because of the high resolving power, 2D-HPLC has attracted more attention and has been applied with the fused-core columns in proteomic and metabolomic research [26-29]. Although the separation of peptides using fused-core columns is scarce in literature, these columns are found to be very promising to reduce analysis time without reducing performance [1]. The limited peptide research using the fused-core columns mostly investigated the influence of temperature, gradient times and flow rate on the retention as well as selectivity and column performance. Due to limited column chemistries currently available for the fused-core stationary phases, lacking e.g. C4 or different polar embedded functionalities, most peptide studies are usually carried out with the classic C18 bonded chemistry. Some research groups compared the performance of the C18 phases as manufactured by four different fusedcore suppliers (Advanced Materials Technology for HALO?C18, Phenomenex for Kinetex?C18, Supelco for Ascentis Express?C18 and Agilent for Poroshell?C18) [14,30-33].Only three peptide studies applied the HALO?Peptide ES-C18 fused-core stationary phase for a casein and a tryptic digest, respectively [34-36], while the HALO?HILIC was only once evaluated [37].

    Up till now,no comparative study of the different chemistries in fused-core columns for the analysis of peptides was performed.Moreover, reversed-phase retention modeling using these columns is also missing. In this work, different fused-core column chemistries (HALO?C18, Peptide ES-C18, RP-amide and Phenyl-hexyl) are compared and evaluated using a mixture of synthetic peptides.In addition to the selectivity differences of the stationary phases, the selectivity effects of the mobile phase composition are studied as well[2,38-41].Finally,reversed-phase fused-core peptide retention models were constructed on the different chromatographic systems, containing a novel in-silico calculated amino acid descriptor.

    2. Materials and methods

    2.1. Reagents

    Ultra gradient grade acetonitrile was purchased from Romil(Merelbeke, Belgium). Formic acid was obtained from Acros Organics (Geel, Belgium). Water was purified in-house using an Arium 611 purification system (Sartorius, Gttingen,Germany), yielding ≥18.2 MΩ×cm quality water. Methanol was supplied from Fisher Scientific (Leicestershire, UK) and acetic acid from Merck (Darmstadt, Germany). All synthetic peptides were synthesized by Peptide Protein Research (PPR,Hampshire, UK) with a purity of at least 90%.

    2.2. Fused-core (HALO?) columns

    Different column chemistries were selected, consisting of C18,RP-amide, Phenyl-hexyl and Peptide ES-C18. Details about the stationary phases, including the bonded phase, dimensions, pore size, surface area and pH-range are given in Table 1.

    All HALO?columns have a particle size of 2.7 μm and were supplied by Achrom (Machelen, Belgium).

    2.3. Peptide selection

    In order to select a limited but representative experimental peptide set, the chemical-structural diversity of 61 peptides given in the Brainpeps?database [42] was visualized using principal component analysis (PCA) and hierarchical cluster analysis (HCA). First, three-dimensional molecular structures were calculated and optimized using Hyperchem 8.0 (Hypercube Inc.,Gainesville, FL, USA). Geometry optimization was performed with the molecular mechanics force field method(MM+) using the Polak-Ribi`ere conjugate gradient algorithm with an RMS gradient of 0.1 kcal/( ?A.mol), corresponding to 0.4184 kJ/( ?A.mol), as stop criterion. The obtained structures were then used to calculate more than 3000 molecular descriptors (Dragon 5.5, Talete, Italy). After removal of constant and correlated, i.e. Pearson correlation coefficient r>0.95, descriptors, PCA and HCA was performed on the normalized descriptors. In total, 21 peptides were selected from the different peptide clusters, showing wide structural variety. In addition, structurally related peptides belonging to the same peptide cluster were selected as well for evaluation of the chromatographic separation of structure analogs. More detailed information regarding the 21 selected peptides, i.e.molecular weight, log P and pI values, is given in Table 2.

    2.4. Peptide lyophilization

    Prior to analysis, the peptide samples were dissolved in acetonitrile/water 5/95 (v/v) containing 0.1% (w/v) formic acid at a concentration of 1 mg/mL. 100 μL aliquots were dispensed into low-volume polypropylene HPLC vials (Grace Alltech, Deerfield, US) and lyophilized with the in-house developed program using a Christ gamma 1-16 LSC freeze dryer (Qlab, Vilvoorde, Belgium) [43].

    Table 1 Properties of the HALO? fused-core stationary phases.

    2.5. Liquid chromatography and chromatographic properties

    The HALO?columns were thermostated in an oven set at 30°C, whereas the autosampler temperature was set at 10°C.Four mobile phase compositions, traditionally employed in peptide analysis, were used:

    (1) 0.1% w/v formic acid in water (A) and 0.1% w/v formic acid in acetonitrile (B), referred to as FA.

    (2) 0.1% w/v formic acid in water (A) and 0.1% w/v formic acid in methanol (B), abbreviated as FM.

    (3) 0.1% w/v acetic acid in water (A) and 0.1% w/v acetic acid in acetonitrile (B), referred to as AA.

    (4) 0.1% w/v acetic acid in water (A) and 0.1% w/v acetic acid in methanol (B), abbreviated as AM.

    The method consisted of a linear gradient from 90:10 v/v A/B to 10:90 v/v A/B, followed by reconditioning with the initial composition 90:10 v/v A/B for 10 min. The peptides were injected as a mixture, each at a concentration of 25 μM,dissolved in acetonitrile/water 5/95 (v/v) containing 0.1%(w/v) formic acid. The injection volume was fixed to 5 μL.Seen the different column dimensions, the gradient time and flow rate were adjusted taking into account the column volume according to the following formula:

    where tG,2and tG,1are the gradient times of HPLC column 2 and 1, respectively, F is the flow rate and V0is the dead volume. The flow rate was set to 0.5 mL/min (except for mobile phase system FA, a flow rate of 1 mL/min was used)with a gradient time of 25 min on the C18 and RP-amide column, while for the other two phases, Phenyl-hexyl andPeptide ES-C18, the flow rate was 0.4 mL/min (except for mobile phase system FA, a flow rate of 0.6 mL/min was used)with a gradient time of 10 min. A number of single and multiple chromatographic responses were calculated using the aforementioned 16 different chromatographic systems, including asymmetry factor (As), full width half maximum(FWHM), gradient plate number (Ng) and chromatographic response factor (CRF) [44].

