• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introduction to mediation analysis with structural equation modeling

    2013-12-09 02:28:53DouglasGUNZLERTianCHENPanWUHuiZHANG
    上海精神醫(yī)學(xué) 2013年6期

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    ?Biostatistics in psychiatry (18)?

    Introduction to mediation analysis with structural equation modeling

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    1. What is mediation analysis?

    In mediation, we consider an intermediate variable,called the mediator, that helps explain how or why an independent variable influences an outcome. In the context of a treatment study, it is often of great interest to identify and study the mechanisms by which an intervention achieves its effect. By investigating mediational processes that clarify how the treatment achieves the study outcome, not only can we further our understanding of the pathology of the disease and the mechanisms of treatment, but we may also be able to identify alternative, more efficient, intervention strategies. For example, a tobacco prevention program may teach participants how to stop taking smoking breaks at work (the intervention) which changes their social norms about tobacco use (the intermediate mediator) and subsequently leads to a reduction in smoking behavior (study outcome).[1]

    With mediation analysis, we gain insight and acquire deep understanding about the mechanism of action of pharmacological and psychotherapeutic treatments. Such information provides an added dimension to understand the etiology of disease and the pathways of therapeutic effects, which can stimulate the identification of more efficacious and cost-efficient alternative therapies.

    2. What is structural equation modeling?

    Structural equation modeling (SEM) is a very general,very powerful multivariate technique. It uses a conceptual model, path diagram and system of linked regression-style equations to capture complex and dynamic relationships within a web of observed and unobserved variables. Although similar in appearance,SEM is fundamentally different from regression. In a regression model, there exists a clear distinction between dependent and independent variables. In SEM,however, such concepts only apply in relative terms since a dependent variable in one model equation can become an independent variable in other components of the SEM system.[2,3]It is precisely this type of reciprocal role a variable plays that enables SEM to infer causal relationships.

    SEM models include both endogenous and exogenous variables. Endogenous variables act as a dependent variable in at least one of the SEM equations; they are called endogenous variables rather than response variables because they may become independent variables in other equations within the SEM equations. Exogenous variables are always independent variables in the SEM equations. SEM equations model both the causal relationships between endogenous and exogenous variables, and the causal relationships among endogenous variables.

    SEM models are best represented by path diagrams.A path diagram consists of nodes representing the variables and arrows showing relations among these variables. By convention, in a path diagram latent variables (e.g., depression) are represented by a circle or ellipse and observed variables (e.g., a score on a rating scale) are represented by a rectangle or square.Arrows are generally used to represent relationships among the variables. A single straight arrow indicates a causal relation from the base of the arrow to the head of the arrow. Two straight single-headed arrows in opposing directions connecting two variables indicate a reciprocal causal relationship. A curved two-headed arrow indicates there may be some association between the two variables. Error terms for a variable are inserted into the path diagram by drawing an arrow from the value of the error term to the variable with which the term is associated.

    For example, in most path diagrams for crosssectional data, error terms are not connected, indicating stochastic independence across the error terms. But if we suspect association between error terms – which is likely to occur in most longitudinal studies – the error terms should be connected by curved two-headed arrows. See Bollen[2]and Kowalski and Tu[3]for more details about modeling complex relationships involving latent constructs using SEM.

    3. Advantages of using structural equation modeling instead of standard regression methods for mediation analysis

    Baron and Kenny,[4]in the fi rst paper addressing mediation analysis, tested the mediation process using a series of regression equations. However, mediation assumes both causality and a temporal ordering among the three variables under study (i.e. intervention, mediator and response). Since variables in a causal relationship can be both causes and effects, the standard regression paradigm is ill-suited for modeling such a relationship because of its a priori assignment of each variable as either a cause or an effect.[1,5,6]Structural equation modeling (SEM) provides a more appropriate inference framework for mediation analyses and for other types of causal analyses.

