• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probabilistic modeling of soil moisture dynamics in a revegetated desert area

    2013-12-15 05:55:14LeiHuangZhiShanZhangYongLeChen
    Sciences in Cold and Arid Regions 2013年2期

    Lei Huang ,ZhiShan Zhang,YongLe Chen

    Shapotou Desert Research and Experiment Station,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    1 Introduction

    Soil moisture plays an important role in the terrestrial water cycle as it is the key link between land hydrological and ecological processes,especially in revegetated desert areas.Changes in soil moisture directly affect the growth and survival of vegetation,however soil moisture dynamics is extremely complex.Due to the influence of different physical,chemical and biological processes,as well as uncertain variables in spatial and temporal scales such as precipitation,soil texture,topography,and temperature;changes in soil moisture dynamics exhibit a broad variability and stochastic properties (Schlesingeret al.,1996;Rodriguez-Iturbe,2000;Sherratt,2005;Rietkerk and Koppel,2008;Liuet al.,2011).Consequently,a probabilistic description of soil water exists to provide a productive framework for analysis,complementing the equilibrium based approach (Rodriguez-Iturbe,2000;Rodriguez-Iturbe and Porporato,2005;Liu and Zhao,2006).Eagleson’s pioneering work (1978) had developed a probabilistic method for modeling the dynamics of water transfer within a precipitation event,and proposed a probability density function through the mathematical expectation mode.Based on water losses from evapotranspiration and leakage with different schemes,Rodriguez-Iturbeet al.(1999) further refined the Eagleson model and improved the loss function of soil water,and then the steady-state probability distributions for soil moisture were analytically obtained.This probabilistic model provided an explicit linkage between temporal soil moisture dynamics and climate and vegetation processes,which had become an important milestone in ecohydrological studies (Liu and Zhao,2006;Panet al.,2008).Laioet al.(2001) further improved the calculation of evapotranspiration in the Rodriguez-Iturbe model,and provided a useful framework to analytically investigate the probabilistic structure of soil moisture and water balance in extremely arid regions.Subsequent models such as the Ridolfi (2003) and D’Odorico (2007) models were all derived from the Rodriguez-Iturbe model with different soil moisture probability density functions.These models confirm that soil moisture dynamics plays a central role in the ecosystem in terms of random fluctuations of climatic factors,soil characteristics,vegetation,and terrain conditions.Recent research has proven that the Rodriguez-Iturbe model has good applicability in various environment conditions (from arid to semi-arid environments,temperate to tropical climates) (Fernandezet al.,2001;Laioet al.,2001;Porporatoet al.,2002;Kumagaiet al.,2004).However,research on dynamics and probabilistic simulation of soil moisture in China are relatively weak.Huanget al.(2000) introduced a new equation for calculating transpiration and evaporation by means of the Eagleson stochastic dynamic water balance model,and simulated the rationing of the water balance factor and annual dynamic changes of soil moisture in an active layer according to characteristics of rainfall distribution in the loess plateau.Liuet al.(2007) simulated the stochastic dynamics of soil moisture in the Qilian Mountain grassland ecosystem at point scale.Wanget al.(2009) analyzed the dynamic and stochastic simulation of soil moisture in the Sichuan Basin hilly region.In arid desert regions,the stochastic model might have good application for researching soil moisture dynamics due to random rainfall.In this paper,we focused on the application of the Rodriguez-Iturbe stochastic soil moisture model in an arid artificial vegetation area based on long term continuous monitoring data of soil moisture.

    2 Materials and methods

    2.1 Experimental site description

    This study was conducted in soil of the Water Balance Experimental Fields (WBEF),Shapotou Desert Experimental Research Station,Chinese Academy of Sciences.This station borders the Tengger Desert,China’s fourth largest desert located in the central part of West China (37°27′N,104°57′E;elevation:1,250 m).The climate at this site is characterized by abundant sunshine and low relative humidity.For the 46-year period from 1955 to 2000,minimum average monthly relative humidity was 33% in April,and the maximum was 54.9% in August.The elevation of this site is 1,330 m above sea level.Mean annual precipitation is 187 mm (according to meteorological records from 1956 to 2002),precipitation is mainly concentrated between June and September.Mean air temperature is 24.3 °C in July and-6.9 °C in January.The annual mean wind velocity is 2.6 m/s.The volumetric water content at a soil depth of 0-300 cm is on average 0.03-0.04 (VWC,m3/m3).Groundwater may exist,but located in deep underground,and is not viable for the maintenance of large areas of natural vegetation cover.Precipitation is usually the only source of freshwater to replenish soil water in this area (Shapotou Desert Experimental Research Station,Chinese Academy of Sciences,1995).The Water Balance Experimental Fields were revegetated withArtemisia ordosicaKrasch.andCaragana korshinskiFabr.under different group patterns since 1990,10m×10m quadrats were set in each vegetation community and three 3-m deep neutron moisture measurement tubes were embedded along the diagonal in each plot.

