• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Volatile Chemicals of Longjing Tea from Different Production Locations Using Electronic Nose

    2013-12-13 06:30:54DeSongTangCunAoShuYingGongYingBinZhangZhiLeiGu
    茶葉 2013年4期

    De-Song Tang,Cun Ao,Shu-Ying Gong* ,Ying-Bin Zhang,Zhi-Lei Gu

    1.Tea Research Institute,Zhejiang University,Hangzhou 310058,China.

    2.Key Laboratory of Horticultural Plants Growth,Development and Biotechnology,Agricultural Ministry of China,Hangzhou 310058,China.

    1.Introduction

    During the last few years,electronic noses (E-nose)has been developed and applied for classification and prediction purposes by monitoring the flavour of several food products[1-5].But as comparison with conventional aroma analysis methods,e.g.GC-MS,E-nose give an overall response to a mixture without identifying the single components[6,7].How to get chemical information of volatile compounds related to E-nose response became the focus of research recently.

    Some reports related the E-nose response to the exogenous standard chemicals added into the study materials,such as relating the response of E-nose to the reference wine with added off-flavour compounds[8],differentiating the rice extrudates with various volatile compounds of Mesona Blumes gum contents[9]and detecting the key aromas peculiar of different stages of the bread baking process using standard chemicals[10].In this kind of studies,the studied materials were not remained in their origrinal conditions.

    To obtain the information of internal compounds response on the E-nose sensors might be better in accessing the actual relations between the E-nose and the aroma compounds.Lee,Kim,Sohn,& Yang[11]isolated and identified characteristic fragrant and sweet aroma compounds from red ginseng,which was significantly correlated with either the SY/LG sensor response or the SY/AA sensor response of electronic nose at 1%level;Solis-Solis et al[12]isolated the free aroma compounds from eight varieties of apricots by liquid-liquid extraction and solid phase microextraction,and identified by gas chromatography-mass spectroscopy,which served to recognize and classify all the analyzed varieties.In these studies,separation techniques were used to seek the chemical components responsible for the discrimination by E-nose,but it was difficult to employ these methods in application of on-line analysis.García-González et al[13]provided a good solution to chemical understanding of the sensor signals and to determine volatile compounds which played a major role in contributing to the responses of E-nose by coupling E-nose response to gas chromatography.In that study,the volatiles of virgin olive oil were separated prior they arrived the sensor chamber.It could quantify the individual contribution of volatile compounds to the E-nose sensor responses,but the problem of long sensor desorption time delayed with the chromatogram retention time remained to be solved.

    Direct relating the individual chemical to the response of E-nose is an alternative method which could provide information that individual chemical response on the E-nose sensors,but until now there is few reports on this point.Only Cimato et al[14]using a linear regression method to relate the E-nonse response to the chemical map of extra virgin olive oils obtained by HS-SPME/GC/MS,which assessed the E-nose response pattern that was related with six volatile compounds.In the present work,multianalysis and chemometrics technique were employed to analyse the E-nose and GC-MS data of Longjing tea produced in different locations,and the relations of each compound to the E-nose response was evaluated in order to determine the key compounds which play an important role in discriminating Longjing tea according to the geographical locations by E-nose analysis.

    2.Experimental

    2.1.Materials

    Longjing tea samples with the quality of superfine grade,made from the same plant variety,namely,Longjing43,were collected from five production locations in Zhejiang province,China:Longjingcun(LJC),Meijiawu(MJW),Shangmanlong(SMJL),Jingling(JL)and Xinchang(XC).

    2.2.E-nose analysis

    The tea samples were ground and passed through a 28-mesh sift.Then 0.50 g ground tea powder was placed into a 10 mL vial and 0.75 mL distilled water was added.The vial was incubated in a water bath at 35℃ for 15 min,and 2 mL of headspace gas of the flask was extracted using a syringe for analysis.

    An Alpha FOX 4000 E-nose(MOS Toulouse,F(xiàn)rance)system was employed in this experiment.The system equipped with 18 metal oxide semiconductor gas sensors.The multi-sensor array was interfaced with a computer and the system was controlled by AlphaSoft software 2004(Version 9.0).The operation parameters were as follows:acquisition time,120 s;acquisition period,1.0 s;acquisition delay,300 s;flow rate,150 ml/min;injection volume,2000 μL;and injection speed,2000 μL/s.

