• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In Silico Analysis and Feeding Assays of Some Genes in the Early Steps of Terpenoid Biosynthetic Pathway in Camellia Sinensis

    2013-12-13 06:30:50WeiXiangYanXuFuMinWangLiPingGaoMingJunGaoZhengZhuZhangXiaoChunWanShuWei
    茶葉 2013年4期

    Wei Xiang,Yan Xu,F(xiàn)u-Min Wang,Li-Ping Gao,Ming-Jun Gao,Zheng-Zhu Zhang,Xiao-Chun Wan,Shu Wei*

    1.Key Laboratory of Tea Biochemistry and Biotechnology,Anhui Agricultural University,130 Changjiang Blvd West,Hefei,Anhui,230036,China.

    2.College of Life Sciences,Anhui Agricultural University,130 Changjiang Blvd West,Hefei,Anhui,230036,China.

    3.Agriculture and Agri-Food Canada,Saskatoon Research Center,Saskatoon,Saskatchewan,S7N 0X2,Canada.

    1.Introduction

    Tea(Camellia sinensis)is one of the most popular non-alcoholic beverages worldwide.Terpenoid volatiles,such as linalool and neriodiol,are crucial for the pleasant but distinctive scent in different teas[1,2].Additionally,terpenoid-derived photosynthetic pigments(carotenoids,chlorophylls,and plastoquinone)and regulatory hormones(cytokinins,abscisic acid,and strigolactones)should be involved directly and indirectly in the regulation of tea plant growth and shoot branching as shown in many other plants[3].

    Plant terpenoids are all derived from the plastidial methyl-erythritol-phosphate(MEP)pathway and the cytosolic mevalonate(MVA)pathway.The two,often viewed as the early steps of isoprenoid biosynthetic pathways[4],produce common building block of isopentenyl diphosphate(IPP)and its allylic isomer dimethylallyl diphosphate(DMAPP)[5,6].Subcellular compartmentalization of the MEP and MVA pathways leads to distinct sets of isoprenoid products[8],although some metabolic crosstalk between the two pathways exists[9].From the MVA pathway and its downstream reactions, sesquiterpenoids, sterols, and brassinosteroids are produced while gibberellins,monoterpenoids,photosynthetic pigments,abscisic acid and strigolactones are derived from MEP and plastidial terpenoid pathways[8]. The MVA and MEP pathways are comprised of six and eight enzymes,respectively[5].The homologs of these enzymes in the two pathways are found in various plant species[10],suggesting that both MVA and MEP pathways are highly conserved in plants(Fig.1).Thus,their conserved sequences could be used for identifying the tea homologs for dissecting the essential pathways in the plant.

    Multiple mechanisms that regulate the MEP and MVA pathways in plantshave been revealed.Genome-wide expression analyses indicate that transcriptional control plays a key role over the entire isoprenoid pathway network[11].Developmental and environmental regulation of transcription of the genes in the MVA and MEP pathways have been extensively studied.Transcription factors such as ORCA3 in Catharanthus roseus,play key role in controlling the gene expression[12].Moreover,metabolite feedback regulation of gene expression was also found in the two pathways in plants.Feeding of the sesquitepenoid farnesol to tobacco cell culture revealed that expression of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase(HMGR)in MVA pathway is metabolite mediated.In mycorrhizal maize roots,the expression of genes encoding DXP synthase(DXS)and DXP reductoisomerase(DXR)in MEP pathway is induced by apocarotenoids[13].However,the transcription regulation of the other genes in the two pathways by key metabolites such as the common precursor IPP and starting chemicals acetyl CoA and DXP remains unknown.

    In order to identify the main gene components in the MVA and MEP pathways in C.sinensis and learn their possible metabolite-mediated expression,we took advantage of quickly increased transcriptome data in C.sinensis[14]and obtained five complete and three partial transcript sequences of the genes in the MVA and MEP pathways from C.sinensis using the technology of rapid amplification of cDNA ends(RACE).In silico analyses of the genes with complete coding sequences were conducted.Moreover,feeding of precursor metabolites to leaf and cell cultures were also performed in vitro to study metabolite-mediated gene expression in the MEP and MVA pathways in C.sinensis.

    2.Materials and methods

    2.1.DNA sequence homology search

    Transcriptome and incomplete genome sequencing dada were obtained from C.sinensis cv.‘Longjing 43’[14]and‘Tie Guanyin’,respectively.Similarity searches using the preliminarily annotated genes in the terpenoid pathway as query sequences were performed against the database at the National Centre for Biotechnology Information(NCBI)with the BLASTX program with default parameters.Multiple alignments of the protein sequences were conducted using the on-line ClustalW2.Protein subcellular locations were prediction using TagetP

    Fig.1.Two distinct biosynthetic pathways for IPP and DMAPP biosynthesis in plants.