    2.2 Data collection

    Volumetric soil moisture data at 40 cm and 60 cm were measured with a neutron probe (CNC503DR,Beijing Nuclear Security Nuclear Instrument Co.,Ltd.),and the 20-cm soil moisture was measured with TDR300 (Spectrum Technologies,Plainfield,IL).Soil moisture was measured half a month from April of 2008 to December of 2011.Precipitation parameters such as frequency and mean depth were collected from the Shapotou weather station (1991-2011).Other parameters such as soil porosity,plant water stress point and field capacity were obtained from Wanget al.(2007),Porporatoet al.(2002) and other publications.All statistical analyses were conducted using Matlab7.0 (The MathWorks,Natick,MA,USA) and the Origin7.0 software(OriginLab,Northampton,MA,USA).

    2.3 The probabilistic soil moisture dynamic model

    Under conditions where there are no lateral contributions,the soil moisture balance equation at a point was expressed as:

    wherenwas soil porosity,Zris root zone depth (mm),tis time (d);sis relative soil moisture (0≤s(t)≤1),ands=θ/nwith θ referred to the volumetric soil moisture content (VWC,%),andR(t) is precipitation (mm/d).We idealized the occurrence of rainfall as a series of point concentrations in continuous time arising in a Poisson process.Each rainfall event was assumed to have a random depth,characterized by an exponential probability density function.E[s(t),t] is evapotranspiration (mm/d),andL[s(t),t] is deep percolation from root depth (mm/d).From Equation(1),we can see that the input to soil moisture balance is rainfall,and the output is evapotranspiration plus leakage,and they are all dependent on soil moisture.The loss from evapotranspiration is assumed to increase linearly as a function ofsuntil the moisture reaches a thresholds*,above which evapotranspiration takes place at a maximum valueη,when soil moisture exceeds soil field capacitys1.Here we represent leakage loss by an exponential growth starting at soil field capacitys1and reaching the saturated hydraulic conductivitykats=1.The dependence of evapotranspiration losses on soil moisture is summarized in Equation(2):

    The solution to stochastic rainfall forcing in Equation(1)is meaningful only in probabilistic terms.The probability density function that reflects soil moisture intensity at a certain range could be derived from the Chapman-Kolmogorov forward equation for the process under mathematical analysis.The probability density function is given as Equation(3):

    Detailed description of the formula’s construction can be found in Rodriguez-Iturbe (1999).The goal of this study refers to its applicability in the Shapotou desert area.

    3 Results

    3.1 Soil moisture dynamics

    As presented in Figure 1,soil moisture at 20 cm,40 cm and 60 cm varied basically along with precipitation,with nearly the same interannual change trends.The fluctuation of soil moisture in the surface 20 cm was relatively large because it was more susceptible to the influence of meteorological factors,e.g.,precipitation,especially in the precipitation concentrated period (Jul.-Sep.).There was a 3-5 day time lag between the 40 cm and 60 cm soil moisture dynamics and precipitation.Soil moisture was different between different months,from January to March the dynamics showed minor changes,because the temperature was relatively low and vegetation growth had not yet begun and precipitation was rare at that time.As temperatures rose,the soil began to thaw in March,and snow in the topsoil started to melt which led to an immediate increase in soil water content.In May and June,soil moisture was maintained at a high level due to increased precipitation,but as temperatures continued to rise and plant transpiration and soil evaporation were enhanced,total losses of soil moisture gradually increased,thus soil moisture content began to decline.From September to December,as temperatures decreased and vegetation growth ceased,soil moisture began to gradually increase.From the aforementioned factors,it can be concluded that surface soil moisture is influenced by meteorological and vegetation factors,but deep soil moisture does not have a significant correlation (Heet al.,2010;Zhanget al.,2011).

    Figure 1 Soil moisture dynamics in different layers in 2008-2011

    3.2 The probability distribution of soil moisture

    Figure 2 shows the probability distribution of soil moisture in different layers in 2008-2011,and we find that the histogram of the soil relative to water probability distribution in the soil active layer (0-60 cm) shows a single peak curve.The maximum relative soil moisture at 0-20 cm wass=0.035,and the peak width was about 0.02-0.065,wider than those in other soil layers;there was another aggregated distribution ats=0.06.The peak position of relative soil moisture in 20-40 cm soil layer was lower than in 0-20 cm soil layer,at abouts=0.026 and the peak width was relatively narrow,approximately between 0.02 and 0.05.Peak value in 40-60 cm soil layer wass=0.025 and width was approximately between 0.02 and 0.04.It can also be seen from the figure that the peak width distributions of relative soil moisture in different layers were not completely continuous,they had a multi-peak curve in the topsoil moisture,but the peak position at different layers and the width of the peak did not show significant differences.However,as presented in Figure 2,the peak width of soil moisture distribution was wider in the surface because of increased uncertain fluctuations.