    2.3.GC-MS analysis

    The volatile components of Longjing tea samples were collected using solid-phase microextraction(65 μm,PDMS/DVB,Supel)and determined by gas chromatography(Agilent 6890)coupled to quadrupolar mass-selective spectrometry(HP 5973,Agilent Technologies,USA,USA).Analytes were separated on a INNOWAX column(30 m ×0.32 mm,0.5 μm film thickness).The oven temperature was initially held at 50℃ for 5 min.For the first ramp,the temperature was increased to 220℃ at a speed of 3℃·min-1,in the second to 240℃ at 10℃·min-1,then held for 5 min.The operations conditions of HP Mass Spectrometer were as follows:The ion source and the transfer line were set to 230℃ and 250℃,respectively;ion source temperature,250℃;interface temperature,230℃;electron impact(EI)energy,70 eV;voltage,200V;mass range m/z,35-540 and scanning speed 1000 amu/s.

    Identification of volatile components was confirmed by comparison of collected mass spectra with those of authenticated standards and spectra of the National Institute for Standards and Technology(NIST)mass spectral library and Wiley mass spectral library(version6.0).

    2.4.Data analysis

    For discrimination of the tea samples according to the production location,the methods of principal component analysis(PCA)[6]and linear discriminant analysis(LDA)[15,16]were employed to reduce the dimensionality of data

    where TEis the false classified patterns and T is the total number of test patterns.

    Differences among the volatile components of GC-MS data was determined by an overall ANOVA[19,20].And multiple comparison procedure(MCP)[21,22]were performed to find the canonical variables that explain the maximum of variability among analyzed tea samples.

    In order to find the importance of each volatile component related to the response of the E-nose,the partial least squares regression(PLSR)[19,23]was performed among E-nose response(the independent variables)and the single chemical compounds(the dependent variables).The significant component was chosen by comparing the coefficient R2[24]from the PLSR regression model.

    The data preprocessing and analysis was performed using Matlab R2009b(The Mathworks,Natick,USA).

    3.Results and discussion

    3.1.Discrimination of Longjing tea according to production location by E-nose

    Fig.1.PCA plots of Longjing tea produced in different locations.

    set and classification.The method of 10-fold cross validation[17,18]was used for performance evaluation of classification the data of Longjing tea samples.The classification error rate(Err)for the experiment is calculated as following:

    For discrimination of the tea samples according to the production locations,the method of principal component analysis (PCA)was employed is to reduce the dimensionality of data set while retaining as much information as possible.The first significant component explains the largest percentage of the total variance,the second one,the second largest percentage,and so forth.Consequently the variables were compressed to get the most significant PCs scores.The corresponding score plot(Fig.1)shows the distribution in the discriminant space of the studied tea samples from different locations.This figure revealed a separation between the samples from different production locations.Teasamplesproduced in MJW and SMJL positioned on the left part of the graph,that is the negative part of PC1 axis,and the other samples from LJC,JL and XC were distributed in the positive part of the graph.The samples from Longjingcun located above those from Jingling and Xinchang.The 10-fold cross validation of discrimination performance showed that the error rate of classification obtained was 4%,which indicated that good discrimination of Longjing tea samples from different locations was obtained.

    3.2.Difference of volatile components among the tea samples from different locations

    A total of 38 peaks were commonly identified from the SPME-GC-MS of all the Longjing tea samples in this experiment,each compound was serially numbered according to the order of retention time(Fig.2).From a qualitative point of view,it could be observed that the profile of chromatogram varied greatly between the samples from different producing locations.The identified components were listed in Table1.There are 3 components dominated in the aroma of the tea samples from Longjingcun,namely linalool(No.12),cis-3-hexenyl hexanoate(No.17)and geraniol(No.31).Linalool(No.12)and geraniol(No.31)were in high content in all the samples from except that from XC.The compound cis-3-hexenyl hexanoate(No.17)was in high content in all the samples except that from SMJL.

    Fig.2.Chromatogram for Longjing tea samples from different producing area. (A)Longjingcun, (B)Meijiawu,(C)Shangmajuelong,(D)Jingling and(E)Xinchang.

    ANOVA and MCP analysis was performed on the SPME-GC-MSdata,themultcomparefunctionin Matlab displaysa graph with each group mean represented by a symbol and an interval around the symbol(Fig.3).The means are significantly different if their intervals are disjoint,and are not significantly different if their intervals overlapped.It is observed that significant differences exist for the compounds of cis-3-hexenylhexanoate (No.17)and isoamyl isovalerate(No.10),both are significantly differentfrom each other among the tea samples from 5 locations.It should be noticed that the components of isoamyl isovalerate(No.10)and 3-hexenyl-butyrate(No.8)are significant different but they are not the predominant components,these two compounds might be easily affected by the producing areas.Some other components were not significantly different among all the locations,such 3-hexenyl-butyrate(No.8)was not significantly different between the JL and XC,and no difference was found for linalool(No.12)between JL and LJC.