    Table 2 Overview of selected peptides(21 model-building and 5 validation peptides).

    2.6. In-silico amino acid descriptor

    Structural descriptors (911) belonging to different classes (i.e.constitutional, topological, topological charge, geometrical,RDF, 3D-MoRSE, Weighed Holistic Invariant Molecular(WHIM),GETAWAY,charge descriptors and molecular properties) were calculated using the optimized three-dimensional structures of the 20 naturally occurring amino acids. After elimination of the constant descriptors, a stepwise multiple linear regression (MLR), as implemented in SPSS 20.0 (P-toenter ≤0.05 and P-to-remove ≥0.10), was used to model the experimentally obtained retention times of the 20 natural amino acids on a XTerra MS C18 column [45] in function of their calculated structural descriptors.

    2.7. Peptide retention model

    In order to predict the gradient retention time of peptides on the different fused-core columns, quantitative structure-retention relationships (QSRR) were established for the 16 experimental chromatographic conditions. The peptide retention time is modeled as a function of a limited set of molecular descriptors by means of MLR. Generally, current peptides RP-HPLC QSRR models have the following equation form [46-51]:

    where RT is the peptides gradient RP-HPLC retention time,b0-b3are regression coefficients estimated by MLR,log SumAAis the logarithm of the sum of the experimentally obtained gradient retention times of the amino acids composing the individual peptide, log VDWvolis the logarithm of the peptide's van der Waals volume and clog P is the logarithm of its theoretically calculated n-octanol-water partition coefficient according to the Ghose-Pritchett-Crippen algorithm.

    In our proposed peptide reversed-phase fused-core retention model, similar molecular descriptors were used. log SumAA,however applying the new in-silico calculated descriptor described above replacing the experimentally determined amino acid retention times, log Sv (i.e. van der Waals volume calculated with Dragon software) and clog P. In addition to these three descriptors, the number of donor and acceptor atoms for H-bonding(nHDon and nHAcc, respectively) were added as proposed in RP-HPLC by Du et al.[52].The descriptor log SumAAis thus no longer experimentally determined, but is calculated in terms of theoretical descriptors, so that the peptide retention can be predicted entirely in-silico, without the need of experiments with each of the amino acids constituting the peptide.

    Finally,the predictive power of the newly proposed peptide retention model was demonstrated by calculating the retention times of five validation peptide (Table 2), belonging to the same structural space of the 21 model-building peptides, and comparing these predicted retention times to the experimentally obtained retention times using the 16 different chromatographic systems.

    3. Results

    3.1. Chromatographic properties of peptides on fused-core stationary phases

    A typical chromatogram of UCN-1,MCH and dermorphin on the RP-amide column using FA is shown in Fig.1. The influence of the mobile phase composition on the column performance was demonstrated by the calculation of the gradient plate number (Ng). The highest plate number was observed for FA on all four columns, with the RP-amide column exceeding the others.The performance of the columns was lowered significantly when using MeOH as organic modifier compared to ACN. Also when looking at FWHM and As,the FA mobile phase composition was generally found to be the best performing mobile phase throughout all columns. When using this mobile phase, i.e. FA, the RP-amide column displayed the best Asand second best FWHM, and was thus considered to overall deliver the best peak shapes. When calculating the other chromatographic performance response functions, i.e. resolution product corrected for the retention time of the last eluting peak, separation factor, CRF and peak capacity, the highest values (i.e.better separation of compounds) were again obtained using FA.Also for these chromatographic response factors,the RPamide column performed the best, followed by C18, Peptide ES-C18 and Phenyl-hexyl.

    3.2. In-silico amino acid descriptor

    Stepwise MLR, whereby 742 non-constant structural descriptors, derived from the three dimensional amino acid structures, were modeled into a global in-silico amino acid descriptor, describing the reversed-phase retention behavior as given in the literature [45], resulted in following model:

    This new in-silico calculated AA descriptor was introduced into the existing peptide retention models, thus replacing the experimentally determined individual amino acids retention times. Linear least squares correlation analysis indicated that this AA model explained 99.4% of the observed amino acid retention variability (R2=0.994).

    3.3. Peptide retention model

    Sixteen separate QSRR models were developed for each of the sixteen chromatographic conditions, using following general equation:

    The QSRR results are summarized in Table 3.Obtained R2and F values for the prediction models as well as the calculated regression coefficients are tabulated.On average,85.7%of the peptide retention time variability is explained by our proposed model. Scatter plots of the sixteen chromatographic conditions, displaying the 21 calculated peptide retention times in function of the experimentally obtained retention times are given in Fig.2.

    Fig.1 Typical chromatograms: MCH, UCN-1 and dermorphin(from top to bottom)on HALO?RP-amide column,using formic acid-acetonitrile based chromatography.

    The predictive power of the peptide retention model is shown in Fig.3,whereby the calculated peptide retention time of 5 validation peptides is depicted versus their experimentally obtained retention times,characterized by an average R2value of 0.80.

    4. Discussion

    Application of small,sub-2 μm,fully porous particles results in a higher efficiency,linear velocity and reduced mass transfer,but also requires special instrumentation (Ultra-Performance Liquid Chromatography, UPLC) to cope with the resulting pressure increase[53]. The use of monolithic columns allows to speed up the separation and enhance the separating power [9,10]. The main drawback of these monolithic columns is the relatively high flow rate required to fully exploit their potential. Alternatively, fusedcore particles achieve high separation efficiencies with relative low backpressure,permitting the use of conventional HPLC equipment[1,11,54].Due to their small particle size and limited diffusion path,plate numbers equivalent to UPLC are achieved,minimizing peak broadening, while overall shortening the analysis time [10,55,56].Compared to conventional HPLC columns of the same dimensions,usually packed with 3-5 μm particles,the fused-core columns show a significant gain in performance,expressed as plate number or peak capacity [1].