    Figure 2 The probability distribution of soil moisture in different layers

    3.3 Numerical simulations

    Parameters were obtained through research publications(Porporatoet al.,2002;Wanget al.,2007) and all parameter values are listed in Table 1.The soil active layer depths ofZr(cm) were 20 cm,40 cm and 60 cm respectively.

    The simulation of Equation(1)was based on the algorithm of Kim and Jang (2007),firstly the equation was transformed into a finite difference equation,then the parameters and original data were substituted into the Rodriguez-Iturbe soil moisture model,finally the soil moisture Probability Density Function (PDF) was exported in Figure 3.Results show that peak position and peak width of soil moisture PDF in the active layer (0-60 cm) were consistent with observations,basically reflecting the probability distribution characteristics of soil moisture.As presented in Figure 3,20 cm soil moisture reached a maximum ats=0.03 ands=0.04,indicating that soil moisture content was almost distributed in this range,and a minor peak ats=0.06 also means another aggregated soil moisture distribution.The probability distribution of soil moisture curve was smoother at 40 cm and 60 cm,mainly due to the fact that relative surface soil moisture was more stable with increased soil depth.The simulated results also prove that the Rodriguez-Iturbe model has a good applicability in revegetated desert areas,and could well simulate soil moisture statistical characteristics.

    Table 1 Parameters of the probabilistic soil moisture dynamic model

    Figure 3 The probability distribution of soil moisture at (a) 20 cm,(b) 40 cm,(c) 60 cm from Rodriguez-Iturbe model

    4 Conclusions and discussions

    Soil moisture dynamics is the core of water-controlled ecosystems,and is a hotspot for difficult ecohydrology research.Extensive research on soil moisture and numerous models have been developed in an attempt to study soil moisture dynamics and its response to climatic and vegetation processes.There has been a buildup of empirical models from statistical forecasting methods between agro-meteorological factors and soil moisture (Kanget al.,1994);using soil water balance equation to estimate soil moisture conditions (Liu and Sun,1999);establishing soil water dynamics model based on Darcy’s law and continuous equation (Xuet al.,1999);founding time series models extracted from the soil moisture time series cycle and dynamic optimization simulation (Liuet al.,2004);setting up artificial neural network models for soil moisture prediction(Zhouet al.,2005),as well as micro soil moisture models based on large scale microwave remote sensing technology(Zhanet al.,2004).Each of these models has its merits and drawbacks,e.g.,water dynamics model had definite physical meaning and wide range of applications,but on a large scale,soil heterogeneity and too many parameters limited its application.However,some empirical models have a very good application in certain areas,but as the region and climate changed,the model became restricted.

    Compared with the aforementioned traditional soil water dynamics model,the main advantage of the stochastic model was that it had grasped the key character of various stochastic factors.The probability density function was used to describe soil moisture distribution,but did not determine accurate soil moisture.However,it was an efficient means in some areas with limited soil moisture data but relatively abundant rainfall (Liuet al.,2007).In arid desert regions,the main source of soil water is rainfall which has strong temporal and spatial heterogeneity and randomness (Holt,2008),causing sizable random characteristics in the dynamics of soil moisture (Rodriguez-Iturbe and Porporato,2005),especially for surface soil moisture content.The results in our study have shown that soil moisture peak at 20 cm are wider than others,and the distribution curve jumps to a certain extent.In deeper soils,the peak width of soil moisture probability distribution is smaller at 40 cm and 60 cm because soil moisture is relatively stable at this level,which reflects the distribution characteristics of soil moisture properties.Our conclusions have proven that the Rodriguez-Iturbe model has good application character in revegetated desert areas and soil moisture statistical characteristics are well simulated.The difference from other stochastic soil moisture models is that the Rodriguez-Iturbe model assumes that there is an approximate linear relationship between evapotranspiration and soil moisture.Calculation and simulation of this model was relatively simple,the parameters in this model had definite physical meaning and were easy to measure.The Laio soil moisture dynamic model had been widely used in recent literature (Liuet al.,2007;Wanget al.,2009),in which soil evaporation was divided into two parts,evapotranspiration under soil water stress and non water stress,deep percolation was considered to have an exponential relationship with soil moisture content.However,the Rodriguez-Iturbe model with simple forms and perspicuous expressions could also provide an effective way for design and calculation of average soil moisture content and soil water balance (Panet al.,2008).Obviously,from Figure 1 we can conclude that precipitation was the key environmental factor affecting soil moisture dynamics,besides representing as the main input term in the stochastic model,precipitation depth and frequency were the main driving force of soil moisture content (Chenet al.,2012).Other factors such as vegetation canopy interception and soil active layer depth also had significant effects (Laioet al.,2001).From Figures 2 and 3,with increasing soil active layer depth,soil moisture probability distribution diagrams show a meaningful tendency from multi-peak to single peak,indicating that soil moisture content in the surface was easily influenced by random factors than that in deeper layers.Although the stochastic model was a useful tool for soil moisture probability distribution description,it could not predict the specific content of soil moisture.Also,the dynamics of soil moisture,in turn,had a significant impact on vegetation (Zhuet al.,2011).Therefore,a coupled eco-hydrological model taking into account random soil moisture,vegetation types and distribution characteristics should be established in the future,in order to study the plants’ adaptation mechanisms and response to soil moisture dynamics.This will not only enhance our understanding of the relationship between plants and water,but also provide suggestions on ecosystem management in arid regions.

