• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power analysis for cross-sectional and longitudinal study designs

    2013-12-09 06:28:36NaijiLUYuHANTianCHENDouglasGUNZLERYinglinXIAJuliaLINXinTU
    上海精神醫(yī)學(xué) 2013年4期

    Naiji LU, Yu HAN, Tian CHEN, Douglas D. GUNZLER, Yinglin XIA, Julia Y. LIN, Xin M. TU,5*

    ?Biostatistics in psychiatry (16)?

    Power analysis for cross-sectional and longitudinal study designs

    Naiji LU1,2, Yu HAN1, Tian CHEN1, Douglas D. GUNZLER3, Yinglin XIA1,2, Julia Y. LIN4, Xin M. TU1,2,5*

    1. Introduction

    Power and sample size estimation constitutes an important component of designing and planning modern scientific studies. It provides information for assessing the feasibility of a study to detect treatment effects and for estimating the resources needed to conduct the project. This tutorial discusses the basic concepts of power analysis and the major differences between hypothesis testing and power analyses. We also discuss the advantages of longitudinal studies compared to cross-sectional studies and the statistical issues involved when designing such studies. These points are illustrated with a series of examples.

    2. Hypothesis testing, sampling distributions and power

    In most studies we do not have access to the entire population of interest because of the prohibitively high cost of identifying and assessing every subject in the population. To overcome this limitation we make inferences about features of interest in our population, such as average income or prevalence of alcohol abuse, based on a relatively small group of subjects, or a sample, from the study population. Such a feature of interest is called a parameter, which is often unobserved unless every subject in the population is assessed. However, we can observe an estimate of the parameter in the study sample; this quantity is called a statistic. Since the value of the statistic is based on a particular sample, it is generally different from the value of the parameter in the population as a whole.Statistical analysis uses information from the statistic to make inferences about the parameter.

    For example, suppose we are interested in the prevalence of major depression in a city with one million people.The parameter π is the prevalence of major depression.By taking a random sample of the population, we can compute the statistic p, the proportion of subjects with major depression in the sample. The sample size, n, is usually quite small relative to the population size. The statistic p will most likely not be equal to the parameter π because p is based on the sample and thus will vary from sample to sample. The spread by which p deviates from π with repeated sampling, is called sampling error.As long as n is less than 1,000,000, there will always be some sampling error. Although we do not know exactly how large this error is for a particular sample, we can characterize the sampling errors of repeated samples through the sampling distribution of the statistic. In the major depression prevalence example above, the behavior of the estimate p can be characterized by the binomial distribution. The distribution is more likely to have a peak around the true value of the parameter as the sample size n gets larger, that is, the larger the sample size n, the smaller the sampling error.

    If we want to have more accurate estimates of a parameter, we need to have an n large enough so that sampling error will be reasonably small. If n is too small,the estimate will tend to be too imprecise to be of much use. On the other hand, there is also a point of diminishing returns, beyond which increasing n provides little added precision.

    Power analysis helps to find the sample size that achieves the desired level of precision. Although research questions vary, data and power analyses all center on testing statistical hypotheses. A statistical hypothesis expresses our belief about the parameter of interest in a form that can be examined through statistical analysis. For example, in the major depression example, if we believe that the prevalence of major depression in this particular population exceeds the national average of 6%, we can express this belief in the form of a null hypothesis (H0) and an alternative hypothesis (Ha):Statistical analysis estimates how likely it is to observe the data we obtained from the sample if the null hypothesis H0was true. If it is very unlikely for us to observe the data we have if H0was true, then we reject the H0.

    Thus, there are four possible decision outcomes of statistical hypothesis testing as summarized in the table below.

    Decision outcomes of hypothesis testing

    There are two types of errors associated with the decision to reject and not reject the null hypothesis H0.The type I error α is committed if we reject the H0when the H0is true; the type II error β occurs when we fail to reject the H0when the H0is false. In general, α (the risk of committing a type I error) is set at 0.05. The statistical power for detecting a certain departure from the H0(computed as 1–β), is typically set at 0.80 or higher; thus β(the risk of committing a type II error) is set at 0.20 or less.