    2.2.cDNA cloning

    Total RNA was extracted from shoot tips of‘Longjing 43’plants using the QIAGEN RNeasy kit.DNase I was used for on-column DNA digestion to minimize genomic DNA contamination.First-strand cDNA was synthesized using a PrimeScript RT reagent kit(Takara)with 1 g total RNA.The full coding sequences of CsAACT,CsHMGS,CsCMK,and CsFPS were obtained by polymerase chain reactions(PCR),and 5'or 3'Rapid Amplification of cDNA Ends(RACE).The First Choice RLM-RACE Kit(Ambion)was used for RACE following the manufacturer's instructions.Briefly,for 5'and 3'RACE,five micrograms of total RNA was ligated to the RNA adapter and a random-primed reverse transcription reaction was performed to synthesize cDNA.A second round of PCR was carried out using a nested adapter primer and gene specific primers.The RACE and regular PCR products were cloned into the pGEM-T Easy vector(Promega)for sequencing.

    2.3.Callus,leaf disc cultures,and cell suspensions

    The elite tea cultivar‘Nong-Men-Kang’was used in this experiment.For callus induction,seeds were rinsed in 70%(v/v)ethanol for 1 min and then sterilized in 3%(v/v)NaClO for 15 min,followed by five washes with sterile distilled water.After removal of seed coats,seeds were slightly wounded across the surface using a scalpel blade and transferred to B5 solid medium supplemented with 30g/L sucrose,0.5mg/L 2,4-dichlorophenoxyacetic acid(2,4-D)and 0.1mg/L kinetin(KT),pH 5.7.Cultures were incubated at 25 1℃ in darkness,and subcultured every 2 weeks till callus formation.The obtained calli were transferred to liquid B5 medium with the same supplements as for callus induction,and the cell suspension cultures were incubated on a rotary shaker(100 rpm)at 25 1 C.Leaf-disc cultures were prepared using in vitro plantlets of C.sinensis as described by Iwase et al.(2005).

    2.4.Metabolite feeding

    Chemicals for metabolite feeding,acetyl-CoA,DXP,IPP and DMAPP,were analytical grade and purchased from Sigma.The compounds were fed to 2-week old cell suspension cultures at the linear growth phase(Choi et al.2006).Leaf discs were acclimated for 4 days in a liquid medium under a light intensity of 60 mol.m-2.s-1with a 12-hour photoperiod,and then transferred to the new media supplemented with the chemicals at a final concentration of 1.5 M(Kang et al.2006).

    2.5.Real-time quantitative PCR

    Cell suspension and leaf-disc samples were collected at 0h,0.5h,2h,4h,and 24h after metabolite feeding.Total RNA extraction,DNA contamination removal,and first-strand cDNA synthesis were conducted as described above for cDNA cloning.Primers used for real-time quantitative PCR(qPCR)assays were designed based on the identified cDNA sequences from C.sinensis using Primer Premier 5 program(Table1).The PCR mixture contained 10 μL of diluted cDNA(25ng),12.5 μL of SYBR Premix Ex Taq II(Takara),and 200 nM of each pair of gene-specific primers in a final volume of 25 μL.the qPCR were performed using a Bio-RAD iQ-5 Detection System under the following conditions:2 min at 50℃,10 min at 95℃,and 40 cycles of 15 s at 95℃ and 1 min at 55℃ in 96-well optical reaction plates.The specificity of amplicons was verified by melting curve analysis(55 to 95℃)after 40 cycles and by agarose gel electrophoresis as well.Glyceraldehyde-3-phosphate dehydrogenase(GAPDH)was used as the endogenous reference gene according to Sun et al.(2010).Transcript levels were normalized and calculated using the 2-ΔΔCtmethod.Three biological replicates for each treatment were used for the analysis.

    3.Results

    3.1.Identification of genes at the early steps of biosynthetic pathway for terpenoid production

    Based on the partial sequences derived from sequencing data as well as the preliminarily gene annotation,a total of seven genes in the early steps of terpenoid biosynthesis were found in C.sinences(Fig.1)(Supplementary Table2).Full coding sequences of CsAACT,CsHMGS,CsCMK,and CsFPS were obtained using PCR and RACE approaches.CsHDS coding sequence was retrieved from the NCBI database(Accession#JQ014629.1).

    Table1.Primers for quantitative PCR and expected product sizes.

    Table2.Primers used in this study for gene cloning.

    The deduced complete protein sequences of the five genes in C.sinences were compared with their functional homologs in other plants.For CsAACT gene,a deduced protein has 408 amino acid residues.Alignment of CsAACT with functional homologs from Arabidopsis and sunflower revealed that CsAACT shares 87% identity(94%similarity)with its homolog AtAACT 2(At5g48230),81%identity(92%)with AtAACT1(At5g47720)in Arabidopsis,and 81%identity(91%)with HaAACT(QC25419)in sunflower.All Arabidopsis and sunflower homologs of CsAACT were characterized as acetyl-CoA C-acetyltransferase[15,16].AtAACT2 can generates the bulk of the acetoacetyl-CoA required forthe cytosol-localized,mevalonate-derived isoprenoid biosynthesisin Arabidopsis[15].TargetP 1.1 program predicted that CsAACT did not contain any signal peptide,suggesting that it is likely localized in cytosol.These data indicate that CsAACT in tea plants should function as an acetyl-CoA C-acetyltransferase.CsAACT does not contain the tripeptide peroxisomal targeting sequence SKL at the C-terminus as found in the sunflower AACT[16].