    Table1.The coefficient R2of the PLSR model for each identified chemicals.

    The volatile flavor compounds of Longjing tea samples varied due to their geographical locations,Owuor et al[25]pointed out that it was not possible to produce tea of the same quality even from the same cultivars when the production location was varied because of the difference in the quality parameters with locations.The difference in environmental conditions might lead to the variation of volatile components in composition[26].In this study,the multcomparison of GC-MS data indicated that not all the components were significantly different,it could be inferred that not all the volatile components were necessary employed to trace the geographic origin of Longjing tea by E-noses.

    3.3.Partial Least Squares Regression

    PLSR isonemethod tomodela response variable when there is a large number of predictor variables[19,27-30]. In this work,the PLSR was used to examine the relationships between E-nose response and each individual volatile component of Longjing tea.The significance of each component was evaluated by comparing the coefficient R2,the higher values indicated that the component has a tronger correlation with E-nose response,it plays a more important role in the PLSR model.In other words,it has a more contribution to the discrimination of Longjing tea according to the producing location by E-nose.This technique wasused to discriminatethe chemical component which responded more significantly on the E-nose sensors,it was possible to give complementary information concerning the E-nose response to the individual chemical component instead of the total volatile components.

    The contributing proportions R2calculated for each volatile component based on PLSR models ranged from 0.98 to 0.19(Table1).Itmeansthatidentified chemicals in tea aroma were not equal important in relating to the response of E-nose.R2value for isoamyl isovalerate(No.10),cis-3-hexenyl hexanoate(No.17),cadinene(No.25),phenylethylalcohol(No.33)and linalool(No.12)were higher than 0.80.These components play an important role in response on E-nose sensors.And isoamyl isovalerate(No.10)plays a more important role than cis-3-hexenyl hexanoate(No.17)though it has a smaller percentage content.It was interesting to find that the components of cadinene(No.25),phenylethylalcohol(No.33)and linalool(No.12)were significantly related to the E-nose response,even they were neither the predominant compound nor significantly different from each other in content.It means that the response of aroma of Longjing tea on the E-nose sensors were not consistent with the percentage of its content.

    Fig.3.Multcomparison of each identified volatile chemicals of Longjing tea samples from different producing area.The digits are the number of the identified chemicals and the capital letters following the digit are the producing areas:JL-Jingling,LJCLongjingcun,MJW-Meijiawu,SMJL-Shangmanlong,XC-Xinchang.

    The specific qualities and characteristics of agriculture products are linked with their geographical production location.The variations in environment and growing conditions are thought to cause variations in tea quality[25,26].Using chemometrics technolique such as PLSR analysis made it possible to identify the aroma compounds which plays an important role in discrimination of Longjing tea according to the producing areas using E-nose.

    4.Conclusion

    In this work,E-nose and SPME-GC-MS methods were employed in analysis of Longjing tea from different geographical locations.A good discrimination of Longjing tea samples was obtained by E-nose according to the producing area,and a total of 38 compounds were commonly identified from the SPME-GC-MS data.Each individual volatile component was related to E-nose response using PLSR and the significance of each component evaluated by the coefficient R2.It was found that the components isoamyl isovalerate,cis-3-hexenyl hexanoate,cadinene,phenylethylalcohol and linalool play an important role in response on E-nose sensors.

    Using chemometrics technique such as PLSR analysis made it possible to identify the aroma compounds which plays an important role in discrimination of Longjing tea according to the producing areas.And it was possible to give complementary information concerning the individual chemicals interacts with the sensors of E-nose instead of the total volatile components.

    Acknowledgement

    The authors acknowledge the financial support from the China Agriculture(tea)Research System(CARS),Chinese UniversitiesScientific Fund and Scientific Research ProjectofZhejiang Education Department(Y201018805).

    Reference

    1.Santos JP,Arroyo T,Aleixandre M,Lozano J,Sayago I,García M,F(xiàn)ernández MJ,Arésa L,Gutiérrez J,Cabellos JM,Gil M,Horrillo MC.A comparative study of sensor array and GC-MS:application to Madrid wines characterization.Sensors and Actuators B,Chemical,2004,102(2):299-307.

    2.Yu H,Wang J.Discrimination of LongJing green-tea grade by electronic nose.Sensors and Actuators B,2007,122:134-140.

    3.Dutta R,Kashwanb KR,Bhuyanb M,Hines EL,Gardner JW.Electronic nose based tea quality standardization.Neural Networks,2003,16:847-853.

    4.Gómez AH,Hu G,Wang J,Pereira AG.Evaluation of tomato maturity by electronic nose.Computers and Electronics in Agriculture,2006,54:44-52.