    This work was supported by the Key Orientation Project of Chinese Academy of Sciences (KZCX2-EW-301-3),Talented Young Scientist Fund of the Cold and Arid Regions Environmental and Engineering Research Institute,CAS(51Y251971) and National Natural Scientific Foundation of China (41101054,41201084).

    Chen SY,Guo YZ,Zheng YX,Wang JS,2012.Impact of precipitation on soil moisture in Gansu arid agricultural regions.Journal of Desert Research,32(1):155-162.

    D’Odorico P,Caylor K,Okin GS,Scanlon TM,2007.On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems.Journal of Geophysical Research—Biogeosciences,112:G04010.

    Eagleson PS,1978.Climate,soil,and vegetation:Introduction to water-balance dynamics.Water Resources Research,14:705-712.

    Fernandez-Illescas C,Porprato A,Laio F,Rodriguez-Iturbe I,2001.The role of soil texture in water controlled ecosystems.Water Resource Research,37(12):2663-2872.

    He FL,Li ZY,Zhao M,Yu QS,Guo SJ,Wang DZ,2010.Natural vegetation succession and soil water change in fallow salinization cropland in Minqin Oasis,Gansu Province.Journal of Desert Research,30(6):1374-1380.

    Holt RD,2008.Theoretical perspectives on resource pulses.Ecology,89(3):671-681.

    Huang MB,Shao MA,Li YS,2000.A modified stochastic dynamic water balance model and its application:II Model validation.Journal Hydraulic Engineering,6:20-26.

    Kang SZ,Liu XM,Xiong YZ,1994.Watertransfer Theory and the Application in Soil Plant Atmosphere Continuum.China Water Power Press,Beijing.

    Kim S,Jang SH,2007.Analytical derivation of steady state soil water probability distribution function under rainfall forcing using cumulant expansion theory.KSCE Journal of Civil Engineering,11(4):227-232.

    Kumagai T,Katul GG,Saitoh TM,Sato Y,Manfroi OJ,Morooka T,Ichie T,Kuraji K,Suzuki M,Porporato A,2004.Water cycling in a Bornean tropical rain forest under current and projected precipitation scenarios.Water Resource Research,40:W01104.doi:10.1029/2003 WR002226.

    Laio F,Porporato A,Ridolfi L,Rodriguez-Iturbe I,2001.Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress—II Probabilistic soil moisture dynamics.Advances in Water Resources,24(7):707-723.

    Liu B,Zhao WZ,Chang XX,Li SB,2011.Response of soil moisture to rainfall pulse in desert region of the Heihe River Basin.Journal of Desert Research,31(3):716-722.

    Liu CM,Sun R,1999.Ecological aspects of water cycle:Advances in soil vegetation atmosphere of energy and water fuxes.Advances in Water Science,10(3):251-259.

    Liu H,Zhao WZ,2006.Advances in research on soil moisture probability density functions obtained from models for stochastic soil moisture dynamics.Advances in Water Science,17(6):894-904.

    Liu H,Zhao WZ,He ZB,Zhang LJ,2007.Stochastic simulation of soil moisture in shallow grass ecosystem in Qilian Mountain.Science in China (Series D:Earth Sciences),37(9):1212-1222.

    Liu HB,Wu W,Wei CF,Xie DT,2004.Soil water dynamics simulation by autoregression models.Journal of Mountain Research,22(1):121-125.

    Pan XY,Xia J,Zhang L,2008.A review of soil water balance studies based on stochastic soil moisture model.Resources Science,30(3):460-467.

    Porporato A,D’Odorico P,Laio F,Ridolfi L,Rodriguez-Iturbe I,2002.Ecohydrology of water-controlled ecosystems.Advances in Water Resources,25:1335-1348.

    Ridolfi L,D’Odorico P,Porporato A,Rodriguez-Iturbe I,2003.Stochastic soil moisture dynamics along a hillslope.Journal of Hydrology,272(1-4):264-275.