    Multiple fused-core particle chemistries are available (see Table 1). C18 and C8 are used for the separation of hydrophobic compounds whereas the fused-core RP-amide column is a polar-embedded phase, providing enhanced selectivity for samples containing highly water-soluble acidic and basic compounds. Separation on the RP-amide column is affected by hydrophobic interaction with the alkyl chain and hydrogen bonding with the embedded amide group. For the phenylhexyl fused-core column, an additional π-π mechanism is described for the separation of aromatic groups. The PFP phase is recommended for the separation of polar bases and halogenated compounds. The primary HILIC retention mechanism is based on hydrophilic partition between the water-rich layer at the surface of the stationary phase and the bulk organic-rich mobile phase[37,44,57].As an extension of the C18 phase, the Peptide ES-C18 phase was specifically designed for the enhanced separation of peptides due to the carefully selected pore size and the use of extra stable (ES)bonding chemistry. Therefore, 100, 120 or 160 ?A was selected as the ideal pore size for optimal separation of peptides with a molecular weight of up to 15,000 Da, contrasting a pore size of 90 ?A for small molecules. Extra stable bonding was achieved through the use of bulky side chains on the alkylsilanes, providing steric protections of the more labile siloxane bond [34].

    Peptide clustering, based on their theoretical descriptors,revealed consistent grouping between HCA and PCA and was used to select a representative peptide set, consisting of 21 peptides from different clusters, for further chromatographic analysis.

    These wide structure differences were confirmed by the diverse chromatographic behavior of the 21 selected peptides using the different chromatographic systems. In general it was seen that peptide separation on the RP-amide fused-core column,using the formic acid-acetonitrile based mobile phase,resulted in the best chromatographic responses, thus outperforming the Peptide column. A possible explanation is the additional hydrogen bond interactions between the amidegroups of the column and the peptides,which are absent in the Peptide column, resulting in a higher selectivity of the RPamide column. The acid in the mobile phase serves not only a pH control function, but also an ion-pairing complexation activity with the charged peptide ionic groups and the stationary phase, and will additionally suppress adverse ionic interactions between the peptides and the residual silanol groups on the stationary phase. The use of acetic acid, being more hydrophobic than formic acid,leads to increased peptide retention on the column, which in turn leads to increased resolution [58]. Therefore, hydrophobic ion-pairing agents,e.g.acetic acid,should be used for separation of complex and/or structurally related peptides, whereas more hydrophilic agents, e.g. formic acid, can be used for fast separation of simple peptide mixtures. As such, the acidic mobile phase additives will also influence the selectivity,its extent depending on the stationary phase.

    Table 3 Retention models obtained on the four fused-core columns using multiple linear regression.

    Fig.2 Peptide retention model.

    Fig.3 Predictive power of the peptide retention model.

    The classic, experimentally obtained individual amino acid retention times descriptor was replaced by an in-silico calculated AA descriptor using a stepwise MLR. This new descriptor is calculated using six structural descriptors.The first two descriptors, i.e. Alog P and Alog P2, give information about the lipophilicity of amino acids whereby Alog P2 is the square of the Alog P value. This Alog P value is calculated using the Ghose-Crippen-algorithm. Mor10v and Mor10e are part of the 3D-Molecule Representation of Structures based on Electron diffraction(3D-MoRSE)descriptors,which provide information derived from the three dimensional coordinates by using the same transformation used in electron diffraction to prepare theoretical scattering curves. These different signals, i.e. indicated by the numeric code,were then weighed by van der Waals volume(v)or by Sanderson electronegativity(e).E1u stands for the unweighed 1st component accessibility directional WHIM index. This is a geometrical descriptor based on statistical indices, calculated from the projections of the atoms along principal axes. The Radial Distribution Function (RDF)descriptors are based on the distance distribution in the geometrical representation of a molecule, and show certain characteristics in common with the 3D-MoRSE descriptors.The RDF descriptors provide information about interatomic distances in which the numeric code indicates an interatomic distance, e.g. 035 corresponding to 3.5 ?A, which is the probability of finding an interatomic distance of 3.5 ?A. Similar weighing factors as for the 3D-MoRSE descriptors are used[59].

    This new in-silico AA descriptor was then introduced into the peptide retention model,of which 16 different QSRR were constructed, modeling the peptide retention times on the 16 different chromatographic conditions used. The proposed model factors differ significantly from the existing reversedphase peptide retention model factors: our model not only includes the new in-silico amino acid descriptor, but also includes number of hydrogen donors (nHDon) and hydrogen acceptors (nHAcc). The existing models all use the experimentally determined retention time or factor of the individual amino acids as amino acid descriptor and available amino acid descriptors did not include new and/or unnatural amino acids[60]. Our new amino acid descriptor allows the modeling of peptides containing unnatural amino acids including optical isomers(L versus D)as well.The predictive power of our peptide retention models demonstrated the correlation of the predicted retention times versus experimentally obtained for 5 peptides not included in our model building set (mean R2=0.800) (Fig.3).

    5. Conclusion

    Fused-core columns are of great interest because of their high performance in combination with a relatively low backpressure allowing the application of these columns on conventional HPLC equipment. Four different column chemistries(Peptide, RP-amide, Phenyl-hexyl and C18) were compared for the separation of 21 selected,structurally diverse,peptides.Highest chromatographic responses were obtained using the RPamide column and formic acid-acetonitrile based gradient system.

    A reversed-phase QSRR retention model was constructed for peptide analysis on the fused-core stationary phases under the sixteen given chromatographic conditions. This model incorporates a novel, in-silico calculated amino acid descriptor,thus rendering the determination of individual amino acid retention times superfluous and allowing the inclusion of new unnatural amino acids in the construction of the QSRR model. The model explained 86% of the observed peptide retention time variability and had a predictive power of 80%.