    There are many advantages to using the SEM framework in the context of mediation analysis. When a model contains latent variables such as happiness,quality of life and stress, SEM allows for ease of interpretation and estimation. SEM simplifies testing of mediation hypotheses because it is designed, in part,to test these more complicated mediation models in a single analysis.[7]SEM can be used when extending a mediation process to multiple independent variables,mediators or outcomes. This contrasts with standard regression, in which ad hoc methods must be used for inference about indirect and total effects.[4,8,9]These ad hoc methods rely on combining the results of two or more equations to derive the asymptotic variance.This is especially problematic when there are different numbers of observations missing in the different regression equations representing a mediation process.Also, in standard regression, we handle missing data via listwise deletion since there is no built-in missing data mechanism when using ordinary least squares (OLS).

    Another important advantage of SEM over standard regression methods is that the SEM analysis approach provides model fit information about the consistency of the hypothesized mediational model to the data and evidence for the plausibility of the causality assumptions[10,11]made when constructing the mediation model. The standard regression procedure initially recommended by Baron and Kenny[4]has also been shown to be low powered.[7]Moreover, unlike standard regression approaches, SEM allows for ease of extension to longitudinal data within a single framework,corresponding with a study’s conceptual framework for clear hypothesis articulation.[12]Finally, Bollen and Pearl[10]note that even when the same equation is used in SEM and in regression analysis, the results will be different because they are based on completely different assumptions. Standard regression analysis implies a statistical relationship based on a conditional expected value, while SEM implies a functional relationship expressed via a conceptual model, path diagram, and mathematical equations. Thus, the causal relationships in a hypothesized mediation process, the simultaneous nature of the indirect and direct effects,and the dual role the mediator plays as both a cause for the outcome and an effect of the intervention are more appropriately expressed using structural equations than using regression analysis.

    4. Use of SEM for mediation analysis

    Figure 1 shows a path diagram for the causal relationships between the three variables in the smoking prevention example discussed earlier:prevention program (xi), social norm (zi), and amount of smoking (yi). In this example, all variables that are effected by other variables – social norms and amount of smoking – are endogenous variables, while variables that only impart an effect on other variables without being effected by other variables – the prevention program – are exogenous variables. All three variables in this smoking prevention example are assumed to be all observed so rectangles (not circles) are used to represent the variables.

    Figure 1: Pathway of a mediation process for a tobacco prevention program

    The SEM for this mediation model for the ith subject (1 ≤ i ≤ n) is given by:

    We assume the error terms (εzi,εyi) are uncorrelated,an important assumption for causal inference in performing mediation analysis.[10,11]We also assume multivariate normality for the error terms; this is a necessary underlying condition of the definition of direct, indirect and total effects. Note that the two structural equations are linked together and inference about them is simultaneous, unlike two independent standard regression equations.

    The direct effect is the pathway from the exogenous variable to the outcome while controlling for the mediator. Therefore, in our path diagram γxyis the direct effect. The indirect effect describes the pathway from the exogenous variable to the outcome through the mediator. This path is represented through the product of βxzand γzy. Finally, the total effect is the sum of the direct and indirect effects of the exogenous variable on the outcome, γxy+ βxzγzy.

    The primary hypothesis of interest in a mediation analysis is to see whether the effect of the independent variable (intervention) on the outcome can be mediated by a change in the mediating variable. In a full mediation process, the effect is 100% mediated by the mediator, that is, in the presence of the mediator, the pathway connecting the intervention to the outcome is completely broken so that the intervention has no direct effect on the outcome. In most applications, however,partial mediation is more common, in which case the mediator only mediates part of the effect of the intervention on the outcome, that is, the intervention has some residual direct effect even after the mediator is introduced into the model.

    In terms of testing the primary hypothesis of interest, we start by examining a reduced regression equation without the mediator:

    If we accept the null hypothesis (H0: γ*xy=0) for this reduced regression equation, then x and y (i.e., the intervention and the outcome) are not related and we should not consider potential mediators. We then proceed to evaluate the SEM for the mediation model if we reject the null hypothesis for this reduced regression equation. Full mediation (i.e., the intervention has no direct effect on the outcome) corresponds to the null hypothesis, H0: γxy=0. If this null is rejected, it becomes of interest to assess partial mediation via the direct,indirect and total effects. Inference (standard errors and p-values) about such effects is easily performed using the Delta or Bootstrap methods.[8,9,13]

    Significant advances have been made over the past few decades in the theory, applications and associated software development for fitting SEM models that can be used in the context of mediation analysis. For example, in addition to specialized packages such as LISREL,[14]MPlus,[15]EQS,[16]and Amos,[17]procedures for fitting SEM are also available from general-purposes statistical packages such as R, SAS, STATA and Statistica.These packages provide inference based on maximum likelihood, generalized least squares, and weighted least squares.