    For CsHMGS,the full-length cDNA encodes a protein containing 464 amino acid residues.CsHMGS shares 86%identity in amino acid with its homolog in Brassica juncea(BjbHMGS1)(AAF69804.1),and 75%identity with Pinus sylvestris(PsHMGS)(CAA65250.1).The CsHMGS protein has the conserved active-site segment corresponding to G107through A125.Moreover,conserved residues C120,H250and N329that are essential for HMGS activity are also present in CsHMGS.

    For CsCMK,the full-length gene sequence encodes for a protein of 426 amino acid residues.Although studies on the crystal structures of CMKs in many species of bacteria such as Mycobacterium tuberculosis have clearly revealed the overall and catalytic pocket structure of the enzyme[17],the structure of the plant enzyme is not well characterized so far.In tomato the residues were proposed to represent a putative ATP binding site by Rohdich et al.(2000)[18].Accordingly,in the tea CsCMK the putative ATP binding site was found.

    For CsHDS,the deduced protein contains 741 amino acid residues.The plant proteins contain a signal sequence for plastid import,which has been shown to be functional in localizing the Arabidopsis homolog in chloroplast.Additionally,CsHDS and its homologs contain a large and functional insert domain(A*)besides a TIM barrel and a 4Fe4S domain,which are present in bacterial homologs[19].

    CsFPS gene encodes a protein consisting of 341 amino acid residues.A multiple alignment indicated that the tea CsFPS had 65.6%and 73.1%identity and 71.6%and 90.0%similarity with AtFPS1L(AAF44787)and AtFPS2(NP_193452)in Arabidopsis,respectively.CsFPS does not contain a NH2-terminal extension of 41 amino acid residues,which is a mitochondrial transit peptide in Arabidopsis AtFPS1L.CsFPS contains residues D93,D96,R101,R102,and D231which are highly conserved and crucial for the plant enzyme activity.

    3.2.Expression of the genes in MVA and MEP pathways in response to metabolite feeding

    Fig.2.Expression of some of tea genes in the MVA and MEP pathways after feeding with different precursor metabolites.

    The relative transcript level of the genes was quantified using quantitative real time PCR.The amplicons for all the genes examined in this study were highly specific,and verified by melting curve analysis and by agarose gel electrophoresis(data not shown).After feeding the tissues with the metabolite,the expression of the genes in both the MVA and MEP pathways were all induced to a different extent(Fig.2).Acetyl-CoA is the starting compound in the MVA pathway.Within half an hour after acetyl-CoA feeding to leaf discs,the expression of CsHMGS was increased by about 3-fold,compared to the non-feeding control(Fig.2A).The CsAACT expression changed slightly over the test period after feeding.In the cell suspension culture,the transcript level of CsAACT,and CsHMGS were increased by >1.5-and >3.0-fold,peaking at 0.5 hr and 4 hr after feeding,respectively(Fig.2B).Acetyl-CoA had the highest induction on the expression of CsHMGS in both leaf disc and cell cultures.

    In orderto examine the substrate effecton the gene transcription of the MEP pathway,DXP was fed to the cell and leafdisc cultures.Two hours after feeding,the expression of CsCMK and CsHDS was respectively increased by 1.8-and 1.6-fold(Fig.2C).In cell cultures,the transcript levels of CsCMK and CsHDS were increased>2.2-and 1.5-fold,peaking at 24 hr and 4 hr after feeding,respectively(Fig.2D).These results indicated that the DXP supplementation in leaf and cell cultures induced the expression of CsCMK and CsHDS in the MEP pathway,suggesting that these positive-feedback biochemical steps favor the metabolic flux down to IPP biosynthesis in the MEP pathway.

    3.3.Expression of CsFPS in response to the feeding of different precursors

    After feeding DXP,IPP or DMAPP to leaf disc cultures,the transcript level of CsFPS was increased by 2.0-,1.7-and 1.8-fold,and peaking at 4 hr,2 hr,and 4 hr,respectively.The transcript level of CsFPS was decreased at 2 hr after acetyl-CoA feeding(Fig.3A).In the cell culture,the transcript level of CsFPS was substantially increased(up to 1.8-fold)2 hr after DXP feeding.But it was decreased at different time after feeding of acetyl-CoA,IPP or DMAPP(Fig.3B).

    Fig.3.Transcription of CsFPS was affected with the addition of precursor metabolites acetyl-CoA,DXP,IPP,and DMAPP.

    4.Discussion

    In this study,the full coding sequences of CsAACT,CsHMGS,CsCMK,CsHDS and CsFPS,were obtained based on the transcriptome and genome sequencing data previously obtained from tea plants[14].In silico analyses indicated that all these genes have high identity with their functional homologs in some other plant species and share conserved motifs essential for their function.Additionally,the partial coding sequences of CsHMGR,CsDXR,and CsIDI were also obtained for further characterization.Thus the early steps of terpenoid biosynthesis pathway in C.sinensis began to reveal.However,some other genes in the MVA and MEP pathways such as CsMVK,PMK,CsPMD,and CsCMS were not identified in this study.In addition,it is known that plants often have multiple isoforms in a gene family.For example,Arabidopsis thaliana has three members of DXS family,and Hevea brasiliensis has two members of DXR.Isoforms of some genes identified in this study and other gene components are expected to be found when the sequencing program proceeds to have a better coverage of C.sinensis genome.