    This research was funded by a Ph.D. grant of ‘‘Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)'' (No. 091241 for MD and 073402 for SVD) and by the Special Research Fund of the Ghent University(Grant no.BOF 01J22510 for EW and BOF 01D38811 for SS).

    Appendix A. Supporting information

    Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jpha.2012.11.002.

    [1] J. Ruta, D. Guillarme, S. Rudaz, et al., Comparison of columns packed with porous sub-2 μm particles and superficially porous sub-3 μm particles for peptide analysis at ambient and high temperatures, J. Sep. Sci. 33 (2010) 2465-2477.

    [2] L.A. Riddle, G. Guiochon, Influence of mobile phase gradients on the retention and separation of peptides from a cytochrome-c digest by reversed-phase liquid chromatography, Chromatographia 64 (2006) 121-127.

    [3] K. Stulik, V. Pacakova, J. Suchankova, et al., Stationary phases for peptide analysis by high performance liquid chromatography:a review, Anal. Chim. Acta 352 (1997) 1-19.

    [4] W.S. Hancock, C.A. Bishop, R.L. Prestidge, et al., Reversedphase, high-pressure liquid-chromatography of peptides and proteins with ion-pairing reagents,Science 200(1978)1168-1170.

    [5] W.S.Hancock,C.A.Bishop,R.L.Prestidge,et al.,High-pressure liquid-chromatography of peptides and proteins. Use of phosphoric-acid in analysis of un-derivatized pepetides by reversed-phase high-pressure liquid-chromatography, J. Chromatogr. 153 (1978) 391-398.

    [6] Y. Hsieh, C.J.G. Duncan, J.-M. Brisson, Fused-core silica column high-performance liquid chromatography/tandem mass spectrometric determination of rimonabant in mouse plasma,Anal. Chem. 79 (2007) 5668-5673.

    [7] B. De Spiegeleer, V. Vergote, A. Pezeshki, et al., Impurity profiling quality control testing of synthetic peptides using liquid chromatography-photodiode array-fluorescence and liquid chromatography-electrospray ionization-mass spectrometry: the obestatin case, Anal. Chem. 376 (2008) 229-234.

    [8] J.J. van Deemter, F.J. Zuiderweg, A. Klinkenberg, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem. Eng. Sci. 5 (1956) 271-289.

    [9] H.J. Issaq, K.C. Chan, J. Blonder, et al., Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography, J. Chromatogr. A 1216 (2009) 1825-1837.

    [10] R.W. Brice, X. Zhang, L.A. Colon, Fused-core, sub-2 μm packings, and monolithic HPLC columns: a comparative evaluation, J. Sep. Sci. 32 (2009) 2723-2731.

    [11] J.J. Kirkland, T.J. Langlois, J.J. DeStefano, Fused core particles for HPLC columns, Am. Lab. 39 (2007) 18-21.

    [12] J.J. Kirkland, Development of some stationary phases for reversed-phase high performance liquid chromatography,J. Chromatogr. A 1060 (2004) 9-21.

    [13] J.J. Kirkland, F.A. Truskowski, R.D. Ricker, Atypical silicabased column packings for high-performance liquid chromatography, J. Chromatogr. A 965 (2002) 25-34.

    [14] E.R. Badman, R.L. Beardsley, Z. Liang, et al., Accelerating high quality bioanalytical LC/MS/MS assays using fused-core columns, J. Chromatogr. B 878 (2010) 2307-2313.

    [15] S.Fekete,K.Ganzler,J.Fekete,Efficiency of the new sub-2 μm core-shell(Kinetex(TM))column in practice,applied for small and large molecule separation,J.Pharmaceut.Biomed.54(2011)482-490.

    [16] E. Olah, S. Fekete, J. Fekete, et al., Comparative study of new shell-type, sub-2 μm fully porous and monolith stationary phases, focusing on mass-transfer resistance, J. Chromatogr.A 1217 (2010) 3642-3653.

    [17] A. Vaast, K. Broeckhoven, S. Dolman, et al., Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles,J.Chromatogr.A 1228(2011)270-275.

    [18] F. Gritti, G. Guiochon, Comparison between the loading capacities of columns packed with partially and totally porous fine particles what is the effective surface area available for adsorption?, J. Chromatogr. A 1169 (2007) 125-138.

    [19] S.Fekete,J.Fekete,K.Ganzler,Shell and small particles:evaluation of new column technology, J. Pharm. Biomed. 49 (2009) 64-71.

    [20] K. Kaczmarski, G. Guiochon, Modeling of the mass-transfer kinetics in chromatographic columns packed with shell and pellicular particles, Anal. Chem. 79 (2007) 4648-4656.

    [21] F. Gritti, A. Cavazzini, N. Marchetti, Comparison between the efficiencies of columns packed with fully and partially porous C-18-bound silica materials,J.Chromatogr.A 1157(2007)289-303.

    [22] J.J. Salisbury, Fused-core particles: a practical alternative to sub-2 μm particles, J. Chromatogr. Sci 46 (2008) 883-886.

    [23] W. Song, D. Pabbisetty, E.A. Groeber, et al., Comparison of fused-core and conventional particle size columns by LC-MS/MS and UV: application to pharmacokinetic study, J. Pharm.Biomed. 50 (2009) 491-500.

    [24] Y. Zhang, X. Wang, P. Mukherjee, Critical comparison of performances of superficially porous particles and sub-2 μm particles under optimized ultra-high pressure conditions,J. Chromatogr. A 1216 (2009) 4597-4605.

    [25] J. Zheng, D. Patel, Q. Tang, et al., Comparison study of porous,fused-core, and monolithic silica-based C(18) HPLC columns for celestoderm-V ointment, J. Pharm. Biomed. 50 (2009) 815-822.

    [26] A.J. Alexander, L. Ma, Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual fused-core columns in the 2nd dimension, J. Chromatogr.A 1216 (2009) 1338-1345.

    [27] X. Li, D.R. Stoll, P.W. Carr, Equation for peak capacity estimation in two-dimensional liquid chromatography, Anal.Chem. 81 (2009) 845-850.