    5.Wang B,Xu S,Sun DW.Application of the electronic nose to the identification of different milk flavorings.Food Research International,2010,43:255-262.

    6.Perisa M,Escuder-Gilabert L.A 21st century technique for food control:Electronic noses.Analytica Chimica Acta,2009,638:1-15.

    7.Cevoli C,Cerretani L,Gori A,Caboni MF,Toschi TG,F(xiàn)abbri A.Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds.Food Chemistry,2011,129:1315-1319.

    8.Ragazzo-Sanchez JA,Chalier P,Ghommidh C.Couplinggaschromatography and electronicnose for dehydration and desalcoholization of alcoholized beverages:Application to off-flavour detection in wine.Sensors and Actuators B:Chemical,2005,106(1):253-257.

    9.Feng T,Zhuang H,Ye R,Jin Z,Xu X,Xie Z.Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose.Sensors and Actuators B:Chemical,2011,160(1):964-973.

    10.Ponzoni A,Depari A,F(xiàn)alasconi M,Comini E,F(xiàn)lammini A,Marioli D,Taroni A,Sberveglieri G.Bread baking aromas detection by low-cost electronic nose.Sensors and Actuators B,2008,130:100-104.

    11.Lee SK,Kim JH,Sohn HJ,Yang JW.Changes in aromacharacteristics during the preparation of red ginseng estimated by electronic nose,sensory evaluation and gas chromatography/mass spectrometry.Sensors and Actuators B:Chemical,2005,106(1):7-12.

    12.Solis-Solis HM,Calderon-Santoyo M,Gutierrez-Martinez P,Schorr-Galindo S,Ragazzo-Sanchez JA.Discrimination of eightvarieties of apricot(Prunusarmeniaca)by electronic nose,LLE and SPME using GC-MS and multivariate analysis.Sensors and Actuators B:Chemical,2007,125(2):415-421.

    13.García-González DL,Aparicio R.Coupling MOS sensors and gas chromatography to interpret the sensor responses to complex food aroma:Application to virgin olive oil.Food Chemistry,2010,120(2):572-579.

    14.Cimato A,Monaco DD,Distante C,Epifani M,Siciliano P,Taurino AM,Zuppa M,Sani G.Analysis of single-cultivar extra virgin olive oils by means of an Electronic Nose and HS-SPME/GC/MS methods.Sensors and Actuators B:Chemical,2006,114:674-680.

    15.Rezzi S,Axelson DE,Héberger K,Reniero F,Mariani C,Guillou C.Classification of olive oils using high throughput flow 1H NMR fingerprinting with principal component analysis,linear discriminant analysis and probabilistic neural networks.Analytica Chimica Acta,2005,552:13-24.

    16.Ramadan Z,Mulholland M,Hibbert DB.Classification of detectors for ion chromatography using principal components regression and linear discriminant analysis.Chemometrics and Intelligent Laboratory Systems,1998,40:165-174.

    17.Cawley GC,Talbot NLC.Ecient leave-one-out cross-validation of kernel Fisher discriminant classi'ers.Pattern Recognition,2003,36:2585-2592.

    18.Lehmann C,Koenig T,Jelic V,Prichep L,John RE,Wahlund LO,Dodge Y,Dierks T.Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity(EEG)Journal of Neuroscience Methods,2007,161:342-350.

    19.Aishima T.Correlating sensory attributes to gas chromatography-mass spectrometry profiles and e-nose responses using partial least squares regression analysis.Journal of Chromatography A,2004,1054(1-2):39-46.

    20.Marin-Galiano M,Kunert J.Comparison of ANOVA with the Tobitmodel for analysing sensory data.Food Quality and Preference,2006,17(3-4):209-218.

    21.St-Pierre F,Achim A,Stevanovic T.Cmposition of ethanolic extracts of wood and bark from Acer saccharum and Betula alleghaniensis trees of different vigor classes.Industrial Crops and Products,2013,41:179-187.

    22.Pizarro JN,Guerrero E,Galindo PL.Multiple comparison procedures applied to model selection.Neurocomputing,2002,48(1-4):155-173.

    23.Branden KV,Hubert M.Robustness properties of a robust partial least squares regression method.Analytica Chimica Acta,2004,515(1):229-241.

    24.Farahani HA,Rahiminezhad A,Same L,Immannezhad K.A comparison of Partial Least Squares(PLS)and Ordinary Least Squares(OLS)regressions in predicting of couples mental health based on their communicational patterns.Procedia Social and Behavioral Sciences,2010,5:1459-1463.

    25.Owuor PO,Wachira FN,Ng'etich WK.Influence of region of production on relative clonal plain tea quality parameters in Kenya.Food Chemistry,2010,119:1168-1174.