    Rietkerk M,van de Koppel J,2008.Regular pattern formation in real ecosystems.Trends Ecology Evolution,23(3):169-175.

    Rodriguez-Iturbe I,2000.Ecohydrology:a hydrologic perspective of climate-soil-vegetation dynamics.Water Resource Research,36(1):3-9.

    Rodriguez-Iturbe I,Porporato A,2005.Ecohydrology of Water Controlled Ecosystems:Soil Moisture and Plant Dynamics.Cambridge University Press,Cambridge,UK.

    Rodriguez-Iturbe I,Porporato A,Ridolfi L,Isham V,Cox DR,1999.Probabilistic modeling of water balance at a point:the role of climate,soil and vegetation.Proceedings of the Royal Society A,455:3789-3805.

    Schlesinger WH,Raikes JA,Hartley AE,Cross AF,1996.On the spatial pattern of soil nutrients in desert ecosystems.Ecology,77:364-374.

    Shapotou Desert Experimental Research Station,1995.Annual Report Shapotou Desert Experimental Research Station.Gansu Publishing House of Science and Technology,Lanzhou.

    Sherratt JA,2005.An analysis of vegetation stripe formation in semi-arid landscapes.Journal of Mathematical Biology,51(2):183-197.

    Wang GG,Lv JG,Wei CF,2009.Soil moisture dynamics and its stocastic simulation in hilly areas in Sichuan Basin.China Rural Water and Hydropower,11:22-26.

    Wang XP,Young HM,Yu Z,Li XR,Zhang ZS,2007.Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems.Geophysical Research Letters,34:L24S22.

    Xu M,Sui JD,Liu ZZ,1999.The theoretical analysis and mathematical model of soil moisture.Journal of Biomathematics,14(1):95-99.

    Zhan ZM,Feng ZD,Qin QM,2004.Study on land surface evapotranspiration based on remote sensing data on Longxi Loess Plateau of China.Geography and Geo-Information Science,20(1):16-19.

    Zhang K,Feng Q,Lv YQ,Zhang B,Si JH,2011.Study on spatial heterogeneity of soil water contents in oasis-desert belt of Minqin.Journal of Desert Research,31(5):1149-1155.

    Zhou LC,Kang SZ,Jia YM,2005.Application of BP artificial neural network on prediction of soil water content.Agricultural Research in the Arid Areas,23(5):98-102.

    Zhu YJ,Jia ZQ,Liu LY,Liu HT,2011.Soil water in plantedHaloxylon ammodendronshrubland of different age outside Minqin Oasi.Journal of Desert Research,31(2):442-446.

    亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 真人做人爱边吃奶动态| 欧美人与性动交α欧美精品济南到| 九色成人免费人妻av| 啦啦啦免费观看视频1| 久久精品91蜜桃| 久久婷婷成人综合色麻豆| 一级a爱片免费观看的视频| 90打野战视频偷拍视频| 性色av乱码一区二区三区2| 亚洲黑人精品在线| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 日韩大码丰满熟妇| 极品教师在线免费播放| 亚洲中文字幕日韩| 三级男女做爰猛烈吃奶摸视频| 婷婷精品国产亚洲av在线| 亚洲av成人av| 国产精品 国内视频| 免费看十八禁软件| 桃红色精品国产亚洲av| 免费av毛片视频| 日韩中文字幕欧美一区二区| 99精品在免费线老司机午夜| 久久伊人香网站| 久久伊人香网站| 精品欧美一区二区三区在线| 国产成人影院久久av| 欧美乱妇无乱码| 精品久久久久久成人av| 色老头精品视频在线观看| 国产三级在线视频| videosex国产| 免费看美女性在线毛片视频| 狠狠狠狠99中文字幕| 免费av毛片视频| 亚洲精品在线美女| 中文字幕精品亚洲无线码一区| tocl精华| 亚洲七黄色美女视频| videosex国产| 免费在线观看完整版高清| 国产精品久久久人人做人人爽| 51午夜福利影视在线观看| xxxwww97欧美| 国产精品乱码一区二三区的特点| 啦啦啦免费观看视频1| 91av网站免费观看| 亚洲精品国产一区二区精华液| 在线十欧美十亚洲十日本专区| 又粗又爽又猛毛片免费看| 亚洲片人在线观看| 国产私拍福利视频在线观看| 巨乳人妻的诱惑在线观看| 久久久久久免费高清国产稀缺| 在线国产一区二区在线| 色播亚洲综合网| 亚洲精品国产精品久久久不卡| 国产精品日韩av在线免费观看| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 成人欧美大片| 老司机午夜十八禁免费视频| 午夜亚洲福利在线播放| 亚洲中文av在线| 久久久水蜜桃国产精品网| 丝袜美腿诱惑在线| 夜夜夜夜夜久久久久| 久久国产精品人妻蜜桃| 成人欧美大片| 国产高清videossex| 午夜精品久久久久久毛片777| 日日干狠狠操夜夜爽| 我要搜黄色片| 九九热线精品视视频播放| a级毛片a级免费在线| 一边摸一边抽搐一进一小说| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 欧美成狂野欧美在线观看| 九色国产91popny在线| 国产精品久久久久久久电影 | 99热这里只有精品一区 | 国产在线观看jvid| 在线a可以看的网站| 韩国av一区二区三区四区| 国产午夜精品论理片| 黑人欧美特级aaaaaa片| 日韩国内少妇激情av| 国产在线观看jvid| 日本一二三区视频观看| 国产又黄又爽又无遮挡在线| 国产亚洲精品综合一区在线观看 | 日韩欧美一区二区三区在线观看| 中文亚洲av片在线观看爽| 熟妇人妻久久中文字幕3abv| 制服人妻中文乱码| 久久久久久久久免费视频了| 特大巨黑吊av在线直播| 中文在线观看免费www的网站 | 中国美女看黄片| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 伊人久久大香线蕉亚洲五| 欧美一区二区精品小视频在线| 一本大道久久a久久精品| 亚洲免费av在线视频| 黄片大片在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 91老司机精品| 亚洲专区国产一区二区| 欧美+亚洲+日韩+国产| 国产野战对白在线观看| 久久精品国产综合久久久| 亚洲国产精品久久男人天堂| 真人一进一出gif抽搐免费| 很黄的视频免费| 男插女下体视频免费在线播放| 午夜老司机福利片| 国产在线精品亚洲第一网站| 亚洲av成人一区二区三| 91九色精品人成在线观看| 欧美绝顶高潮抽搐喷水| 91字幕亚洲| 一进一出好大好爽视频| 久久久久久大精品| 精品欧美国产一区二区三| 99热6这里只有精品| a在线观看视频网站| 天堂动漫精品| 一进一出好大好爽视频| 欧美av亚洲av综合av国产av| 精品国产亚洲在线| 国内少妇人妻偷人精品xxx网站 | 国内少妇人妻偷人精品xxx网站 | 热99re8久久精品国产| 国产又黄又爽又无遮挡在线| 亚洲最大成人中文| 午夜日韩欧美国产| 九色国产91popny在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲五月天丁香| 免费看十八禁软件| 精品熟女少妇八av免费久了| 91麻豆av在线| 香蕉久久夜色| 免费在线观看影片大全网站| 日韩精品青青久久久久久| 婷婷精品国产亚洲av| 手机成人av网站| 91在线观看av| 欧美日韩精品网址| 又紧又爽又黄一区二区| 日本免费一区二区三区高清不卡| av在线天堂中文字幕| 成人三级做爰电影| 精品福利观看| 国内揄拍国产精品人妻在线| 国产亚洲欧美在线一区二区| 男女床上黄色一级片免费看| 村上凉子中文字幕在线| 亚洲全国av大片| 村上凉子中文字幕在线| 国产成人系列免费观看| 一区福利在线观看| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 桃红色精品国产亚洲av| 最近最新免费中文字幕在线| 亚洲一码二码三码区别大吗| 欧美日韩亚洲综合一区二区三区_| 成在线人永久免费视频| 久久久久久久午夜电影| a级毛片在线看网站| 欧美一级a爱片免费观看看 | 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| 婷婷精品国产亚洲av在线| 久久天堂一区二区三区四区| 18禁国产床啪视频网站| 在线观看一区二区三区| 久久久久久人人人人人| 久久久久久免费高清国产稀缺| 12—13女人毛片做爰片一| 国产一区二区在线观看日韩 | 国产一级毛片七仙女欲春2| 欧美黑人精品巨大| 久久亚洲真实| 色精品久久人妻99蜜桃| 黄色视频不卡| 久久精品影院6| 亚洲精品美女久久av网站| 国产一区二区激情短视频| 狠狠狠狠99中文字幕| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看 | 国产私拍福利视频在线观看| 俺也久久电影网| 久久久久国产一级毛片高清牌| 好男人在线观看高清免费视频| 日本 欧美在线| 俄罗斯特黄特色一大片| 成人午夜高清在线视频| 别揉我奶头~嗯~啊~动态视频| 国产69精品久久久久777片 | 亚洲一区中文字幕在线| 九九热线精品视视频播放| 99热这里只有精品一区 | 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 国产v大片淫在线免费观看| 