    [28] D.R. Stoll, X. Li, X. Wang, et al., Fast, comprehensive twodimensional liquid chromatography, J. Chromatogr. A 1168(2007) 3-43.

    [29] J.N. Fairchild, K. Horvath, G. Guiochon, Approaches to comprehensive multidimensional liquid chromatography systems,J. Chromatogr. A 1216 (2009) 1363-1371.

    [30] P. Jandera, T. Hajek, P. Cesla, Effects of the gradient profile,sample volume and solvent on the separation in very fast gradients,with special attention to the second-dimension gradient in comprehensive two-dimensional liquid chromatography,J. Chromatogr. A 1218 (2011) 1995-2006.

    [31] N. Marchetti, A. Cavazzini, F. Gritti, et al., Gradient elution separation and peak capacity of columns packed with porous shell particles, J. Chromatogr. A 1163 (2007) 203-211.

    [32] J. Ruta, D. Zurlino, C. Grivel, et al., Evaluation of columns packed with shell particles with compounds of pharmaceutical interest, J. Chromatogr. A 1228 (2011) 221-231.

    [33] A. Staub, D. Zurlino, S. Rudaz, et al., Analysis of peptides and proteins using sub-2 μm fully porous and sub-3 μm shell particles, J. Chromatogr. A 1218 (2011) 8903-8914.

    [34] S.A. Schuster, B.M. Wagner, B.E. Boyes, et al., Wider pore superficially porous particles for peptide separations by HPLC,J. Chromatogr. Sci. 48 (2010) 566-571.

    [36] S.A. Schuster, B.E. Boyes, B.M. Wagner, et al., Fast high performance liquid chromatography separations for proteomic applications using fused-core(r) silica particles, J. Chromatogr.A 1228 (2012) 232-241.

    [37] R.-I. Chirita, C. West, A.-L. Finaru, Approach to hydrophilic interaction chromatography column selection: application to neurotransmitters analysis, J. Chromatogr. A 1217 (2010) 3091-3104.

    [38] Y. Chen, C.T. Mant, R.S. Hodges, Selectivity differences in the separation of amphipathic α-helical peptides during reversedphase liquid chromatography at pHs 2.0 and 7.0. Effects of different packings, mobile phase conditions and temperature,J. Chromatogr. A 1043 (2004) 99-111.

    [39] J. Barbosa, I. Toro, R. Berges, et al., Retention behavior of peptides, quinolones, diuretics and peptide hormones in liquid chromatography. Influence of ionic strength and pH on chromatographic retention, J. Chromatogr. A 915 (2001) 85-96.

    [40] V. Sanz-Nebot, I. Toro, J. Barbosa, Separation of potentially therapeutic peptide hormones by liquid chromatography. Optimisation of composition and pH of the mobile phase,J. Chromatogr. A 870 (2000) 335-347.

    [41] S. Espinosa, E. Bosch, M. Roses, et al., Change of mobile phase pH during gradient reversed-phase chromatography with 2,2,2-trifluoroethanol-water as mobile phase and its effect on the chromatographic hydrophobicity index determination, J. Chromatogr. A 954 (2002) 77-87.

    [42] S. Van Dorpe, A. Bronselaer, J. Nielandt, et al., Brainpeps:the blood-brain barrier peptide database, Brain Struct. Funct.217 (2011) 687-718.

    [43] A. Pezeshki, V. Vergote, S. Van Dorpe, et al., Adsorption of peptides at the sample drying step: influence of solvent evaporation technique, vial material and solution additive, J.Pharm. Biomed. 49 (2009) 607-612.

    [44] S. Van Dorpe, V. Vergote, A. Pezeshki, et al., Hydrophilic interaction LC of peptides: columns comparison and clustering,J. Sep. Sci. 33 (2010) 728-739.

    [45] K. Bodzioch, T. Baczek, R. Kaliszan, et al., The molecular descriptor log Sum(AA) and its alternatives in QSPR models to predict the retention of peptides, J. Pharm. Biomed. 50 (2009)563-569.

    [46] K. Bodzioch, A. Durand, R. Kaliszan, et al., Advanced QSPR modeling of peptides behavior in RPLC,Talanta 81(2010)1711-1718.

    [47] T. Baczek, C. Temporini, E. Perani, et al., Identification of peptides in proteomics supported by prediction of peptide retention by means of quantitative structure-retention relationships, Acta Chromatogr. 18 (2007) 72-92.

    [48] T. Baczek, P. Wiczling, M. Marszall, et al., Prediction of peptide retention at different HPLC conditions from multiple lineair regression, J. Proteome Res. 4 (2005) 555-563.

    [49] R. Kaliszan, T. Baczek, A. Cimochowska, et al., Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships,Proteomics 5 (2005) 409-415.

    [50] M. Michel, T. Baczek, S. Studzinska, et al., Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships, J. Chromatogr.A 1175 (2007) 49-54.

    [51] R. Kaliszan, QSPR: quantitative structure-chromatographicretention relationships, Chem. Rev. 107 (2007) 3212-3246.

    [52] H. Du, H. Wang, X. Zhang, et al., Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression, Chemometr. Intell.Lab. Syst. 92 (2008) 92-99.

    [53] Y.X. Chen, C.T. Mant, R.S. Hodges, Temperature selectivity effects in reversed-phase liquid chromatography due to conformation differences between helical and non-helical peptides,J. Chromatogr. A 1010 (2003) 45-61.

    [54] J.M. Cunliffe, T.D. Maloney, Fused-core particle technology as an alternative to sub-2-alpha m particles to achieve high separation efficiency with low backpressure, J. Sep. Sci 30 (2007)3104-3109.

    [55] P. Donato, P. Dugo, F. Cacciola, et al., High peak capacity separation of peptides through the serial connection of LC shellpacked columns, J. Sep. Sci 32 (2009) 1129-1136.

    [56] M. D'Hondt, E. Vangheluwe, S. Van Dorpe, et al., Stability of extemporaneously prepared cytarabine, methotrexate sodium,and methylprednisolone sodium succinate, Am. J. Health-Syst.Pharm. 69 (2012) 232-240.