    26.Owuor PO,Obanda M,Nyirenda HE,Mandala WL.Influence of region of production on clonal black tea chemical characteristics.Food Chemistry,2008,108(1):263-271.

    27.Santonico M,Bellincontro A,Santis DD,Natale CD,Mencarelli F.Electronicnose to studypostharvestdehydration of winegrapes.Food Chemistry,2010,121:789-796.

    28.Song S,Zhang X,Hayat K,Jia C,Xia S,Zhong F,Xiao Z,Tian H,Niu Y.Correlating chemical parameters of controlled oxidation tallow to gas chromatography-mass spectrometry profiles and e-nose responses using partial least squares regression analysis.Sensors and Actuators B:Chemical,2010,147:660-668.

    29.O'Sullivan MG,Byrne DV,Jensen MT,Andersen HJ,Vestergaard J.Acomparison of warmed-over flavour in pork by sensory analysis,GC/MS and the electronic nose.Meat Science,2003,65(3):1125-1138.

    30.Lerma NLD,Bellincontro A,Mencarelli F,Moreno J,Peinado RA.Use of electronicnose,validated by GC-MS,to establish the optimumoff-vine dehydration time of wine grapes.Food Chemistry,2012,130:447-452.

    成人亚洲精品av一区二区| 精品国内亚洲2022精品成人| 老女人水多毛片| 国产av一区在线观看免费| 午夜福利成人在线免费观看| 精品久久久久久久久久久久久| 色尼玛亚洲综合影院| 亚洲av电影不卡..在线观看| 婷婷丁香在线五月| 国产成人av教育| 啪啪无遮挡十八禁网站| 麻豆国产97在线/欧美| 精品国产三级普通话版| 在线天堂最新版资源| 波野结衣二区三区在线| 赤兔流量卡办理| 在线观看一区二区三区| 精品福利观看| 国产欧美日韩精品一区二区| 久久精品国产99精品国产亚洲性色| 夜夜爽天天搞| 哪里可以看免费的av片| 精品久久久久久,| h日本视频在线播放| 美女被艹到高潮喷水动态| 亚洲人成伊人成综合网2020| 18禁裸乳无遮挡免费网站照片| 欧美性猛交╳xxx乱大交人| 好男人电影高清在线观看| 欧美精品啪啪一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产麻豆成人av免费视频| 99国产精品一区二区蜜桃av| 日本黄色视频三级网站网址| 欧美+日韩+精品| 男女那种视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 美女cb高潮喷水在线观看| 综合色av麻豆| 国产主播在线观看一区二区| 两个人的视频大全免费| 亚洲av二区三区四区| 看黄色毛片网站| 日本一本二区三区精品| 久久精品国产99精品国产亚洲性色| 最后的刺客免费高清国语| 真人做人爱边吃奶动态| 熟女电影av网| 天堂网av新在线| 99久国产av精品| 欧美成狂野欧美在线观看| 俺也久久电影网| 日本a在线网址| 亚洲综合色惰| 中文字幕av成人在线电影| 麻豆久久精品国产亚洲av| 日本五十路高清| 欧美bdsm另类| av在线天堂中文字幕| 男插女下体视频免费在线播放| 日韩欧美精品免费久久 | 欧美性猛交黑人性爽| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 国产精品久久电影中文字幕| 如何舔出高潮| 天堂网av新在线| 中文字幕av在线有码专区| 国产午夜精品论理片| 亚洲专区国产一区二区| 日本成人三级电影网站| 网址你懂的国产日韩在线| 婷婷亚洲欧美| 国产黄片美女视频| 一进一出抽搐gif免费好疼| 国产av在哪里看| 一级a爱片免费观看的视频| 午夜免费成人在线视频| 人人妻人人澡欧美一区二区| 精品国产亚洲在线| 两个人的视频大全免费| 97碰自拍视频| 男女做爰动态图高潮gif福利片| 一区福利在线观看| 亚洲欧美日韩无卡精品| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 91麻豆精品激情在线观看国产| 97超视频在线观看视频| 在线免费观看的www视频| 国产成人av教育| 丝袜美腿在线中文| 禁无遮挡网站| 在线看三级毛片| 亚洲第一电影网av| 精品久久久久久久人妻蜜臀av| 