    3. Difference between hypothesis testing and power analysis

    3.1 Hypothesis testing

    In most hypothesis testing, we are interested in ascertaining whether there is evidence against the H0based on the level of statistical significance. Consider a study comparing two groups with respect to some outcome of interest y. If μ1and μ2denote the averages of y for groups 1 and 2 in the population, one could make the following hypotheses:

    Note that no direction of effect is specified in the two-sided alternative Haabove; that is, we do not specify whether the average for group 1 is greater or smaller than the average for group 2. If we hypothesize the direction of effect a one-sided Hamay be used. For example:

    3.2 Power analysis

    Unlike hypothesis testing, both the null H0and alternative Hahypotheses must be fully considered when performing power analysis. The usual purposes of conducting power analyses are (a) to estimate the minimum sample size needed in a proposed study to detect an effect of a certain magnitude at a given level of statistical power,or (b) to determine the level of statistical power in a completed study for detecting an effect of a certain magnitude given the sample size in the study. In the example above, to estimate the minimum sample size needed or to compute the statistical power, we must specify a value for δ=μ1-μ2, the difference between the two group averages, that we wish to detect under the Ha.

    In power analysis, effects are often specified in terms of effect sizes, not in terms of the absolute magnitude of the hypothesized effect, because the magnitude of the effect depends on how the outcome is defined (i.e., what type of measures are employed) and does not account for the variability of such outcome measures in the study population. For example, if the outcome y is body weight, this could be alternatively measured in pounds or kilograms, the difference between two group averages could be reported either as 11 pounds or 5 kilograms. To remove dependence on the type of measure employed and account for variability of the outcomes in the study population,effect size – as standardized measure of the difference between groups – is often used to quantify hypothesized effect:

    Note that effect sizes are different for different analytical models. For example, in regression analysis the effect size is commonly based on the change in R2, a measure for the amount of variability in the response (dependent) variable that is explained by the explanatory (independent) variables. Regardless of such differences, the effect size is a unitless quantity.

    4. Examples of power analysis

    4.1 Example 1

    Consider again the hypothesis to test difference in average outcomes between two groups:

    4.2 Example 2

    Consider a linear regression model for a response(outcome) variable that is continuous with m explanatory(independent) variables in the model. The most common hypothesis is whether the explanatory variables jointly explain the variability in the response variable. Power is based on the sampling F-distribution of a statistic measuring the strength of the linear relationship between the response and explanatory variables and is a function of m, R2(effect size) and sample size n.

    If m=5, we need a sample size of n=100 to detect an increase of 0.12 in R2with 80% power and α=0.05. Note that R is also called the multiple correlation coefficient or coefficient of multiple determination.

    4.3 Example 3

    Consider a logistic regression model for assessing risk factors of suicide. First, consider the case with only one risk factor such as major depression (predictor).The sample size is a function of the overall suicide rate π in the study population, odds ratio for the risk factor, and level of statistical power. The table below shows sample size estimates as a function of these parameters, with α=0.05 and power=80%. As shown in the table, if π=0.5,a sample size of n=272 is needed to detect an odds ratio of 2.0 for the risk variable (major depression) in the logistic model.

    Sample sizes need to have an 80% power to detect different odds ratios at two different prevalence levels (π) of the target variable of interest

    In many studies, we consider multiple risk factors or one risk factor controlling for other covariates. In this case, we first calculate the sample size needed for the risk variable of interest and then adjust it to account for the presence of other risk variables (covariates).

    4.4 Example 4

    Consider a drug-abuse study comparing parental conflict and parenting behavior of parents from families with a drug-abusing father (DA) to that of families with an alcohol-abusing father (AA). Each study participant is assessed at three time points. For such longitudinal studies, power is a function of within-subject correlation ρ, that is, the correlation between the repeated measurements within a participant. There are many data structures that can be used to assess this within-subject correlation; the details for doing this can be found in the paper by Jennrich and Schluchter.[1]

    Required sample sizes for complete data (and 15%missing data) to detect differences in an outcome of interest between two groups (α=0.05; β=0.20) when the outcome is assessed repeatedly and there are different levels of within-subject correlation

    As seen in the above table, the sample sizes required to detect the desired effect size increased as ρ approaches 1 and decreased as ρ approaches 0. Sample size also depends on the number of post-baseline assessments,with smaller sample sizes needed when there are more assessments. In the extreme case when ρ=0 (there is no relationship between the repeated assessment within a participant) or ρ=1 (repeated assessments within a participant yield identical data), the repeated outcomes become completely independent (as if they were collected from other individuals) or redundant (providing no additional information).