    5. An example of mediation analysis using SEM to model the relationship of drinking to suicidal risk

    Project MATCH[18]is a multisite treatment trial for alcohol use disorders that enrolled 1,726 participants (including 24% women) with a mean (sd) age of 40.2 (11.0) years.Previously, studies of alcohol dependent individuals established that drinking promotes depressive symptoms and depressive disorders and that depression is an important risk factor for suicidal thoughts and behavior.[19]Therefore, considering the context of the study and prior theory, mediation analysis was used to evaluate the hypothesis that greater drinking intensity leads to higher levels of depression which, in turn, leads to suicidal ideation.[19]In the model, drinking intensity was a latent construct based on three months of data about drinking behavior, while depression and suicidal ideation were measured using the Beck Depression Inventory.[20]

    Mediation analysis with SEM was performed using MPlus software. Age, gender, race, treatment assignment,study arm, and baseline percent days abstinent were controlled for in the structural equations for each endogenous variable in the structural model. The outcome – the presence or absence of suicidal ideation– was analyzed via the probit link (which is used to transform outcome probabilities to the standard normal variable), which made it possible to interpret the indirect, direct and total effects on an interval scale. Subjects were assessed at baseline and at 3-,9-, and 15-month follow-up, but in order to derive a single direct, indirect and total effect in the model(as in models of cross-sectional data) we constrained all model parameters at the three follow-up times to be equal and controlled for the baseline value of the outcome measure. Standardized estimates (between -1 and 1) were reported rather than raw estimates, so that estimates from different structural equations are on the same scale, simplifying interpretation.

    In the regression equation without the mediator,the estimate of the causal path from drinking intensity to suicidality was significant (γ^*xy=0.20, p<0.001).

    The path diagram of Figure 2 of the mediation model includes the standardized estimates for the causal paths for the indirect and direct effects. Both estimated paths for the indirect effect were statistically significant, while the estimate of the direct effectfrom drinking intensity to suicidal ideation was close to zero and not significant. Therefore, potentially,depression fully mediates the path between drinking intensity and suicidal ideation. The model showed reasonably good model fi t according to multiple SEM fi t statistics and indices: χ2(df=59)=218.29, p≤0.001; Root Mean Square Error of Approximation (RMSEA)=0.042;Comparative fit index (CFI)=0.947; Tucker-Lewis index(TLI)=0.933. Rule of thumb guidelines are that CFI ≥0.95,TLI ≥0.95 and RMSEA ≤0.05 represent a good fitting model.

    Figure 2: Pathway of a mediation process for a clinical model of drinking and suicidal risk(*p<0.05)

    6. Other issues to consider when performing mediation analysis

    Baron and Kenny[4]distinguished mediation from moderation, in which a third variable affects the strength or direction of the relationship between an independent variable and an outcome. In multi-group analyses a moderator is typically either part of an interaction term or a grouping variable. For example,if males are known to react differently than females to a particular intervention for lowering cholesterol, in a gender by treatment interaction effect, gender is a moderator. In mediated-moderation, such an interaction is used as an independent (i.e., exogenous) variable in the SEM path diagram.

    Longitudinal data help capture both withinindividual dynamics and between individual differences over time. Also, longitudinal data allow for the examination of whether changes in the mediator are more likely to precede changes in the outcome,presenting more accurate representations of the temporal order of change over time that lead to more accurate conclusions about mediation.[7]Latent growth modeling is an SEM extension for longitudinal data that can flexibly evaluate mediating relationships between multiple time-varying measures.[12]Autoregressive and multilevel models have also been used for longitudinal mediation analyses with SEM.