    In plants metabolite mediators can regulate gene expression[20],due to their capability to interact with some protein factors[21]and riboswitches which are complex folded RNA domains that serve as receptors for specific metabolites.Supplementation of precursor metabolites into in vitro culture media are often employed to study plant terpenoid metabolic flux regulation.In this study,expression of the identified genes in response to precursor metabolites fed to leaf and cell cultures was examined using a quantitative PCR approach.Our results show that for the MVA pathway,the expression of CsHMGS was enhanced due to the addition of the precursor acetyl-CoA in both callus and leaf cultures although it was unclear why the gene expression enhancement occurred hours earlier in leaf disc culture than in cell cultures.The expression of CsAACT was slightly affected by the addition of the precursor(Fig.3)while CsFPS responded unconspicuous to acetyl-CoA feeding,suggesting that different behaviors of the two genes to the addition of the same metabolite.

    In the MEP pathway,the expression of CsCMK and CsHDS in leaf disc and cell cultures was enhanced when DXP was added to the culture media(Fig.2C and D).These results suggested that the expression of some MEP genes is highly coordinated,which is firmly supported by the previous findings.FPS catalyzes the reaction where two molecules of IPP and one molecule of DMAPP are condensed to form one intermediate GPP and then the final product FPP.FPS enzyme has been found in cytoplasm,mitochondria,chloroplast,and peroxisome.In this study,CsFPS gene was induced in leaf disc cultures when fed with DXP,IPP and DMAPP.While in the cell culture,CsFPS expression increased in the response to the addition of DXP,but not IPP or DMAPP(Fig.3A and B).Our data suggested that the expression of CsFPS,encoding the cytosolic protein CsFPS,was enhanced by DXP,a metabolite of the plastidal MEP pathway.This is probably because DXP supplementation led to the increased production of IPP in the plastid,which could be further transported to the cytoplasm.This speculation is supported by the findings that metabolic‘crosstalk’between the MVA and MEP pathways exists,particularly from plastids to the cytosol.However,acetyl-CoA feeding did not affect the CsFPS transcript level in both leaf disc and cell cultures at majority of monitoring points.It might be because the amount of acetyl-CoA in tea cells or leaf tissue was not a limiting factor for the metabolic flux in MVA pathway whereas HMGR is usually considered as a limiting enzyme.It was noted that IPP and DMAPP induced transcription of CsFPS only in leaf cultures,not in cell culture(Fig.3B).Further studies will be carried out to find out the mechanisms underlying such a tissue dependent feeding response of CsFPS in C.sinensis.

    In this study CsAACT,CsHMGS,CsCMK,CsHDS,and CsFPS at the early steps of terpenoid biosynthetic pathway in C.sinensis have been proposed and their expression was found in the first time being metabolitemediated in different extents.Our results began to unravel the mechanisms that control the low terpenoid biosynthesis in C.sinensis.

    Table3.Genes in terpenoid metabolism in C.sinensis identified in this study.

    The authors are grateful to Drs Chaoling Wei and Hua Yang for providing the transcriptome data of C.sinensis.Prof.Rong-Fu Wang and Ms.Juan Li at the Biotechnological Center,Anhui Agricultural University offered their technical help.This work was funded by the National Science Foundation in China(#31070614 to S.Wei),the Research Fund for the Doctoral Program of Higher Education of The ministry of Education(#20123418110002,to S.Wei),the Program for Changjiang Scholars and Innovative Research Team in Universities(IRT1101 to Z.Z.Zhang)the"Twelfth Five-Year"National Key Basic Research and Development Project(973)in China(2012CB722903 to Xiao-Chun Wan).

    1.Schuh C,Schieberle P.Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea quantitative differences between tea leaves and infusion.Journal of Agricultural and Food Chemistry,2006,54:916-924.

    2.Yamanishi T.Tea flavor.In:Jain NK(ed)Global Advances in Tea Science.Aravalli Books International:New Delhi,India,1999,pp707-722.

    3.Hemmerlin A,Harwood JL,Bach TJ.A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis.Progress in Lipid Research,2012,51:95-148.

    4.Rodríguez-Concepción M.Early steps in isoprenoid biosynthesis:multilevel regulation of the supply of common precursors in plant cells.Phytochemistry Reviews,2006,5(1):1-15.

    5.McCaskill D,Croteau R.Isoprenoid synthesis in peppermint(Mentha x piperita):development of a model system for measuring flux of intermediates through the mevalonic acid pathway in plants.Biochemical Society Transactions,1995,23:290.

    6.Withers ST,Keasling JD.Biosynthesis and engineering of isoprenoid small molecules.Applied Microbiology and Biotechnology,2007,73:980-990.

    7.Vranov E,Coman D,Gruissem W.Structure and dynamics of the isoprenoid pathway network.Molecular Plant,2012,5:318-33.

    8.Laule O,F(xiàn) rholz A,Chang HS,Zhu T,Wang X,Heifetz PB,Gruissem W,Lange M.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.Proceedings of the National Academy of Sciences of the United States of America,2003,100:6866-8671.

    9.Lange BM,Rujan T,Martin W,Croteau R.Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes.Proceedings of the National Academy of Sciences of the United States of America,2000,97:13172-13177.