    When ρ=1, all repeated assessments within a participant are identical to each other, and thus the additional assessments do not yield any new information. In comparison, when ρ≠1, longitudinal studies always provide more statistical power than their cross-sectional counterparts. Furthermore, the sample size required is smaller when ρ approaches 0, because repeated measurements are less similar to each other and provide additional information on the participants. To ensure reasonably small within-subject correlations, researchers should avoid scheduling post-baseline assessments too close to each other in time.

    In practice, missing data is inevitable. Since most commercial statistical packages do not consider missing data, we need to perform adjustments to account for its effect on power. One way of doing this (shown in the table) is to inflate the estimated sample size. For example, if it is expected that 15% of the data will be missing at each follow-up visit and n is the estimated sample size needed under the assumption of complete data, we inflate the sample size n’=n/(1-15%). As seen in the table, missing data can have a sizable effect on the estimated sample sizes needed so it is important to have good estimates of the expected rate of missing data when estimating the required sample size for a proposed study. It is equally important to try to reduce the amount of missing data during the course of the study to improve statistical power of the results.

    5. Software packages

    Different statistical software packages can be used for power analysis. Although popular data analysis packages such as R[2]and SAS[3]may be used for power analysis, they are somewhat limited in their application,so it is often necessary to use more specialized software packages for power analysis. We used PASS 11[4]for all the examples in this paper. As noted earlier, most packages do not accommodate missing data for longitudinal study designs, so ad-hoc adjustments are necessary to account for missing data.

    6. Discussion

    We discussed power analysis for a range of statistical models. Although different statistical models require different methods and input parameters for power analysis, the goals of the analysis are the same: either(a) to determine the power to detect a certain effect size (and reject the null hypothesis) for a given sample size, or (b) to estimate the sample size needed to detect a certain effect size (and reject the null hypothesis) at a specified power. Power analysis for longitudinal studies is complex because within-subject correlation, number of repeated assessments, and level of missing data can all affect the estimations of the required sample sizes.

    When conducting power analysis one needs to specify the desired effect size, that is, the minimum magnitude of the standardized difference between groups that would be considered relevant or important. There are two common approaches for determining the effect sizes used when conducting power analyses: use a ‘clinically significant’ difference; and use information from published studies or pilot data about the magnitude of the difference that is common or considered important.When using the second approach, one must be mindful of the sample sizes in prior studies because reported averages, standard deviations, and effect sizes can be quite variable, particularly for small studies. And the previous reports may focus on different population cohorts or use different study designs than those intended for the study of interest so it may not be appropriate to use the prior estimates in the proposed study. Further, given that studies with larger effect sizes are more likely to achieve statistical significance and,hence, more likely to be published, estimates from published studies may overestimate the true effect size.

    Conflict of interest

    The authors report no conflict of interest related to this manuscript.

    Acknowledgments

    This research is supported in part by the Clinical and Translational Science Collaborative of Cleveland,UL1TR000439, and of the University of Rochester,5-27607, from the National Institutes of Health.

    1. Jennrich RI, Schluchter MD. Unbalanced repeated-measures models with structured covariance matrices. Biometrics 1986; 42: 805–820.

    2. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna,Austria, 2012. ISBN 3-900051-07-0, URL http://www.R-project.org/. R Package ‘pwr’http://cran.r-project.org/web/packages/pwr/index.html

    3. Castelloe JM. Sample Size Computations and Power Analysis with the SAS System. Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference; [April 9-12,2000]; Indianapolis, Indiana, USA; Cary, NC: SAS Institute Inc.; 265-25.