    [57] A.J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides,nucleic-acids and other polar compounds,J. Chromatogr. 499 (1990) 177-196.

    [58] M. Shibue, C. Mant, R. Hodges, Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography, J. Chromatogr. A 1080(2005) 68-75.

    [59] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2001.

    [60] M. Sandberg, L. Eriksson, J. Jonsson, et al., New chemical descriptors relevant for the design of biologically active peptides.A multivariate characterization of 87 amino acids,J. Med.Chem 41 (1998) 2481-2491.

    黄片播放在线免费| 成人午夜精彩视频在线观看| 欧美日本中文国产一区发布| 精品99又大又爽又粗少妇毛片| 少妇熟女欧美另类| 国产av国产精品国产| 欧美另类一区| 九九久久精品国产亚洲av麻豆| 久久久久久久久久人人人人人人| 99热6这里只有精品| 热re99久久国产66热| 亚洲色图综合在线观看| 国产男女内射视频| a级毛片免费高清观看在线播放| 老司机影院毛片| 一边摸一边做爽爽视频免费| 精品卡一卡二卡四卡免费| 男女高潮啪啪啪动态图| 精品少妇久久久久久888优播| 男女无遮挡免费网站观看| 免费观看的影片在线观看| 国产黄色免费在线视频| 99热网站在线观看| 熟妇人妻不卡中文字幕| 简卡轻食公司| 国产精品欧美亚洲77777| 久久免费观看电影| 免费看光身美女| 极品少妇高潮喷水抽搐| 大片免费播放器 马上看| 肉色欧美久久久久久久蜜桃| 美女cb高潮喷水在线观看| 黑人猛操日本美女一级片| 一区二区av电影网| 久久热精品热| 不卡视频在线观看欧美| 在线观看免费视频网站a站| 新久久久久国产一级毛片| 久久久久网色| 欧美日韩国产mv在线观看视频| 有码 亚洲区| 婷婷色综合大香蕉| 久久99精品国语久久久| 成年美女黄网站色视频大全免费 | 中文字幕久久专区| 日韩一区二区三区影片| 91精品伊人久久大香线蕉| av天堂久久9| 国产精品人妻久久久影院| 亚洲精品,欧美精品| 欧美日韩综合久久久久久| 日日摸夜夜添夜夜添av毛片| 自线自在国产av| 久久精品久久精品一区二区三区| 搡老乐熟女国产| 亚洲国产精品一区三区| 自拍欧美九色日韩亚洲蝌蚪91| 日本wwww免费看| 亚洲精品日韩av片在线观看| 亚洲国产精品一区二区三区在线| 成人亚洲欧美一区二区av| 午夜福利,免费看| 国产成人精品一,二区| 黄片播放在线免费| 岛国毛片在线播放| 中文字幕久久专区| 九九爱精品视频在线观看| 国产高清有码在线观看视频| 日产精品乱码卡一卡2卡三| 久久韩国三级中文字幕| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 国产综合精华液| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 国产片特级美女逼逼视频| 久久久久视频综合| av播播在线观看一区| 国产精品99久久久久久久久| 丰满乱子伦码专区| 国产在线免费精品| 伦理电影大哥的女人| 国产av码专区亚洲av| videosex国产| 麻豆精品久久久久久蜜桃| 亚洲成人一二三区av| 久热久热在线精品观看| 久久国产亚洲av麻豆专区| 男女国产视频网站| 天堂8中文在线网| 黑人高潮一二区| 综合色丁香网| 热re99久久精品国产66热6| 久久久国产欧美日韩av| 黄色欧美视频在线观看| 晚上一个人看的免费电影| 内地一区二区视频在线| 久久久久久久久久成人| 久久99一区二区三区| 观看av在线不卡| 亚洲内射少妇av| 黄片播放在线免费| 人妻少妇偷人精品九色| 国产精品麻豆人妻色哟哟久久| 精品人妻在线不人妻| 国产深夜福利视频在线观看| 精品人妻熟女毛片av久久网站| 色婷婷久久久亚洲欧美| 成人漫画全彩无遮挡| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产欧美在线一区| 能在线免费看毛片的网站| 精品国产国语对白av| 国产伦精品一区二区三区视频9| 99国产综合亚洲精品| 大香蕉久久成人网| 中文字幕最新亚洲高清| 国产精品嫩草影院av在线观看| 国国产精品蜜臀av免费| 天天操日日干夜夜撸| 黄色一级大片看看| 一个人看视频在线观看www免费| 亚洲精品成人av观看孕妇| 国产精品国产三级国产专区5o| 人妻人人澡人人爽人人| 午夜久久久在线观看| 亚洲精品,欧美精品| 成人黄色视频免费在线看| 99热国产这里只有精品6| 狂野欧美激情性xxxx在线观看| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 99久久人妻综合| 国产视频内射| 欧美亚洲日本最大视频资源| 美女视频免费永久观看网站| 香蕉精品网在线| 超碰97精品在线观看| 一本大道久久a久久精品| 丰满饥渴人妻一区二区三| 99热这里只有是精品在线观看| 欧美性感艳星| 一级二级三级毛片免费看| 一级毛片 在线播放| 少妇的逼好多水| 国产精品欧美亚洲77777| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 日本午夜av视频| 亚洲精品乱码久久久久久按摩| 亚洲色图 男人天堂 中文字幕 | 卡戴珊不雅视频在线播放| 久久影院123| 亚洲情色 制服丝袜| 亚洲国产最新在线播放| 人妻少妇偷人精品九色| 久久影院123| 你懂的网址亚洲精品在线观看| 日本黄色日本黄色录像| 国产69精品久久久久777片| 美女国产高潮福利片在线看| 精品人妻熟女av久视频| 成人二区视频| 91精品国产国语对白视频| 久久99精品国语久久久| 日本免费在线观看一区| 精品国产露脸久久av麻豆| 国产免费福利视频在线观看| 国产熟女午夜一区二区三区 | 久久久精品94久久精品| 免费播放大片免费观看视频在线观看| 肉色欧美久久久久久久蜜桃| 美女大奶头黄色视频| 欧美最新免费一区二区三区| 欧美变态另类bdsm刘玥| 大陆偷拍与自拍| 乱码一卡2卡4卡精品| 精品视频人人做人人爽| 日韩成人伦理影院| av.