一级毛片精品| 亚洲在线自拍视频| 欧洲精品卡2卡3卡4卡5卡区| 美女扒开内裤让男人捅视频| 99热这里只有是精品50| 精品少妇一区二区三区视频日本电影| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩高清专用| 久久伊人香网站| 国产熟女xx| 大型黄色视频在线免费观看| 亚洲欧美一区二区三区黑人| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 亚洲天堂国产精品一区在线| 老司机午夜福利在线观看视频| 最新美女视频免费是黄的| 免费观看精品视频网站| 又黄又爽又免费观看的视频| 日韩免费av在线播放| avwww免费| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 久久久久久久久中文| 午夜影院日韩av| 91av网站免费观看| 精品欧美一区二区三区在线| 国产精品电影一区二区三区| 国产高清videossex| 国内精品一区二区在线观看| 亚洲av中文字字幕乱码综合| 99久久99久久久精品蜜桃| 欧美日韩瑟瑟在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲乱码一区二区免费版| 国产高清视频在线观看网站| 18禁美女被吸乳视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩中文字幕国产精品一区二区三区| a在线观看视频网站| 国产精品一区二区免费欧美| 日本成人三级电影网站| 成人三级黄色视频| 国产伦人伦偷精品视频| 色av中文字幕| 免费一级毛片在线播放高清视频| 国模一区二区三区四区视频 | 2021天堂中文幕一二区在线观| 美女大奶头视频| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 1024视频免费在线观看| 久久久精品国产亚洲av高清涩受| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| 午夜福利欧美成人| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 午夜a级毛片| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 观看免费一级毛片| 国内精品一区二区在线观看| 中文亚洲av片在线观看爽| 欧美日韩国产亚洲二区| 精品少妇一区二区三区视频日本电影| 国产高清激情床上av| 亚洲九九香蕉| 欧美3d第一页| 全区人妻精品视频| 最近最新免费中文字幕在线| 手机成人av网站| 免费在线观看完整版高清| 久久久国产成人免费| 免费观看精品视频网站| 在线十欧美十亚洲十日本专区| 变态另类成人亚洲欧美熟女| 国产精品久久久av美女十八| 最好的美女福利视频网| videosex国产| 后天国语完整版免费观看| 特大巨黑吊av在线直播| 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 欧美在线黄色| 久久午夜亚洲精品久久| 中文字幕高清在线视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 日韩欧美一区二区三区在线观看| www.999成人在线观看| 日本 欧美在线| 久久热在线av| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 亚洲黑人精品在线| 成人国产综合亚洲| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| 九色成人免费人妻av| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影| 午夜视频精品福利| 国内少妇人妻偷人精品xxx网站 | 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 舔av片在线| 狠狠狠狠99中文字幕| 日韩大尺度精品在线看网址| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 国产97色在线日韩免费| 午夜影院日韩av| 精品一区二区三区四区五区乱码| 国产三级中文精品| 精品久久久久久久末码| 久久久国产成人精品二区| √禁漫天堂资源中文www| 怎么达到女性高潮| 欧美一区二区国产精品久久精品 | 一级片免费观看大全| 老司机在亚洲福利影院| 亚洲 欧美一区二区三区| 午夜精品一区二区三区免费看| 91成年电影在线观看| 中文亚洲av片在线观看爽| 亚洲av五月六月丁香网| 一二三四在线观看免费中文在| 中文字幕高清在线视频| 天堂av国产一区二区熟女人妻 | 久久久久国产一级毛片高清牌| 亚洲色图 男人天堂 中文字幕| 好男人在线观看高清免费视频| 一本一本综合久久| 精品欧美国产一区二区三| 一本久久中文字幕| 嫁个100分男人电影在线观看| 日日干狠狠操夜夜爽| 国内毛片毛片毛片毛片毛片| 国产黄色小视频在线观看| 老鸭窝网址在线观看| 1024视频免费在线观看| a级毛片在线看网站| 一个人免费在线观看电影 | 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9| 日韩欧美在线乱码| av福利片在线观看| 91大片在线观看| 黑人欧美特级aaaaaa片| 中文字幕久久专区| 免费一级毛片在线播放高清视频| 成人一区二区视频在线观看| 精品久久久久久久久久久久久| 美女扒开内裤让男人捅视频| 欧美色欧美亚洲另类二区| 狂野欧美激情性xxxx| 午夜成年电影在线免费观看| 正在播放国产对白刺激| 免费看十八禁软件| 1024手机看黄色片| 精品久久久久久久人妻蜜臀av| 757午夜福利合集在线观看| 亚洲全国av大片| 日韩欧美三级三区| 国产av不卡久久| av超薄肉色丝袜交足视频| 欧美色欧美亚洲另类二区| 欧美久久黑人一区二区| 50天的宝宝边吃奶边哭怎么回事| 国产av麻豆久久久久久久| 国产伦一二天堂av在线观看| 日本黄色视频三级网站网址| 日本免费一区二区三区高清不卡| 日韩免费av在线播放| 男女下面进入的视频免费午夜| 精品久久久久久久毛片微露脸| 51午夜福利影视在线观看| 1024视频免费在线观看| 久久久久性生活片| 国产99久久九九免费精品| 中文字幕久久专区| 欧美又色又爽又黄视频| 丰满人妻一区二区三区视频av | 美女午夜性视频免费| 午夜福利免费观看在线| 这个男人来自地球电影免费观看| www国产在线视频色| 天堂影院成人在线观看| 岛国在线观看网站| 国产精品98久久久久久宅男小说| 老汉色∧v一级毛片| 一区福利在线观看| 国产黄色小视频在线观看| av福利片在线| 国产1区2区3区精品| ponron亚洲| 