    Causal inference methods, which use the language of counterfactuals and potential outcomes, have been used in mediation analysis.[21]These approaches address the issues of potential confounders of the mediatoroutcome relationship and of potential interactions between the mediator and treatment. They also provide definitions for deriving effects for analyses involving mediators and outcomes that are not on an interval scale (i.e. count data, categorical data).These causal inference methods can be applied in the SEM framework.[22,23]Imai and colleagues[11]proposed approaches to extend SEM by using causal inference methods to generate a more general definition,identification, estimation, and sensitivity analysis of causal mediation effects that are not based on any specific statistical model; they also introduced a R package for performing causal mediation analysis using their approaches.[11]

    7. Conclusion

    Mediation helps explain the mechanism through which an intervention influences an outcome and assumes both causal and temporal relations. When performed using strong prior theory and with appropriate context, mediation analysis helps provide a focus for future intervention research so more efficacious and cost-efficient alternative therapies may be developed.Structural equation modeling provides a very general,fl exible framework for performing mediation analysis.

    Conflict of Interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    Financial support for this study was provided by a grant from NIH/NCRR CTSA KL2TR000440. The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report.

    1. MacKinnon D, Fairchild A. Current directions in mediation analysis. Current Directions in Psychological Science 2009;18: 16-20.

    2. Bollen KA. Structural Equations with Latent Variables. New York, NY: Wiley; 1989.

    3. Kowalski J, Tu XM. Modern Applied U Statistics. New York,NY: Wiley; 2007.

    4. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: concept, strategic and statistical considerations. Journal of Personality and Social Psychology 1986;51: 1173-1182.

    5. Kraemer H. How do risk factors work together? Mediators,moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry 2001;158: 848-856.

    6. Rothman KJ, Greenland S. Modern Epidemiology.Philadelphia, PA: Lippingcott Williams and Wilkins; 1998.

    7. MacKinnon, D. Introduction to Statistical Mediation Analysis.New York, NY: Lawrence Erlbaum Associates; 2008.

    8. Sobel ME. Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290-312). San Francisco, CA: Jossey-Bass;1982.

    9. Clogg CC, Petkova, E, Shihadeh ES. Statistical methods for analyzing collapsibility in regression models. Journal of Educational Statistics 1992;17(1): 51-74.

    10. Bollen KA, Pearl J. Eight myths about causality and structural equation models. UCLA Cognitive Systems Laboratory,Technical Report (R-393). Draft chapter for S. Morgan (ed.)Handbook of Causal Analysis for Social Research. New York,NY: Springer; 2012.

    11. Imai K, Keele, L, Tingley D. A general approach to casual mediation analysis. Psychological Methods 2010;15(4): 309-334.

    12. Preacher KJ, Wichman AL, MacCallum RC, Briggs NE. Latent Growth Curve Modeling. Los Angeles, CA: Sage; 2008.

    13. Bollen KA, Stine R. Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology 1990;20: 115-140.

    14. Joreskog KG, Sorbom D. Lisrel 8 User’s Guide, Second Edition.Lincolnwood, IL: Scientific Software; 1997.

    15. Muthén LK, Muthén BO. Mplus User’s Guide, Seventh Edition. Los Angeles, CA: Muthén & Muthén; 1998-2012.

    16. Bentler, P.M. EQS 6 Structural Equations Program Manual.Encino, CA: Multivariate Software, Inc; 2006.

    17. Arbuckle JL. IBM SPSS Amos 19 User’s Guide. Crawfordville,FL: Amos Development Corporation; 1995-2010.

    18. Project MATCH Research Group. Project MATCH: rationale and methods for a multisite clinical trial matching patients to alcoholism treatment. Alcohol Clin Exp Res 1993;17:1130–1145.

    19. Conner KR, Gunzler D, Tang, W, Tu XM, Maisto SA. Test of a Clinical Model of Drinking and Suicidal Risk. Alcoholism:Clinical and Experimental Research 2011;35: 60-68.

    20. Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry,1961;4: 561–571.

    21. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992;3: 143-155.

    22. Muthén BO [internet]. Los Angeles, CA: Muthén and Muthén. [updated 2011; cited 2013 Dec 11]. Applications of Causally Defined Direct and Indirect Effects in Mediation Analysis Using SEM in Mplus. Available from: http://www.statmodel.com/examples/penn.shtml#extendSEM

    23. Pearl J. Causal inference in statistics: An overview. UCLA Computer Science Department, Technical Report R-350.Statistics Surveys 2009;3: 96-146.