在线天堂| 黄色配什么色好看| 免费看光身美女| 国产白丝娇喘喷水9色精品| 成人亚洲欧美一区二区av| 寂寞人妻少妇视频99o| 精品99又大又爽又粗少妇毛片| 国产爽快片一区二区三区| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 大陆偷拍与自拍| 免费播放大片免费观看视频在线观看| 大香蕉久久成人网| 国产男女内射视频| 久久 成人 亚洲| 激情五月婷婷亚洲| 美女xxoo啪啪120秒动态图| 色视频在线一区二区三区| 制服诱惑二区| 两个人的视频大全免费| 久久久亚洲精品成人影院| 夫妻性生交免费视频一级片| 成年美女黄网站色视频大全免费 | 少妇人妻精品综合一区二区| 51国产日韩欧美| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费 | 欧美日韩综合久久久久久| 在线观看免费日韩欧美大片 | 最新的欧美精品一区二区| 久久99蜜桃精品久久| 日韩伦理黄色片| 99热国产这里只有精品6| 十分钟在线观看高清视频www| 亚洲国产av新网站| 久热这里只有精品99| 久久精品国产亚洲网站| 婷婷色av中文字幕| 久热久热在线精品观看| 国产日韩欧美视频二区| 国产成人aa在线观看| 蜜桃久久精品国产亚洲av| 美女视频免费永久观看网站| 一级毛片aaaaaa免费看小| 丁香六月天网| 人妻 亚洲 视频| .国产精品久久| kizo精华| 女性生殖器流出的白浆| 80岁老熟妇乱子伦牲交| 国产午夜精品一二区理论片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 九九久久精品国产亚洲av麻豆| 国产精品一区二区在线不卡| 日本爱情动作片www.在线观看| 亚洲精品久久午夜乱码| 午夜福利视频精品| 少妇人妻精品综合一区二区| 国产又色又爽无遮挡免| 纵有疾风起免费观看全集完整版| 久久热精品热| freevideosex欧美| 我的女老师完整版在线观看| 多毛熟女@视频| 美女福利国产在线| 综合色丁香网| 亚洲av免费高清在线观看| 亚洲国产色片| 999精品在线视频| 国产免费又黄又爽又色| 嘟嘟电影网在线观看| 夜夜爽夜夜爽视频| 国产亚洲一区二区精品| 国产国拍精品亚洲av在线观看| 国产精品欧美亚洲77777| 亚洲综合精品二区| 午夜精品国产一区二区电影| 另类亚洲欧美激情| 久久久久久人妻| 一个人免费看片子| 高清毛片免费看| 人妻 亚洲 视频| 日韩av不卡免费在线播放| 色网站视频免费| 一区二区av电影网| 九色亚洲精品在线播放| 在线精品无人区一区二区三| 观看av在线不卡| 男女国产视频网站| 妹子高潮喷水视频| 国产成人精品一,二区| 久久99蜜桃精品久久| 免费av不卡在线播放| 午夜福利在线观看免费完整高清在| 国产av码专区亚洲av| 婷婷色综合大香蕉| 国产综合精华液| 丰满饥渴人妻一区二区三| 久久久精品区二区三区| 丁香六月天网| 高清视频免费观看一区二区| 日韩人妻高清精品专区| 寂寞人妻少妇视频99o| 肉色欧美久久久久久久蜜桃| 91精品三级在线观看| 国产黄色免费在线视频| 欧美三级亚洲精品| 国产男女超爽视频在线观看| 老司机影院毛片| 亚洲国产av新网站| 亚洲情色 制服丝袜| 观看美女的网站| 久久ye,这里只有精品| 超碰97精品在线观看| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 黑丝袜美女国产一区| 我的女老师完整版在线观看| 亚洲精品成人av观看孕妇| 久久久精品免费免费高清| av播播在线观看一区| 一二三四中文在线观看免费高清| av在线老鸭窝| 亚洲精品亚洲一区二区| 欧美日韩在线观看h| 2018国产大陆天天弄谢| 18禁观看日本| 一级爰片在线观看| 久久久久久久久久久久大奶| 在线观看三级黄色| 99久久综合免费| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 国产精品人妻久久久影院| a级毛色黄片| 成人亚洲精品一区在线观看| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看| 成年人免费黄色播放视频| 五月玫瑰六月丁香| 婷婷成人精品国产| 午夜免费男女啪啪视频观看| 只有这里有精品99| 一级毛片 在线播放| 最近手机中文字幕大全| 91精品一卡2卡3卡4卡| 亚洲熟女精品中文字幕| av电影中文网址| 少妇的逼水好多| 国产 一区精品| 人妻人人澡人人爽人人| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站| 国产精品国产三级国产专区5o| 9色porny在线观看| 男女边吃奶边做爰视频| av天堂久久9| 国产欧美日韩综合在线一区二区| 日韩制服骚丝袜av| 视频中文字幕在线观看| 性色avwww在线观看| 蜜桃国产av成人99| 99热全是精品| 久久精品夜色国产| 久久久久久久久久久丰满| 晚上一个人看的免费电影| av黄色大香蕉| 亚洲国产毛片av蜜桃av| 久久久久久久久久久免费av| 久久99精品国语久久久| 欧美另类一区| 亚洲精品第二区| 热re99久久精品国产66热6| 青青草视频在线视频观看| av国产精品久久久久影院| 午夜激情av网站| 亚洲丝袜综合中文字幕| 岛国毛片在线播放| 99热国产这里只有精品6| 精品久久国产蜜桃| 久久青草综合色| 一边亲一边摸免费视频| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 免费人成在线观看视频色| 国产精品 国内视频| 欧美日韩在线观看h| 国产片内射在线| 一边摸一边做爽爽视频免费| 一个人免费看片子| 欧美激情极品国产一区二区三区 | 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 又黄又爽又刺激的免费视频.| 成人毛片60女人毛片免费| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| 成人综合一区亚洲| 国产探花极品一区二区| 大香蕉久久成人网| 国产成人91sexporn| 亚洲国产欧美在线一区| 国产在视频线精品| 少妇精品久久久久久久| 91精品三级在线观看| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 久久精品夜色国产| 自线自在国产av| 国产高清不卡午夜福利| 亚州av有码| 欧美日韩av久久| 考比视频在线观看| 高清午夜精品一区二区三区| 精品久久久久久电影网| 在线观看美女被高潮喷水网站| 91精品伊人久久大香线蕉| 国产一级毛片在线| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看| 日本wwww免费看| 久久精品久久精品一区二区三区| 婷婷色综合www| 97超碰精品成人国产| 人妻夜夜爽99麻豆av| 美女国产视频在线观看| 亚洲精品国产av成人精品| 