内射极品少妇av片p| 看十八女毛片水多多多| 女同久久另类99精品国产91| 91字幕亚洲| 亚洲专区中文字幕在线| 国产精品久久久久久亚洲av鲁大| 丁香欧美五月| 97人妻精品一区二区三区麻豆| 色噜噜av男人的天堂激情| 亚洲乱码一区二区免费版| 国产蜜桃级精品一区二区三区| 久久人人爽人人爽人人片va | 99视频精品全部免费 在线| 久久久久国产精品人妻aⅴ院| 熟女电影av网| 亚洲精品亚洲一区二区| 此物有八面人人有两片| 欧美+亚洲+日韩+国产| h日本视频在线播放| 国产免费一级a男人的天堂| 国产免费一级a男人的天堂| 日韩免费av在线播放| 亚洲自拍偷在线| av国产免费在线观看| 免费av不卡在线播放| 国产精品av视频在线免费观看| 成年女人永久免费观看视频| 综合色av麻豆| 国产精品久久视频播放| 欧美黄色淫秽网站| 国产欧美日韩精品一区二区| 午夜两性在线视频| 黄片小视频在线播放| 亚洲三级黄色毛片| 757午夜福利合集在线观看| 久久热精品热| 丰满的人妻完整版| 国产精品三级大全| 亚洲国产精品成人综合色| 久久九九热精品免费| 麻豆国产av国片精品| 麻豆av噜噜一区二区三区| 精品午夜福利视频在线观看一区| netflix在线观看网站| 在线天堂最新版资源| www日本黄色视频网| 日本精品一区二区三区蜜桃| 亚洲综合色惰| 91久久精品国产一区二区成人| 麻豆av噜噜一区二区三区| 亚洲中文日韩欧美视频| 国产高潮美女av| 天堂动漫精品| 十八禁人妻一区二区| 久久草成人影院| 国产免费男女视频| 亚洲国产精品999在线| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 久久精品人妻少妇| 精品午夜福利在线看| 在线观看午夜福利视频| 欧美极品一区二区三区四区| 中文资源天堂在线| 国产爱豆传媒在线观看| 美女高潮喷水抽搐中文字幕| 性色av乱码一区二区三区2| 男人和女人高潮做爰伦理| 18禁黄网站禁片午夜丰满| 91麻豆av在线| 国产av一区在线观看免费| 日韩国内少妇激情av| 久久香蕉精品热| 久久亚洲精品不卡| 久久久精品欧美日韩精品| 嫁个100分男人电影在线观看| 欧美中文日本在线观看视频| 中文字幕av在线有码专区| .国产精品久久| 久久精品久久久久久噜噜老黄 | 内射极品少妇av片p| 午夜免费成人在线视频| 久久久久久国产a免费观看| 禁无遮挡网站| av女优亚洲男人天堂| 亚洲av不卡在线观看| 日日摸夜夜添夜夜添av毛片 | 国产午夜福利久久久久久| 国产主播在线观看一区二区| 国产三级黄色录像| 久久久色成人| 国产 一区 欧美 日韩| 一个人看的www免费观看视频| 永久网站在线| 黄色女人牲交| 免费在线观看成人毛片| 97超级碰碰碰精品色视频在线观看| 精品午夜福利视频在线观看一区| 久久久久免费精品人妻一区二区| 欧美日韩综合久久久久久 | 久久久久久久久中文| 动漫黄色视频在线观看| 日本五十路高清| 亚洲18禁久久av| 一区二区三区免费毛片| 国内精品久久久久久久电影| 亚洲在线观看片| av天堂中文字幕网| 午夜免费成人在线视频| 九色成人免费人妻av| 免费大片18禁| 午夜福利在线观看吧| 亚洲第一欧美日韩一区二区三区| 国产在线男女| 999久久久精品免费观看国产| 高清日韩中文字幕在线| 欧美成人a在线观看| 国产亚洲精品久久久com| 久久久色成人| 99热这里只有是精品50| 成人国产综合亚洲| 精品人妻1区二区| 色综合站精品国产| 99精品久久久久人妻精品| 又爽又黄a免费视频| 日韩国内少妇激情av| 精品人妻偷拍中文字幕| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影| 十八禁网站免费在线| 深爱激情五月婷婷| 国产精品久久视频播放| 久99久视频精品免费| 一本精品99久久精品77| 熟女电影av网| 99在线人妻在线中文字幕| 性色av乱码一区二区三区2| www.www免费av| 51国产日韩欧美| 中文字幕免费在线视频6| 精品国内亚洲2022精品成人| 熟女电影av网| 99视频精品全部免费 在线| 波多野结衣高清无吗| 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看| 免费人成视频x8x8入口观看| 熟女人妻精品中文字幕| 日本三级黄在线观看| 91在线观看av| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 一级毛片久久久久久久久女| 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 一级a爱片免费观看的视频| 国产精品女同一区二区软件 | 欧美日韩福利视频一区二区| 99热精品在线国产| 亚洲电影在线观看av| 日韩欧美三级三区| 全区人妻精品视频| 久久国产乱子免费精品| 免费人成视频x8x8入口观看| 久久精品国产亚洲av天美| 精品不卡国产一区二区三区| 亚洲av美国av| 免费观看的影片在线观看| 亚洲美女搞黄在线观看 | 欧美在线一区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 18禁黄网站禁片免费观看直播| 嫩草影院新地址| 