    10.3969/j.issn.1002-0829.2013.06.009

    Center for Health Care Research & Policy, Case Western Reserve University at Metro Health Medical Center, Cleveland, Ohio, United States

    *correspondence: dgunzler@metrohealth.org

    Dr. Douglas Gunzler is a Senior Instructor of Medicine at the Center for Health Care Research and Policy, Case Western Reserve University. His research has focused on structural equation modeling and longitudinal analysis, emphasizing mediation analysis, missing data, multi-level modeling and distribution-free models, with applications in mental health and neurology. Dr. Gunzler received his PhD in Statistics from the Department of Biostatistics and Computational Biology at the University of Rochester in 2011.

    欧美乱妇无乱码| 波多野结衣高清无吗| 一区福利在线观看| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 亚洲第一电影网av| 搞女人的毛片| 久久久久久人人人人人| 十八禁网站免费在线| 久久久久国内视频| 午夜成年电影在线免费观看| 无限看片的www在线观看| 日韩精品青青久久久久久| 国产高清视频在线观看网站| 一边摸一边抽搐一进一小说| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 他把我摸到了高潮在线观看| 国产精品久久久久久人妻精品电影| 亚洲一区高清亚洲精品| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| 久久久久国内视频| 中文在线观看免费www的网站 | 久久精品综合一区二区三区| 欧美成狂野欧美在线观看| 亚洲国产精品久久男人天堂| 婷婷亚洲欧美| 美女大奶头视频| 俄罗斯特黄特色一大片| 很黄的视频免费| 窝窝影院91人妻| 久久婷婷成人综合色麻豆| 免费电影在线观看免费观看| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 色老头精品视频在线观看| 美女大奶头视频| 黄频高清免费视频| 国产单亲对白刺激| 欧美日本视频| 精品人妻1区二区| 90打野战视频偷拍视频| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 午夜久久久久精精品| 又黄又爽又免费观看的视频| 中文字幕人成人乱码亚洲影| 狠狠狠狠99中文字幕| 欧美3d第一页| 国产成+人综合+亚洲专区| 久久欧美精品欧美久久欧美| 久久久国产精品麻豆| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 18禁观看日本| 国产精品爽爽va在线观看网站| 日本一区二区免费在线视频| 中文字幕av在线有码专区| 伊人久久大香线蕉亚洲五| 久久精品综合一区二区三区| 国产亚洲av嫩草精品影院| 九色国产91popny在线| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 丝袜人妻中文字幕| 级片在线观看| 在线观看www视频免费| 日韩欧美三级三区| 午夜免费激情av| 国产精品一区二区免费欧美| 黄片小视频在线播放| 久久精品综合一区二区三区| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 禁无遮挡网站| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 亚洲熟妇熟女久久| 中文字幕精品亚洲无线码一区| 亚洲国产欧美网| 2021天堂中文幕一二区在线观| 国产精品自产拍在线观看55亚洲| 性欧美人与动物交配| 在线国产一区二区在线| 神马国产精品三级电影在线观看 | www日本黄色视频网| 国产一区二区在线av高清观看| 操出白浆在线播放| 黑人操中国人逼视频| www.