    4. Hintze J. PASS 11. NCSS, LLC. Kaysville, Utah, USA, 2011.

    10.3969/j.issn.1002-0829.2013.04.009

    1Department of Biostatistics, University of Rochester Medical Center, Rochester, NY, USA

    2Veterans Integrated Service Network 2 Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA

    3School of Medicine, Case Western Reserve University, Center for Health Care Research & Policy, MetroHealth Medical Center, Cleveland, OH, USA

    4US Department of Veterans Affairs Cooperative Studies Program Coordinating Center, Palo Alto VA Health Care System, Palo Alto, CA, USA

    5Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA

    *correspondence: xin_tu@urmc.rochester.edu

    Naiji Lu received his PhD. from the Mathematics Department of the University of Rochester in 2007 after completing his thesis on Branching Process. He is currently a Research Assistant Professor in the Department of Biostatistics and Computational Biology at the University of Rochester Medical Center.Dr. Lu’s research interests include social network analysis, longitudinal data analysis, distribution-free models, robust statistics, causal effect models, and structural equation models as applied to large complex clinical trials in psychosocial research.

    香蕉国产在线看| 搡女人真爽免费视频火全软件| 久久国产精品大桥未久av| 80岁老熟妇乱子伦牲交| 国产xxxxx性猛交| 亚洲图色成人| 天天躁夜夜躁狠狠躁躁| 久久久久久免费高清国产稀缺| 久久久久国产精品人妻一区二区| 最近的中文字幕免费完整| 大片免费播放器 马上看| 99九九在线精品视频| 国产av国产精品国产| videosex国产| 国产有黄有色有爽视频| 免费观看av网站的网址| 亚洲精品一二三| 亚洲精品av麻豆狂野| 在线观看国产h片| 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 黄色毛片三级朝国网站| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| av一本久久久久| 日本爱情动作片www.在线观看| 99久国产av精品国产电影| 99久国产av精品国产电影| 久久国内精品自在自线图片| 9191精品国产免费久久| 免费av中文字幕在线| 国产精品久久久久久av不卡| a级毛片黄视频| 亚洲图色成人| 1024香蕉在线观看| 久久久久精品人妻al黑| 99国产综合亚洲精品| 亚洲av中文av极速乱| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 丝袜脚勾引网站| 老汉色∧v一级毛片| 午夜福利视频在线观看免费| 日韩制服丝袜自拍偷拍| 国产日韩欧美在线精品| 波多野结衣av一区二区av| 十八禁高潮呻吟视频| 蜜桃国产av成人99| 999精品在线视频| 丝袜喷水一区| 99精国产麻豆久久婷婷| 日韩大片免费观看网站| 国产成人aa在线观看| 日韩一区二区视频免费看| 亚洲一码二码三码区别大吗| 91久久精品国产一区二区三区| 一二三四在线观看免费中文在| 在线观看免费视频网站a站| 亚洲国产精品一区二区三区在线| 国产麻豆69| 夫妻午夜视频| 人妻系列 视频| 纯流量卡能插随身wifi吗| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 男女高潮啪啪啪动态图| 菩萨蛮人人尽说江南好唐韦庄| 女人被躁到高潮嗷嗷叫费观| 国产爽快片一区二区三区| 久久毛片免费看一区二区三区| 国产精品不卡视频一区二区| 国产在线免费精品| 宅男免费午夜| a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 五月开心婷婷网| 90打野战视频偷拍视频| 你懂的网址亚洲精品在线观看| 在线天堂最新版资源| 国产精品 国内视频| 超色免费av| 