性欧美人与动物交配| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 91在线精品国自产拍蜜月| 成年免费大片在线观看| 特级一级黄色大片| 3wmmmm亚洲av在线观看| 日韩av在线大香蕉| 女人被狂操c到高潮| 特级一级黄色大片| 久久这里只有精品中国| 深爱激情五月婷婷| 精品一区二区三区视频在线| 亚洲在线观看片| 欧美三级亚洲精品| 久久久久久久久大av| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 嫩草影视91久久| 免费看美女性在线毛片视频| 久99久视频精品免费| 91九色精品人成在线观看| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 成人特级黄色片久久久久久久| 天堂√8在线中文| 桃色一区二区三区在线观看| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| av在线蜜桃| 日韩欧美免费精品| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 午夜免费成人在线视频| 亚洲av一区综合| 亚洲第一欧美日韩一区二区三区| 婷婷亚洲欧美| 亚洲av免费在线观看| 亚洲精品久久国产高清桃花| 男女那种视频在线观看| 两个人的视频大全免费| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费| 久久精品国产自在天天线| 欧美成狂野欧美在线观看| 99热精品在线国产| 五月伊人婷婷丁香| 久久午夜福利片| 免费人成在线观看视频色| 午夜福利在线在线| 高清毛片免费观看视频网站| 美女被艹到高潮喷水动态| 亚洲国产精品sss在线观看| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| 久久久久亚洲av毛片大全| 日本免费a在线| 国产成人欧美在线观看| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9| 日韩欧美精品免费久久 | 色综合亚洲欧美另类图片| 性欧美人与动物交配| 一个人免费在线观看电影| 欧美日韩亚洲国产一区二区在线观看| av福利片在线观看| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 一本综合久久免费| 99久久精品热视频| 毛片女人毛片| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 免费观看精品视频网站| 国产男靠女视频免费网站| 毛片一级片免费看久久久久 | 亚洲精品影视一区二区三区av| 老女人水多毛片| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 一本精品99久久精品77| 国产爱豆传媒在线观看| 日韩欧美免费精品| 天堂影院成人在线观看| 久久精品人妻少妇| 夜夜爽天天搞| 国产欧美日韩精品一区二区| 亚洲美女黄片视频| 久久午夜福利片| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 国产中年淑女户外野战色| 特级一级黄色大片| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 亚洲,欧美,日韩| 亚洲av.av天堂| 国产麻豆成人av免费视频| 成年版毛片免费区| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 国产三级中文精品| 中亚洲国语对白在线视频| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 一进一出抽搐动态| 亚洲欧美日韩东京热| 色播亚洲综合网| 日本在线视频免费播放| 12—13女人毛片做爰片一| 国产精品女同一区二区软件 | 婷婷丁香在线五月| 国产精品综合久久久久久久免费| 女人十人毛片免费观看3o分钟| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看| 日韩欧美国产在线观看| 嫩草影视91久久| 久久久久国内视频| 国产精品不卡视频一区二区 | 成人鲁丝片一二三区免费| 久久热精品热| 日韩欧美精品免费久久 | 丰满乱子伦码专区| 精品人妻一区二区三区麻豆 | 一本一本综合久久| 成人国产综合亚洲| 欧美一区二区亚洲| 99久久精品一区二区三区| 一级a爱片免费观看的视频| 国产淫片久久久久久久久 | 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 搡老熟女国产l中国老女人| 床上黄色一级片| 国产高清三级在线| 久久国产乱子伦精品免费另类| 亚洲人成电影免费在线| 中文亚洲av片在线观看爽| а√天堂www在线а√下载| 麻豆一二三区av精品| 国产欧美日韩一区二区三| 婷婷丁香在线五月| 精品人妻1区二区| 午夜精品久久久久久毛片777| 国产老妇女一区| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 亚洲国产欧美人成| 日本一本二区三区精品| 