国产免费av片在线观看野外av| 国产成人影院久久av| 少妇的丰满在线观看| 国产亚洲精品一区二区www| 美女午夜性视频免费| 久久久久九九精品影院| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 亚洲成av人片在线播放无| 999精品在线视频| 久久人人精品亚洲av| 亚洲人成77777在线视频| 美女 人体艺术 gogo| 中文字幕高清在线视频| 亚洲全国av大片| 九色成人免费人妻av| 禁无遮挡网站| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 变态另类丝袜制服| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 宅男免费午夜| 在线观看日韩欧美| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 久久中文字幕人妻熟女| 久久久久久久久免费视频了| 一级a爱片免费观看的视频| av福利片在线| 成年版毛片免费区| 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 久久伊人香网站| 一区二区三区激情视频| 久久精品影院6| 老司机福利观看| 国产亚洲精品久久久久久毛片| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 亚洲 欧美 日韩 在线 免费| 天天添夜夜摸| 精品久久久久久久久久免费视频| 午夜福利在线在线| 精品国产乱码久久久久久男人| 老司机福利观看| 国产一级毛片七仙女欲春2| 精品久久久久久久毛片微露脸| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 村上凉子中文字幕在线| 国产精品久久视频播放| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 中文字幕精品亚洲无线码一区| 欧美激情久久久久久爽电影| 久久中文看片网| 亚洲欧美激情综合另类| 日本成人三级电影网站| 男女床上黄色一级片免费看| 久久香蕉激情| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线| 午夜免费激情av| 99久久99久久久精品蜜桃| 久久精品国产清高在天天线| 日韩高清综合在线| 怎么达到女性高潮| 2021天堂中文幕一二区在线观| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| ponron亚洲| 午夜福利在线观看吧| 久久人妻av系列| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 亚洲一区二区三区不卡视频| 在线免费观看的www视频| 日本一区二区免费在线视频| 精品久久久久久久人妻蜜臀av| 午夜福利欧美成人| 一级作爱视频免费观看| 国产熟女xx| 国产精品一及| 久久这里只有精品19| 三级男女做爰猛烈吃奶摸视频| 国产三级黄色录像| 亚洲第一电影网av| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久av网站| xxxwww97欧美| 变态另类成人亚洲欧美熟女| 哪里可以看免费的av片| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 亚洲精品av麻豆狂野| 久久这里只有精品中国| 99热6这里只有精品| 婷婷精品国产亚洲av| 国产精品av久久久久免费| 窝窝影院91人妻| 岛国视频午夜一区免费看| 99热这里只有精品一区 | 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 最近视频中文字幕2019在线8| 久久久久久久久免费视频了| 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | 久久中文字幕一级| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 久热爱精品视频在线9| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 久久久久性生活片| 一区二区三区高清视频在线| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 欧美精品亚洲一区二区| 一夜夜www| 中文字幕av在线有码专区| 老汉色av国产亚洲站长工具| 法律面前人人平等表现在哪些方面| 日韩欧美 国产精品| 色精品久久人妻99蜜桃| 看黄色毛片网站| 亚洲av美国av| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 日韩有码中文字幕| 久热爱精品视频在线9| 制服丝袜大香蕉在线| 亚洲 欧美一区二区三区| 在线永久观看黄色视频| 性欧美人与动物交配| 少妇粗大呻吟视频| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 成人国语在线视频| 一区二区三区高清视频在线| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 免费高清视频大片| xxx96com| 宅男免费午夜| 欧美国产日韩亚洲一区| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 日本五十路高清| 很黄的视频免费| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 久久久久久九九精品二区国产 | 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 看片在线看免费视频| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 国产欧美日韩精品亚洲av| 久久久精品大字幕| 亚洲av成人av| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 国产又黄又爽又无遮挡在线| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 亚洲 国产 在线| 国产成人av教育| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| av超薄肉色丝袜交足视频| av福利片在线观看| 1024视频免费在线观看| 黑人巨大精品欧美一区二区mp4| 麻豆av在线久日| 在线观看66精品国产| 国产高清有码在线观看视频 | 亚洲一区中文字幕在线| 免费人成视频x8x8入口观看|