街头女战士在线观看网站| 婷婷色综合大香蕉| 国产成人免费观看mmmm| 欧美中文综合在线视频| 中文字幕av电影在线播放| 国产黄色视频一区二区在线观看| 亚洲视频免费观看视频| 国产精品成人在线| 久久精品国产综合久久久| videos熟女内射| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 国产精品国产三级国产专区5o| 欧美人与善性xxx| 国产一区二区三区av在线| 日韩三级伦理在线观看| √禁漫天堂资源中文www| 一区福利在线观看| 亚洲在久久综合| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕| av网站在线播放免费| 美女福利国产在线| 青春草国产在线视频| 99久久人妻综合| 精品人妻在线不人妻| 香蕉丝袜av| 免费观看a级毛片全部| 2022亚洲国产成人精品| 亚洲成国产人片在线观看| 久久午夜综合久久蜜桃| 久久久久网色| 免费少妇av软件| 黄片小视频在线播放| 高清黄色对白视频在线免费看| 一区二区三区精品91| 欧美精品国产亚洲| 一区二区三区四区激情视频| 9热在线视频观看99| 韩国精品一区二区三区| 亚洲成av片中文字幕在线观看 | 自线自在国产av| 亚洲图色成人| 99热全是精品| 亚洲精品一区蜜桃| 少妇被粗大的猛进出69影院| 国产毛片在线视频| 在线天堂最新版资源| 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 制服人妻中文乱码| 日韩欧美精品免费久久| 另类精品久久| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区四区第35| 久久久久精品人妻al黑| 90打野战视频偷拍视频| 1024视频免费在线观看| 日本wwww免费看| 欧美精品国产亚洲| av国产精品久久久久影院| 亚洲av免费高清在线观看| 亚洲精品中文字幕在线视频| 一个人免费看片子| 亚洲男人天堂网一区| 免费女性裸体啪啪无遮挡网站| 最新中文字幕久久久久| 看非洲黑人一级黄片| 免费av中文字幕在线| 中文字幕最新亚洲高清| 国产精品久久久久成人av| 99热全是精品| 免费在线观看完整版高清| av.在线天堂| 91午夜精品亚洲一区二区三区| 久久久久久伊人网av| 国产一区有黄有色的免费视频| 成人国产麻豆网| 免费观看在线日韩| 一区二区日韩欧美中文字幕| 新久久久久国产一级毛片| 欧美日韩亚洲高清精品| 卡戴珊不雅视频在线播放| 亚洲美女视频黄频| 视频区图区小说| 精品国产一区二区久久| 香蕉丝袜av| 赤兔流量卡办理| 飞空精品影院首页| 精品国产国语对白av| 国产亚洲午夜精品一区二区久久| 久久99精品国语久久久| 在线天堂最新版资源| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美成人精品欧美一级黄| 99久久精品国产国产毛片| 国产成人a∨麻豆精品| 色吧在线观看| av在线观看视频网站免费| 人体艺术视频欧美日本| 国产色婷婷99| 免费看av在线观看网站| 免费黄色在线免费观看| 亚洲成人手机| 亚洲欧洲日产国产| 精品国产一区二区久久| 国产极品粉嫩免费观看在线| 伦精品一区二区三区| 婷婷色综合www| 大片电影免费在线观看免费| 最近最新中文字幕大全免费视频 | 精品国产乱码久久久久久小说| 男女免费视频国产| 看十八女毛片水多多多| 国产不卡av网站在线观看| 香蕉精品网在线| 中国国产av一级| 大片电影免费在线观看免费| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全免费视频 | 亚洲av.av天堂| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 天天操日日干夜夜撸| 国产高清国产精品国产三级| 女性被躁到高潮视频| 91在线精品国自产拍蜜月| 视频区图区小说| 国产伦理片在线播放av一区| 国产亚洲精品第一综合不卡| 亚洲欧美清纯卡通| 亚洲成国产人片在线观看| 久久久久久久久久久免费av| 国产免费又黄又爽又色| 国产亚洲精品第一综合不卡| 日韩 亚洲 欧美在线| 国产精品久久久久成人av| 黄片播放在线免费| 日日撸夜夜添| 最近2019中文字幕mv第一页| 国产成人精品在线电影| 亚洲av电影在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av高清一级| 亚洲国产精品一区三区| 欧美av亚洲av综合av国产av | 伦理电影免费视频| 在线观看人妻少妇| 日本午夜av视频| 国产在视频线精品| 日韩,欧美,国产一区二区三区| 最近最新中文字幕免费大全7| 欧美日韩精品网址| 欧美日韩综合久久久久久| 男女高潮啪啪啪动态图| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 亚洲图色成人| 一区二区三区精品91| 久久午夜福利片| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 久久久久国产网址| 久久久久人妻精品一区果冻| av在线老鸭窝| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 欧美+日韩+精品| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 亚洲av电影在线进入| 