自偷自拍.com| 露出奶头的视频| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| av在线播放免费不卡| 夜夜爽天天搞| 国产高清videossex| 一区二区三区激情视频| 黄色视频不卡| xxxwww97欧美| 色老头精品视频在线观看| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 免费在线观看成人毛片| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 亚洲av成人精品一区久久| 免费在线观看影片大全网站| 亚洲狠狠婷婷综合久久图片| 老司机午夜福利在线观看视频| 亚洲色图av天堂| 一进一出好大好爽视频| 精品熟女少妇八av免费久了| 国产熟女xx| 中文字幕人成人乱码亚洲影| 日本一二三区视频观看| 成人一区二区视频在线观看| 午夜影院日韩av| 久久精品国产亚洲av高清一级| 亚洲精品国产一区二区精华液| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 久久久久性生活片| 岛国在线观看网站| 丰满人妻一区二区三区视频av | 久久中文看片网| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| cao死你这个sao货| 日本一本二区三区精品| 97碰自拍视频| 人成视频在线观看免费观看| 亚洲在线自拍视频| 国产av在哪里看| 制服丝袜大香蕉在线| 亚洲国产精品久久男人天堂| 少妇粗大呻吟视频| 性色av乱码一区二区三区2| 日韩欧美在线二视频| 不卡一级毛片| 天天添夜夜摸| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美 | 少妇粗大呻吟视频| 国产亚洲精品久久久久5区| 午夜成年电影在线免费观看| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 色av中文字幕| 韩国av一区二区三区四区| 午夜影院日韩av| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻 | 99精品久久久久人妻精品| 男男h啪啪无遮挡| 国产一区二区在线观看日韩 | 久久99热这里只有精品18| 国产欧美日韩一区二区精品| 特级一级黄色大片| 岛国视频午夜一区免费看| 欧美日韩一级在线毛片| 欧美绝顶高潮抽搐喷水| 欧美午夜高清在线| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 国产91精品成人一区二区三区| 国产av又大| 韩国av一区二区三区四区| 两个人免费观看高清视频| 99riav亚洲国产免费| 日日摸夜夜添夜夜添小说| 日韩欧美精品v在线| 国产精品 国内视频| 国产探花在线观看一区二区| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 国产精品一及| 久久香蕉激情| 成人国产综合亚洲| 久久精品影院6| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 亚洲九九香蕉| 欧美久久黑人一区二区| 2021天堂中文幕一二区在线观| 中亚洲国语对白在线视频| 丁香六月欧美| 一a级毛片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 99在线人妻在线中文字幕| 精品久久蜜臀av无| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 国产精品一区二区三区四区久久| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 色综合站精品国产| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 黑人操中国人逼视频| 丰满的人妻完整版| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费| 亚洲精品中文字幕一二三四区| 中文字幕久久专区| 草草在线视频免费看| bbb黄色大片| 国产精品免费视频内射| av在线天堂中文字幕| 国产又黄又爽又无遮挡在线| 在线视频色国产色| 久9热在线精品视频| 国产精品国产高清国产av| 久久久水蜜桃国产精品网| 熟女少妇亚洲综合色aaa.| 国内少妇人妻偷人精品xxx网站 | 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 毛片女人毛片| 国内精品一区二区在线观看| 久久久国产精品麻豆| 中文字幕最新亚洲高清| 亚洲欧美日韩无卡精品| 免费在线观看黄色视频的| 日韩国内少妇激情av| 成人三级黄色视频| 青草久久国产| 在线国产一区二区在线| 国产三级在线视频| 一本久久中文字幕| 欧美激情久久久久久爽电影| 精品久久久久久久毛片微露脸| 亚洲欧洲精品一区二区精品久久久| 国产三级在线视频| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女| 夜夜躁狠狠躁天天躁| 亚洲av成人不卡在线观看播放网| 琪琪午夜伦伦电影理论片6080| 国产日本99.免费观看| 国产亚洲av高清不卡| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 草草在线视频免费看| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 日本精品一区二区三区蜜桃| 女警被强在线播放| 亚洲国产高清在线一区二区三| 制服丝袜大香蕉在线| 国产激情欧美一区二区| 两个人免费观看高清视频| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 国产亚洲精品一区二区www| 波多野结衣高清作品| 老司机福利观看| 久久欧美精品欧美久久欧美| 久久香蕉激情| 国产午夜福利久久久久久| 日韩av在线大香蕉| 老司机深夜福利视频在线观看| 变态另类丝袜制服| 国产在线精品亚洲第一网站| 