    10.Botella-Pav a P,Besumbes O,Phillips MA,Carretero-Paulet L,Boronat A,Rodríguez-Concepción M.Regulation of carotenoid biosynthesis in plants:evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.Plant Journal,2004,40:188-199.

    11.van der Fits L,Memelink J.ORCA3,a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism.Science,2000,289:295-297.

    12.Walter MH,F(xiàn)ester T,Strack D.Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate synthase pathway of isoprenoid biosynthesis correlated with accumulation of the yellow pigment and other apocarotenoids.Plant Journal,2000,21:571-578.

    13.Shi CY,Yang H,Wei CL,Oliver Y,Zhang ZZ,Jiang CJ,Sun J,Li YY,Chen Q,Xia T,Wan XC.Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds.BMC Genomics,2011,12:131.

    14.Jin H,Song Z,Nikolau BJ.Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development.Plant Journal,2012,70:1015-1032.

    15.Dyer JH,Anthony Maina A,Gomez ID,Cadet M,Oeljeklaus S,Schiedel AC.Cloning,expression and purification of an acetoacetyl CoA thiolase from sunflower cotyledon.International Journal of Biological Science,2009,5:736-744.

    16.Shan S,Chen X,Liu T,Zhao H,Rao Z,Lou Z.Crystal structure of 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase(IspE)from Mycobacterium tuberculosis.FASEB Journal,2011,25:1577-1584.

    17.Rohdich F,Wungsintaweekul J,Eisenreich W,Richter G,Schuhr CA,Hecht S,Zenk MH,Bacher A.Biosynthesis of terpenoids:4-diphosphocytidyl-2-C-methyl-d-erythritol synthase of Arabidopsis thaliana.Proceedings of the National Academy of Sciences of the United States of America,2000,97:6451-6456.

    18.Okada K,Hase T.Cyanobacterial non-mevalonate pathway-(E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus Bp-1.Journal of Biological Chemistry,2005,280:20672-20679.

    19.Hannah MA,Caldana C,Steinhauser D,Balbo I,F(xiàn)ernie AR,Willmitzer L.Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression.Plant Physiology,2010,152:2120-2129.

    20.Sellick CA,Reece RJ.Eukaryotic transcription factors as direct nutrient sensors.Trends in Biochemical Sciences,2005,30:405-412.