97在线视频观看| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 9热在线视频观看99| 国产一区二区激情短视频 | 成人午夜精彩视频在线观看| 一区福利在线观看| 国产精品蜜桃在线观看| 日韩制服丝袜自拍偷拍| 一级a爱视频在线免费观看| 黄色 视频免费看| 超碰97精品在线观看| 999久久久国产精品视频| 国产爽快片一区二区三区| 一二三四在线观看免费中文在| 在现免费观看毛片| av卡一久久| 色视频在线一区二区三区| 亚洲成国产人片在线观看| 一级毛片 在线播放| 国产亚洲欧美精品永久| 美女福利国产在线| 亚洲国产精品国产精品| 永久网站在线| 男女高潮啪啪啪动态图| 蜜桃国产av成人99| 波野结衣二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 日韩一区二区视频免费看| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 欧美人与性动交α欧美软件| 伊人久久国产一区二区| 日本免费在线观看一区| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 九草在线视频观看| 精品一区二区免费观看| 欧美国产精品va在线观看不卡| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| av在线播放精品| 免费黄频网站在线观看国产| 交换朋友夫妻互换小说| 我的亚洲天堂| 久久精品国产a三级三级三级| 永久免费av网站大全| 中国国产av一级| 亚洲精品在线美女| www.av在线官网国产| 亚洲美女视频黄频| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 欧美精品一区二区免费开放| av卡一久久| 午夜影院在线不卡| 2022亚洲国产成人精品| 国产av国产精品国产| 男女午夜视频在线观看| 成年美女黄网站色视频大全免费| 一级毛片电影观看| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 大码成人一级视频| 日韩一区二区三区影片| 色94色欧美一区二区| 成人国语在线视频| 欧美日韩av久久| 亚洲第一青青草原| 日本-黄色视频高清免费观看| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 香蕉丝袜av| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 久久影院123| 久久精品国产亚洲av天美| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 国产精品久久久av美女十八| 欧美老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 久热久热在线精品观看| 五月开心婷婷网| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 国产成人精品在线电影| 国产亚洲午夜精品一区二区久久| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区黑人 | 国产色婷婷99| 欧美人与性动交α欧美精品济南到 | 99九九在线精品视频| 午夜免费观看性视频| 又大又黄又爽视频免费| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 午夜av观看不卡| 日本欧美国产在线视频| 两个人免费观看高清视频| 亚洲av成人精品一二三区| 国产黄色视频一区二区在线观看| 亚洲精品美女久久av网站| 国产精品三级大全| 老熟女久久久| 国产黄色免费在线视频| 精品国产国语对白av| 久久毛片免费看一区二区三区| 一区二区av电影网| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 如何舔出高潮| 久久99一区二区三区| 日日摸夜夜添夜夜爱| 亚洲伊人色综图| 精品国产露脸久久av麻豆| 国产人伦9x9x在线观看 | 国产极品粉嫩免费观看在线| 水蜜桃什么品种好| 久久女婷五月综合色啪小说| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 国产成人精品婷婷| 国产爽快片一区二区三区| 天天操日日干夜夜撸| 精品国产国语对白av| 欧美人与善性xxx| 色吧在线观看| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 观看av在线不卡| 国产精品久久久久久精品电影小说| 久久久久久久久久久免费av| 亚洲国产精品一区三区| 美女午夜性视频免费| 这个男人来自地球电影免费观看 | 最近的中文字幕免费完整| 国产av码专区亚洲av| 午夜免费鲁丝| 日韩一区二区视频免费看| 精品一区二区三区四区五区乱码 | 91国产中文字幕| 9热在线视频观看99| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 亚洲欧美一区二区三区国产| 99国产综合亚洲精品| 天堂8中文在线网| 秋霞伦理黄片| 亚洲精品乱久久久久久| 婷婷成人精品国产| 精品福利永久在线观看| 国产免费视频播放在线视频| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 韩国精品一区二区三区| 街头女战士在线观看网站| 美女国产高潮福利片在线看| 熟女电影av网| 国产av国产精品国产| 亚洲,欧美精品.| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 激情视频va一区二区三区| 午夜福利网站1000一区二区三区| 99九九在线精品视频| 岛国毛片在线播放| 两个人看的免费小视频| 午夜福利乱码中文字幕| 亚洲av成人精品一二三区| 在线观看www视频免费| 国产精品 国内视频| 国产精品久久久久成人av| 日韩熟女老妇一区二区性免费视频| 天堂8中文在线网| 亚洲欧美成人精品一区二区| av网站在线播放免费| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 成人亚洲欧美一区二区av| 日日爽夜夜爽网站| 久久97久久精品| 国产亚洲午夜精品一区二区久久| 久久久久久人妻| 久久久久国产网址| 丰满乱子伦码专区| 欧美成人午夜免费资源| 久久免费观看电影| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| 成人午夜精彩视频在线观看| 亚洲一级一片aⅴ在线观看| 男人舔女人的私密视频| 久久这里只有精品19| a 毛片基地| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 男人添女人高潮全过程视频| 免费人妻精品一区二区三区视频| 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 卡戴珊不雅视频在线播放| kizo精华| 日韩av免费高清视频| 亚洲国产精品国产精品| 亚洲色图 男人天堂 中文字幕| 黄网站色视频无遮挡免费观看| 日本-黄色视频高清免费观看| 男男h啪啪无遮挡| 亚洲第一青青草原| av又黄又爽大尺度在线免费看| 如何舔出高潮| av在线观看视频网站免费| 丝袜脚勾引网站| 免费观看在线日韩| av卡一久久| 人妻一区二区av| av一本久久久久| 国产又爽黄色视频| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| 国产老妇伦熟女老妇高清| 边亲边吃奶的免费视频| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| av视频免费观看在线观看| 亚洲精品久久午夜乱码| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲高清精品| 亚洲精品国产一区二区精华液| 日韩欧美一区视频在线观看| 精品第一国产精品| 五月开心婷婷网| 老司机影院成人| 青草久久国产| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 国产精品.久久久| 不卡av一区二区三区| 久久99精品国语久久久| 午夜精品国产一区二区电影| 国产精品亚洲av一区麻豆 | 亚洲成人av在线免费| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 丝袜喷水一区| 久久久久人妻精品一区果冻| 久久国产精品大桥未久av| 秋霞在线观看毛片| 成人国产av品久久久| videosex国产| 97人妻天天添夜夜摸| 看非洲黑人一级黄片| 精品一品国产午夜福利视频| 亚洲 欧美一区二区三区| 永久网站在线| 亚洲精品中文字幕在线视频| 中国三级夫妇交换| 欧美老熟妇乱子伦牲交| 日韩欧美精品免费久久| 汤姆久久久久久久影院中文字幕| 国产在线一区二区三区精| 国产精品 欧美亚洲| 伦理电影大哥的女人| 亚洲欧美精品综合一区二区三区 | 亚洲精品在线美女| 精品久久久精品久久久| 亚洲av中文av极速乱| 久久精品国产亚洲av天美| 亚洲精品国产色婷婷电影| 最近中文字幕2019免费版| 国产精品一二三区在线看| 国产成人免费观看mmmm| 欧美+日韩+精品| 国产精品久久久久成人av| 两性夫妻黄色片| 一个人免费看片子| 久久精品久久精品一区二区三区| 亚洲第一区二区三区不卡| 欧美成人午夜精品| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 超碰成人久久| av免费观看日本| 午夜免费观看性视频| 毛片一级片免费看久久久久| 男女下面插进去视频免费观看| 亚洲国产欧美日韩在线播放| av网站在线播放免费| www.av在线官网国产| a 毛片基地| 日韩一卡2卡3卡4卡2021年| 亚洲视频免费观看视频| 精品国产国语对白av| 母亲3免费完整高清在线观看 | 如日韩欧美国产精品一区二区三区| 国产精品麻豆人妻色哟哟久久| av国产精品久久久久影院| 欧美精品一区二区大全| 欧美成人午夜免费资源| 国产日韩一区二区三区精品不卡| 欧美激情高清一区二区三区 | 黄色一级大片看看| 久久精品夜色国产| av片东京热男人的天堂| 高清视频免费观看一区二区| 国产精品熟女久久久久浪| 人人妻人人澡人人看| 另类亚洲欧美激情| 男男h啪啪无遮挡| 国产黄频视频在线观看| 国产日韩欧美在线精品| 毛片一级片免费看久久久久| 国产黄频视频在线观看| 国产又爽黄色视频| 亚洲婷婷狠狠爱综合网| 国产精品偷伦视频观看了| 日本欧美视频一区| 久久久久久久精品精品| 国产福利在线免费观看视频| 亚洲av在线观看美女高潮| 国产一区二区 视频在线| 人成视频在线观看免费观看| 自线自在国产av|