丰满的人妻完整版| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 日韩有码中文字幕| 日本黄大片高清| www.www免费av| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 在线播放无遮挡| 国产高清视频在线观看网站| 观看免费一级毛片| 高清日韩中文字幕在线| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 天美传媒精品一区二区| 91麻豆av在线| 亚洲美女黄片视频| 国产一区二区三区在线臀色熟女| 国产aⅴ精品一区二区三区波| 久久久成人免费电影| 色av中文字幕| 久久国产乱子免费精品| 直男gayav资源| 十八禁网站免费在线| 91在线观看av| 色精品久久人妻99蜜桃| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 男女做爰动态图高潮gif福利片| 午夜精品一区二区三区免费看| 亚洲狠狠婷婷综合久久图片| h日本视频在线播放| 男人和女人高潮做爰伦理| 午夜免费成人在线视频| 日本在线视频免费播放| 麻豆国产97在线/欧美| 欧美+日韩+精品| 亚洲精品久久国产高清桃花| 成人国产一区最新在线观看| 99热这里只有精品一区| 亚洲熟妇中文字幕五十中出| 国产成+人综合+亚洲专区| 久久天躁狠狠躁夜夜2o2o| 12—13女人毛片做爰片一| 性欧美人与动物交配| 亚洲激情在线av| a级一级毛片免费在线观看| 嫩草影院新地址| 亚洲国产高清在线一区二区三| 在线免费观看不下载黄p国产 | av在线天堂中文字幕| 黄色日韩在线| 麻豆成人午夜福利视频| 美女免费视频网站| 淫妇啪啪啪对白视频| 18禁在线播放成人免费| 欧美区成人在线视频| 午夜激情福利司机影院| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 天美传媒精品一区二区| 永久网站在线| 一级av片app| 亚洲av美国av| 成人永久免费在线观看视频| 男人的好看免费观看在线视频| av天堂在线播放| 老司机福利观看| 十八禁网站免费在线| 一个人看视频在线观看www免费| 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 亚洲无线在线观看| 国语自产精品视频在线第100页| 成人av在线播放网站| 18禁黄网站禁片免费观看直播| 亚洲av成人精品一区久久| 国内毛片毛片毛片毛片毛片| 夜夜看夜夜爽夜夜摸| 亚洲欧美激情综合另类| 色吧在线观看| 搡老熟女国产l中国老女人| 午夜老司机福利剧场| 日本五十路高清| 午夜久久久久精精品| 黄色视频,在线免费观看| 亚洲人成网站在线播放欧美日韩| 少妇人妻精品综合一区二区 | 人人妻,人人澡人人爽秒播| 日本免费一区二区三区高清不卡| 毛片女人毛片| 亚洲中文日韩欧美视频| 偷拍熟女少妇极品色| 91在线观看av| 一区二区三区四区激情视频 | 国产精品影院久久| 亚洲精品456在线播放app | 亚洲av电影在线进入| 一个人看视频在线观看www免费| 老鸭窝网址在线观看| 成年女人看的毛片在线观看| 午夜精品久久久久久毛片777| 亚洲 国产 在线| 首页视频小说图片口味搜索| 少妇被粗大猛烈的视频| av黄色大香蕉| av欧美777| 99热这里只有精品一区| 国产蜜桃级精品一区二区三区| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 日韩欧美在线乱码| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| 国模一区二区三区四区视频| 在线a可以看的网站| 真人一进一出gif抽搐免费| 国产精品影院久久| 如何舔出高潮| 久久久成人免费电影| 久久久精品大字幕| 亚洲无线在线观看| 老司机深夜福利视频在线观看| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 日韩欧美国产在线观看| 美女高潮喷水抽搐中文字幕| 美女被艹到高潮喷水动态| 欧美一区二区亚洲| 国语自产精品视频在线第100页| 青草久久国产| 久久精品人妻少妇| 免费看日本二区| 国产欧美日韩一区二区三| 亚洲三级黄色毛片| 乱人视频在线观看| 成人国产综合亚洲| 在线观看午夜福利视频| 1000部很黄的大片| 成年免费大片在线观看| 日本 av在线| 男女那种视频在线观看| 久久久久久大精品| 搞女人的毛片| 一边摸一边抽搐一进一小说| 亚洲成人久久性| 国产69精品久久久久777片| 国产高清激情床上av| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 欧美黑人巨大hd| 国产免费一级a男人的天堂| x7x7x7水蜜桃| 少妇丰满av| 久久久精品大字幕| 深爱激情五月婷婷| 在线观看66精品国产| 国产欧美日韩一区二区精品| 波多野结衣高清无吗| 精品日产1卡2卡| 波多野结衣高清作品| 国产熟女xx| 欧美xxxx黑人xx丫x性爽| ponron亚洲| 特大巨黑吊av在线直播| 丰满人妻一区二区三区视频av| 精品久久久久久久人妻蜜臀av| 岛国在线免费视频观看| 日韩中文字幕欧美一区二区| 99热6这里只有精品|