    久久这里有精品视频免费| 成人毛片60女人毛片免费| 国产一级毛片在线| 成人欧美大片| 三级国产精品欧美在线观看| 精品不卡国产一区二区三区| 白带黄色成豆腐渣| 国产精品伦人一区二区| 国产色婷婷99| 国产又黄又爽又无遮挡在线| 亚洲成a人片在线一区二区| 男人和女人高潮做爰伦理| 欧美在线一区亚洲| 免费看日本二区| kizo精华| av在线观看视频网站免费| 亚洲av成人av| 老司机影院成人| 午夜免费激情av| 高清毛片免费看| 不卡视频在线观看欧美| 免费观看a级毛片全部| 97在线视频观看| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 一级黄色大片毛片| 国产精品,欧美在线| av卡一久久| 91精品国产九色| 在线播放无遮挡| 在线观看66精品国产| www日本黄色视频网| 成人漫画全彩无遮挡| 午夜精品在线福利| 亚洲国产色片| 中文亚洲av片在线观看爽| 亚洲欧洲日产国产| 日本黄色视频三级网站网址| 村上凉子中文字幕在线| 亚洲精品色激情综合| 成人特级av手机在线观看| 国产毛片a区久久久久| 精品不卡国产一区二区三区| 日本黄色视频三级网站网址| 午夜老司机福利剧场| 亚洲欧美日韩高清专用| 又爽又黄无遮挡网站| 国产高清三级在线| 午夜福利视频1000在线观看| 色尼玛亚洲综合影院| 免费看av在线观看网站| 狂野欧美白嫩少妇大欣赏| 秋霞在线观看毛片| 午夜免费激情av| 大型黄色视频在线免费观看| 哪里可以看免费的av片| 亚洲欧洲国产日韩| 日韩大尺度精品在线看网址| 国内精品一区二区在线观看| 老熟妇乱子伦视频在线观看| 女同久久另类99精品国产91| 深夜a级毛片| avwww免费| 长腿黑丝高跟| 有码 亚洲区| 日日撸夜夜添| 欧美日韩在线观看h| 中文字幕av成人在线电影| 在线观看66精品国产| 亚洲美女视频黄频| 欧美三级亚洲精品| 久久鲁丝午夜福利片| 看十八女毛片水多多多| 国产精品.久久久| 夜夜看夜夜爽夜夜摸| 2022亚洲国产成人精品| 热99在线观看视频| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 精品欧美国产一区二区三| 国产精品电影一区二区三区| 欧美区成人在线视频| 黄片无遮挡物在线观看| 国产亚洲91精品色在线| 少妇猛男粗大的猛烈进出视频 | 国产精品人妻久久久久久| 伦精品一区二区三区| 寂寞人妻少妇视频99o| 熟妇人妻久久中文字幕3abv| 男的添女的下面高潮视频| 99热网站在线观看| 99国产精品一区二区蜜桃av| 免费看av在线观看网站| 小蜜桃在线观看免费完整版高清| 亚洲国产精品久久男人天堂| 国产亚洲精品av在线| 熟女电影av网| 久久国产乱子免费精品| 亚洲欧洲日产国产| 一区二区三区免费毛片| 日本黄色片子视频| 免费在线观看成人毛片| 中文在线观看免费www的网站| 国产精品美女特级片免费视频播放器| 亚洲av免费高清在线观看| 成人鲁丝片一二三区免费| 婷婷色av中文字幕| 又爽又黄a免费视频| 欧美人与善性xxx| 寂寞人妻少妇视频99o| 国产午夜精品久久久久久一区二区三区| 黄片无遮挡物在线观看| 在线免费观看的www视频| 激情 狠狠 欧美| 国产成人a∨麻豆精品| 亚洲欧美日韩卡通动漫| 国产人妻一区二区三区在| 精品99又大又爽又粗少妇毛片| 国产精品野战在线观看| 国产精品一区二区在线观看99 | 69人妻影院| 搡老妇女老女人老熟妇| 亚洲婷婷狠狠爱综合网| 中国美女看黄片| 日韩一区二区三区影片| 久久精品国产99精品国产亚洲性色| 国产亚洲欧美98| 亚洲美女搞黄在线观看| av在线亚洲专区| 男的添女的下面高潮视频| 久久精品久久久久久噜噜老黄 | 国产精品免费一区二区三区在线| 男女下面进入的视频免费午夜| 美女大奶头视频| 久久婷婷人人爽人人干人人爱| 有码 亚洲区| 午夜福利视频1000在线观看| 秋霞在线观看毛片| 亚洲人与动物交配视频| 午夜爱爱视频在线播放| 99久国产av精品| 少妇的逼水好多| 国产精品99久久久久久久久| 99热精品在线国产| 人妻制服诱惑在线中文字幕| 在线观看av片永久免费下载| 91麻豆精品激情在线观看国产| 国产一区二区三区av在线 | 久久国内精品自在自线图片| 99热这里只有精品一区| 国产欧美日韩精品一区二区| 别揉我奶头 嗯啊视频| 给我免费播放毛片高清在线观看| 久久综合国产亚洲精品| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 黄色配什么色好看| 人人妻人人澡欧美一区二区| 男女边吃奶边做爰视频| 男插女下体视频免费在线播放| 午夜老司机福利剧场| 欧美成人免费av一区二区三区| 国产在视频线在精品| 人妻系列 视频| 九色成人免费人妻av| 午夜福利视频1000在线观看| 晚上一个人看的免费电影| 人人妻人人看人人澡| 天堂中文最新版在线下载 | 丝袜喷水一区| 日韩成人伦理影院| 国内精品美女久久久久久| 成人毛片a级毛片在线播放| 久久久久久久久大av| 嫩草影院新地址| av女优亚洲男人天堂| 国产 一区 欧美 日韩| 久久精品国产亚洲av涩爱 | 神马国产精品三级电影在线观看| 国产三级在线视频| 亚洲18禁久久av| 最近手机中文字幕大全| 日本三级黄在线观看| 久久久久免费精品人妻一区二区| 亚洲最大成人中文| 一级黄色大片毛片| 天堂网av新在线| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 国产 一区精品| 亚洲国产高清在线一区二区三| 夜夜爽天天搞| 插阴视频在线观看视频| 内地一区二区视频在线| 亚洲色图av天堂| 国产精品久久久久久亚洲av鲁大| 国产精品乱码一区二三区的特点| 国产精品国产高清国产av| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 狠狠狠狠99中文字幕| 日本av手机在线免费观看| 国产精品一区www在线观看| 如何舔出高潮| 国产亚洲av片在线观看秒播厂 | 大又大粗又爽又黄少妇毛片口| 一卡2卡三卡四卡精品乱码亚洲| 成熟少妇高潮喷水视频| 免费看光身美女| 在线观看一区二区三区| 