久久婷婷人人爽人人干人人爱| 久久久久性生活片| ponron亚洲| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 精品国产乱码久久久久久男人| 黄色毛片三级朝国网站| 国产成年人精品一区二区| 国产成人啪精品午夜网站| 久久人人精品亚洲av| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 超碰成人久久| 亚洲性夜色夜夜综合| 国产探花在线观看一区二区| 日韩欧美三级三区| 午夜久久久久精精品| av在线播放免费不卡| aaaaa片日本免费| 老汉色∧v一级毛片| 欧美成人一区二区免费高清观看 | 美女免费视频网站| e午夜精品久久久久久久| 国内少妇人妻偷人精品xxx网站 | 国产激情欧美一区二区| 国产高清视频在线观看网站| 精品第一国产精品| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 久久久久久九九精品二区国产 | 91字幕亚洲| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 校园春色视频在线观看| av国产免费在线观看| 两人在一起打扑克的视频| 日韩免费av在线播放| 午夜精品在线福利| 亚洲国产高清在线一区二区三| 一级片免费观看大全| www日本在线高清视频| 听说在线观看完整版免费高清| 国产精品野战在线观看| 亚洲av成人av| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 欧美中文日本在线观看视频| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 久久精品成人免费网站| 精品不卡国产一区二区三区| 在线观看午夜福利视频| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 欧美成人午夜精品| 又大又爽又粗| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 在线观看66精品国产| 欧美zozozo另类| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 国产免费男女视频| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 一个人免费在线观看电影 | 精品人妻1区二区| 热99re8久久精品国产| 少妇粗大呻吟视频| 可以在线观看的亚洲视频| 人妻夜夜爽99麻豆av| 成年人黄色毛片网站| 国产亚洲av高清不卡| 免费看十八禁软件| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 91大片在线观看| 香蕉av资源在线| 亚洲欧洲精品一区二区精品久久久| 国产av一区二区精品久久| 精品久久久久久成人av| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 两个人免费观看高清视频| 国产久久久一区二区三区| 国产不卡一卡二| 99热这里只有精品一区 | 亚洲精品色激情综合| 亚洲人成网站高清观看| 天堂√8在线中文| 国产成人av激情在线播放| 国产精品一区二区三区四区久久| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 日日爽夜夜爽网站| videosex国产| 国产精品亚洲美女久久久| 在线观看美女被高潮喷水网站 | 欧美一区二区国产精品久久精品 | 岛国视频午夜一区免费看| 国产精品一区二区免费欧美| 国产黄a三级三级三级人| 国产av麻豆久久久久久久| 久久久国产精品麻豆| 亚洲av成人一区二区三| 黄频高清免费视频| 国语自产精品视频在线第100页| 一个人观看的视频www高清免费观看 | 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 久久香蕉激情| 成年版毛片免费区| 日韩欧美免费精品| www日本在线高清视频| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 亚洲成人久久性| 日韩有码中文字幕| 亚洲乱码一区二区免费版| 亚洲欧美精品综合久久99| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 亚洲,欧美精品.| 怎么达到女性高潮| 哪里可以看免费的av片| 亚洲成av人片在线播放无| 2021天堂中文幕一二区在线观| 欧美黄色淫秽网站| 久久这里只有精品中国| 精品第一国产精品| 久久精品综合一区二区三区| 国产免费男女视频| a级毛片在线看网站| 在线观看免费视频日本深夜| 亚洲一卡2卡3卡4卡5卡精品中文| av中文乱码字幕在线| 可以免费在线观看a视频的电影网站| 午夜福利欧美成人| 级片在线观看| 变态另类丝袜制服| 国产亚洲精品一区二区www| 久久精品国产亚洲av高清一级| 国语自产精品视频在线第100页| 国产成人影院久久av| 人妻夜夜爽99麻豆av| 热99re8久久精品国产| 国产野战对白在线观看| 日韩欧美在线二视频| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 嫩草影院精品99| 特级一级黄色大片| 麻豆av在线久日| 国产午夜福利久久久久久| 欧美日韩福利视频一区二区| 免费看a级黄色片| 