欧美一级a爱片免费观看看| 日韩熟女老妇一区二区性免费视频| 日本色播在线视频| 日本av免费视频播放| 久久人人爽人人爽人人片va| 免费观看a级毛片全部| 亚洲一区二区三区欧美精品| 色视频在线一区二区三区| 狂野欧美白嫩少妇大欣赏| 韩国高清视频一区二区三区| 另类亚洲欧美激情| 汤姆久久久久久久影院中文字幕| 成人影院久久| 丝袜在线中文字幕| 久久久久久久久大av| av在线app专区| xxx大片免费视频| 欧美97在线视频| 黑人猛操日本美女一级片| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 精品少妇久久久久久888优播| 国产在线免费精品| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| av福利片在线| 亚洲少妇的诱惑av| 中国三级夫妇交换| 考比视频在线观看| 久久青草综合色| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 黄色一级大片看看| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 蜜桃国产av成人99| 色婷婷av一区二区三区视频| 天天影视国产精品| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区免费观看| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 麻豆乱淫一区二区| 一区二区av电影网| 亚洲少妇的诱惑av| 一级毛片电影观看| 精品酒店卫生间| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 亚洲成人一二三区av| 美女主播在线视频| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 丝袜喷水一区| 各种免费的搞黄视频| 免费看av在线观看网站| 99国产综合亚洲精品| a级毛片免费高清观看在线播放| 欧美人与善性xxx| av天堂久久9| 精品亚洲乱码少妇综合久久| 汤姆久久久久久久影院中文字幕| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 综合色丁香网| 国产色爽女视频免费观看| 欧美少妇被猛烈插入视频| 久久久精品区二区三区| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 51国产日韩欧美| 成年人免费黄色播放视频| 国产视频首页在线观看| 亚洲少妇的诱惑av| 亚洲怡红院男人天堂| 熟女人妻精品中文字幕| 中文天堂在线官网| 人妻人人澡人人爽人人| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图 | 蜜桃在线观看..| 桃花免费在线播放| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 一级毛片aaaaaa免费看小| 国产高清国产精品国产三级| 蜜桃在线观看..| 久久 成人 亚洲| 久久久国产精品麻豆| 欧美少妇被猛烈插入视频| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级| 国产午夜精品一二区理论片| 卡戴珊不雅视频在线播放| 免费看光身美女| 丰满迷人的少妇在线观看| 色网站视频免费| 欧美日韩国产mv在线观看视频| 国产淫语在线视频| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 黄片播放在线免费| 看十八女毛片水多多多| 一级a做视频免费观看| 九草在线视频观看| 国产男女内射视频| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线 | 香蕉精品网在线| 日本av免费视频播放| 欧美日韩av久久| 免费人妻精品一区二区三区视频| 99久国产av精品国产电影| 国产永久视频网站| 国产精品国产三级国产专区5o| 天天操日日干夜夜撸| 性色av一级| 国产永久视频网站| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 一本大道久久a久久精品| 蜜臀久久99精品久久宅男| 婷婷色av中文字幕| 日本av免费视频播放| 欧美精品高潮呻吟av久久| 黑人高潮一二区| 久久久久久久久久久丰满| 久久ye,这里只有精品| 亚洲欧美成人精品一区二区| 久久久久视频综合| 在线观看免费视频网站a站| 免费av中文字幕在线| 国产在线视频一区二区| av卡一久久| 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 亚洲精品美女久久av网站| 在现免费观看毛片| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 女的被弄到高潮叫床怎么办| 一级a做视频免费观看| 国产精品国产av在线观看| 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区 | 91久久精品国产一区二区成人| 免费看光身美女| 夫妻午夜视频| videosex国产| 欧美日韩国产mv在线观看视频| 久久久午夜欧美精品| 日本黄色片子视频| 欧美日韩成人在线一区二区| 国产成人精品一,二区| 精品久久国产蜜桃| 老司机影院毛片| 免费观看的影片在线观看| 91精品三级在线观看| av一本久久久久| 麻豆成人av视频| 高清不卡的av网站| 一级毛片黄色毛片免费观看视频| 国产 精品1| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 少妇 在线观看| 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 精品人妻熟女av久视频| 高清毛片免费看| 男女免费视频国产| 青春草亚洲视频在线观看| 色5月婷婷丁香| 国产男女内射视频| 日本91视频免费播放| 观看av在线不卡| 成年人午夜在线观看视频| 亚洲精品久久成人aⅴ小说 | 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 啦啦啦啦在线视频资源| av网站免费在线观看视频| 国产成人a∨麻豆精品| 少妇的逼水好多| 七月丁香在线播放| 另类精品久久| 人体艺术视频欧美日本| 有码 亚洲区| 国产欧美日韩一区二区三区在线 | 日产精品乱码卡一卡2卡三| 亚洲色图综合在线观看| 人妻 亚洲 视频| 国产成人精品婷婷| 特大巨黑吊av在线直播| 欧美bdsm另类| 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 成人免费观看视频高清|