亚洲av第一区精品v没综合| 免费看av在线观看网站| 老熟妇乱子伦视频在线观看| 国内揄拍国产精品人妻在线| 欧美在线一区亚洲| 蜜桃久久精品国产亚洲av| 伊人久久精品亚洲午夜| 在线观看一区二区三区| 欧美成人a在线观看| 国产精品永久免费网站| 美女脱内裤让男人舔精品视频 | 成人永久免费在线观看视频| 中文字幕av成人在线电影| 亚洲18禁久久av| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 国产熟女欧美一区二区| 免费电影在线观看免费观看| 午夜福利视频1000在线观看| 久久久精品大字幕| ponron亚洲| 成年女人永久免费观看视频| 日韩 亚洲 欧美在线| 亚洲人成网站高清观看| 在线观看av片永久免费下载| 国产乱人视频| 韩国av在线不卡| 看片在线看免费视频| av福利片在线观看| 一区福利在线观看| 我要搜黄色片| 久久精品久久久久久久性| 精品久久久噜噜| 好男人视频免费观看在线| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频 | 一区二区三区四区激情视频 | 欧美不卡视频在线免费观看| 黄片wwwwww| 99久久精品国产国产毛片| 中文字幕制服av| 日韩成人伦理影院| 老师上课跳d突然被开到最大视频| 性色avwww在线观看| 别揉我奶头 嗯啊视频| 国产成人精品久久久久久| 91麻豆精品激情在线观看国产| 日本色播在线视频| 亚洲色图av天堂| 黄片wwwwww| 能在线免费观看的黄片| 可以在线观看毛片的网站| 美女大奶头视频| 日本一二三区视频观看| 免费人成在线观看视频色| 白带黄色成豆腐渣| 国产精品人妻久久久影院| 一进一出抽搐动态| 国产精品永久免费网站| 嫩草影院入口| 一本久久中文字幕| 午夜福利视频1000在线观看| 亚洲性久久影院| 婷婷六月久久综合丁香| 久久久久久国产a免费观看| 舔av片在线| 夜夜夜夜夜久久久久| 熟女人妻精品中文字幕| 欧美xxxx黑人xx丫x性爽| 日本一本二区三区精品| 免费av不卡在线播放| 一区福利在线观看| 六月丁香七月| 一级毛片久久久久久久久女| 亚洲精品日韩av片在线观看| 黄色视频,在线免费观看| 一级av片app| 国产黄片美女视频| 看非洲黑人一级黄片| 日本av手机在线免费观看| 成人亚洲精品av一区二区| 国产熟女欧美一区二区| 一夜夜www| 欧美色视频一区免费| a级一级毛片免费在线观看| 国产爱豆传媒在线观看| 国产一区二区亚洲精品在线观看| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人成网站在线观看播放| 神马国产精品三级电影在线观看| 97人妻精品一区二区三区麻豆| 国产黄色视频一区二区在线观看 | 九九久久精品国产亚洲av麻豆| АⅤ资源中文在线天堂| 午夜福利在线观看吧| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 欧美高清性xxxxhd video| 久久久精品大字幕| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 看黄色毛片网站| 欧美又色又爽又黄视频| 偷拍熟女少妇极品色| 欧洲精品卡2卡3卡4卡5卡区| 一个人看的www免费观看视频| 国产高潮美女av| 乱人视频在线观看| 热99re8久久精品国产| 久久精品国产亚洲av涩爱 | 亚洲成人精品中文字幕电影| 毛片一级片免费看久久久久| 久久久久久久久久久丰满| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 一夜夜www| 国产精品永久免费网站| 亚洲电影在线观看av| 久久久久久久久久黄片| 最后的刺客免费高清国语| 成人午夜精彩视频在线观看| 久久精品国产99精品国产亚洲性色| 国产成人精品久久久久久| 日韩亚洲欧美综合| 高清毛片免费看| 亚洲三级黄色毛片| 色哟哟哟哟哟哟| av卡一久久| 亚洲在久久综合| 我要看日韩黄色一级片| 乱码一卡2卡4卡精品| 亚洲中文字幕一区二区三区有码在线看| 国产熟女欧美一区二区| 亚洲精品久久国产高清桃花| 大香蕉久久网| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 在线a可以看的网站| a级毛片a级免费在线| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 日本黄色视频三级网站网址| 国模一区二区三区四区视频| 国产精品1区2区在线观看.| а√天堂www在线а√下载| 亚洲无线观看免费| 我要搜黄色片| 久久精品国产亚洲av涩爱 | 色综合亚洲欧美另类图片| 中文字幕制服av| 99国产极品粉嫩在线观看| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 乱系列少妇在线播放| 身体一侧抽搐| 亚洲精品国产av成人精品| 国产高清不卡午夜福利| 一级毛片我不卡| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 亚洲国产精品成人久久小说 | 日韩强制内射视频| 99热精品在线国产| 久久精品人妻少妇| 最近手机中文字幕大全| 网址你懂的国产日韩在线| videossex国产| 少妇高潮的动态图| av在线老鸭窝| 赤兔流量卡办理| 波多野结衣高清作品| 午夜久久久久精精品| 中文欧美无线码| 一卡2卡三卡四卡精品乱码亚洲| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 不卡一级毛片| 国产黄色视频一区二区在线观看 | 日韩在线高清观看一区二区三区| 久久精品人妻少妇| 国产亚洲av嫩草精品影院| 亚洲在线自拍视频| 日韩三级伦理在线观看| 亚洲在线观看片| 国产精品一及| 亚洲成a人片在线一区二区| www.av在线官网国产| 亚洲精品国产成人久久av| 国产高清三级在线| 国产一区二区三区av在线 | 久久久久久伊人网av| 99热这里只有精品一区| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 女同久久另类99精品国产91| 