成人三级做爰电影| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻 | 国产精品一区二区免费欧美| 亚洲无线在线观看| 国内精品一区二区在线观看| 国产成年人精品一区二区| 中文字幕久久专区| 丝袜美腿诱惑在线| 亚洲精品一卡2卡三卡4卡5卡| 日韩高清综合在线| 久久久久久人人人人人| 成年女人毛片免费观看观看9| 欧美黑人精品巨大| 50天的宝宝边吃奶边哭怎么回事| 一个人免费在线观看的高清视频| 欧美绝顶高潮抽搐喷水| 日韩大码丰满熟妇| 国产三级中文精品| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av香蕉五月| 久久国产精品人妻蜜桃| 天堂动漫精品| netflix在线观看网站| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 久久精品人妻少妇| 成人三级做爰电影| 五月玫瑰六月丁香| 国产熟女xx| 欧美黑人巨大hd| 动漫黄色视频在线观看| 久久久久性生活片| 男人舔女人下体高潮全视频| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 国产黄片美女视频| 久久性视频一级片| 精品人妻1区二区| 国产精品久久电影中文字幕| 亚洲精品美女久久久久99蜜臀| 欧美高清成人免费视频www| а√天堂www在线а√下载| 在线观看免费视频日本深夜| 国产成人aa在线观看| 美女大奶头视频| 久久久久精品国产欧美久久久| 日韩三级视频一区二区三区| 国产亚洲精品一区二区www| a级毛片在线看网站| 999久久久精品免费观看国产| 别揉我奶头~嗯~啊~动态视频| 女人高潮潮喷娇喘18禁视频| 伦理电影免费视频| 国产亚洲欧美在线一区二区| 亚洲午夜精品一区,二区,三区| 亚洲成av人片免费观看| 日本五十路高清| 久久精品国产99精品国产亚洲性色| 黄色女人牲交| 久久久久久久久中文| 中亚洲国语对白在线视频| 日本免费一区二区三区高清不卡| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影| 国产av麻豆久久久久久久| 成人午夜高清在线视频| 两个人的视频大全免费| 首页视频小说图片口味搜索| 黄片小视频在线播放| 韩国av一区二区三区四区| 中亚洲国语对白在线视频| 久久久久久免费高清国产稀缺| 国产真实乱freesex| 欧美在线黄色| 99热这里只有是精品50| 日本免费a在线| 亚洲国产高清在线一区二区三| 免费在线观看亚洲国产| 国产精品久久久久久精品电影| 看免费av毛片| 国产一区二区在线av高清观看| 久久 成人 亚洲| 嫩草影院精品99| 日本熟妇午夜| 99国产精品一区二区蜜桃av| 女同久久另类99精品国产91| 无人区码免费观看不卡| 亚洲精品久久成人aⅴ小说| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 99久久久亚洲精品蜜臀av| 亚洲第一欧美日韩一区二区三区| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看| 亚洲成av人片免费观看| 久久国产乱子伦精品免费另类| 亚洲人成网站高清观看| 日韩欧美免费精品| 国产一区二区三区视频了| 少妇的丰满在线观看| 中文字幕人妻丝袜一区二区| 成人永久免费在线观看视频| 又大又爽又粗| 欧美日本亚洲视频在线播放| 午夜久久久久精精品| 舔av片在线| 国产精品久久久久久久电影 | 1024手机看黄色片| 丁香欧美五月| 亚洲精品av麻豆狂野| 欧美黑人巨大hd| 久久精品人妻少妇| 国产高清videossex| 亚洲人成77777在线视频| 久久香蕉精品热| 久久久国产成人精品二区| 亚洲18禁久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| 青草久久国产| 美女午夜性视频免费| 亚洲 欧美一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 国产亚洲欧美在线一区二区| av福利片在线观看| 国产视频内射| 一二三四社区在线视频社区8| 久久久久国产精品人妻aⅴ院| 国产精品美女特级片免费视频播放器 | 欧美黄色片欧美黄色片| 国产伦一二天堂av在线观看| 欧美成狂野欧美在线观看| 午夜福利欧美成人| 中文字幕高清在线视频| www.www免费av| 天天躁狠狠躁夜夜躁狠狠躁| 成人一区二区视频在线观看| 一级片免费观看大全| 女人高潮潮喷娇喘18禁视频| 男女那种视频在线观看| 国产成人精品久久二区二区91| 日韩免费av在线播放| 黄色丝袜av网址大全| 国内毛片毛片毛片毛片毛片| 久久婷婷成人综合色麻豆| 日韩欧美在线二视频| 99国产综合亚洲精品| 亚洲一区二区三区色噜噜| 国产激情久久老熟女| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕日韩| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频| 日本黄色视频三级网站网址| 老司机福利观看| 中文字幕熟女人妻在线| 欧美三级亚洲精品| 校园春色视频在线观看| or卡值多少钱| 色哟哟哟哟哟哟| 日韩欧美在线二视频| 俄罗斯特黄特色一大片| 少妇粗大呻吟视频| 亚洲欧洲精品一区二区精品久久久| 免费观看人在逋| 日韩免费av在线播放| 成人18禁高潮啪啪吃奶动态图| 两个人视频免费观看高清|