国产成人a∨麻豆精品| 在线观看66精品国产| 91精品一卡2卡3卡4卡| 舔av片在线| 亚洲丝袜综合中文字幕| 久久精品影院6| 欧美最黄视频在线播放免费| 亚洲内射少妇av| 直男gayav资源| 久久亚洲精品不卡| 国产大屁股一区二区在线视频| 亚洲欧美精品专区久久| 成人鲁丝片一二三区免费| 国产一区二区三区av在线 | 老熟妇乱子伦视频在线观看| 97热精品久久久久久| 人体艺术视频欧美日本| 男人和女人高潮做爰伦理| 精品熟女少妇av免费看| 精品一区二区三区视频在线| 日韩av不卡免费在线播放| 可以在线观看的亚洲视频| 亚洲精品亚洲一区二区| 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 51国产日韩欧美| 男的添女的下面高潮视频| 高清毛片免费观看视频网站| 你懂的网址亚洲精品在线观看 | 国产精品永久免费网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品亚洲一区二区| 91精品国产九色| 日韩中字成人| 一本精品99久久精品77| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 精品一区二区免费观看| 日韩av不卡免费在线播放| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 欧美成人精品欧美一级黄| avwww免费| 高清在线视频一区二区三区 | 亚洲精品成人久久久久久| 婷婷色av中文字幕| 久久精品国产亚洲av香蕉五月| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 成人国产麻豆网| 国产又黄又爽又无遮挡在线| 色哟哟·www| 久久久欧美国产精品| 超碰av人人做人人爽久久| 岛国毛片在线播放| 一本久久中文字幕| 国内少妇人妻偷人精品xxx网站| 美女 人体艺术 gogo| 国产精品福利在线免费观看| 亚洲国产精品国产精品| 久久精品影院6| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 身体一侧抽搐| 久久久国产成人精品二区| 精品国产三级普通话版| 日本一本二区三区精品| 青春草亚洲视频在线观看| 国内精品一区二区在线观看| 午夜免费激情av| 我的老师免费观看完整版| 午夜激情福利司机影院| 久久这里只有精品中国| 欧美潮喷喷水| 我要搜黄色片| 你懂的网址亚洲精品在线观看 | 乱码一卡2卡4卡精品| 国国产精品蜜臀av免费| 免费看光身美女| 在线观看午夜福利视频| 寂寞人妻少妇视频99o| 美女 人体艺术 gogo| 久久精品久久久久久噜噜老黄 | 中文亚洲av片在线观看爽| 免费观看的影片在线观看| 男人舔女人下体高潮全视频| 欧美一级a爱片免费观看看| 九九热线精品视视频播放| 99精品在免费线老司机午夜| 美女xxoo啪啪120秒动态图| 看十八女毛片水多多多| 性插视频无遮挡在线免费观看| 岛国毛片在线播放| 国产片特级美女逼逼视频| 国产极品天堂在线| 国产91av在线免费观看| 一边亲一边摸免费视频| 欧美激情国产日韩精品一区| 最后的刺客免费高清国语| av天堂中文字幕网| 久99久视频精品免费| 亚洲欧美精品专区久久| 最近最新中文字幕大全电影3| 国产男人的电影天堂91| 国产午夜精品论理片| 夜夜爽天天搞| 国产乱人视频| 午夜福利成人在线免费观看| 变态另类丝袜制服| 免费看光身美女| 老司机影院成人| 国产午夜精品久久久久久一区二区三区| 免费在线观看成人毛片| 久久精品久久久久久噜噜老黄 | 边亲边吃奶的免费视频| 亚洲精品影视一区二区三区av| av福利片在线观看| 日本撒尿小便嘘嘘汇集6| 91麻豆精品激情在线观看国产| av专区在线播放| 少妇猛男粗大的猛烈进出视频 | 一级黄片播放器| 亚洲精品日韩av片在线观看| 国产综合懂色| 欧美性猛交╳xxx乱大交人| 免费av不卡在线播放| 国产黄色视频一区二区在线观看 | 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 给我免费播放毛片高清在线观看| 男女啪啪激烈高潮av片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品三级大全| 日本熟妇午夜| 一本久久精品| 久久人人精品亚洲av| 成人美女网站在线观看视频| 精品日产1卡2卡| 精品午夜福利在线看| 精品少妇黑人巨大在线播放 | 亚洲国产精品久久男人天堂| 久久精品影院6| 99久久九九国产精品国产免费| 国产不卡一卡二| АⅤ资源中文在线天堂| 亚洲在久久综合| 久久久久网色| 搡女人真爽免费视频火全软件| 欧美一级a爱片免费观看看| 一区二区三区四区激情视频 | 美女内射精品一级片tv| 国产乱人视频| 乱码一卡2卡4卡精品| 一个人免费在线观看电影| 亚洲欧美精品自产自拍| 中出人妻视频一区二区| 亚洲av成人av| 成人高潮视频无遮挡免费网站| 97热精品久久久久久| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 嫩草影院新地址| 99久久久亚洲精品蜜臀av| 亚洲av电影不卡..在线观看| 国国产精品蜜臀av免费| 欧美区成人在线视频| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 亚洲最大成人av| 成人永久免费在线观看视频| www日本黄色视频网| 亚洲在线自拍视频| 一夜夜www| 国产高潮美女av| 蜜桃久久精品国产亚洲av| 青春草亚洲视频在线观看| 身体一侧抽搐| 别揉我奶头 嗯啊视频| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 少妇人妻精品综合一区二区 | 午夜激情欧美在线| 在线免费观看的www视频| 国产成人一区二区在线| 国产人妻一区二区三区在| 久久精品久久久久久噜噜老黄 | 亚洲精品久久久久久婷婷小说 | 人人妻人人看人人澡| 亚洲高清免费不卡视频| 久久99精品国语久久久| 中文字幕人妻熟人妻熟丝袜美| 午夜a级毛片| 成人综合一区亚洲| 丝袜美腿在线中文|