• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introduction to mediation analysis with structural equation modeling

    2013-12-09 02:28:53DouglasGUNZLERTianCHENPanWUHuiZHANG
    上海精神醫(yī)學(xué) 2013年6期

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    ?Biostatistics in psychiatry (18)?

    Introduction to mediation analysis with structural equation modeling

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    1. What is mediation analysis?

    In mediation, we consider an intermediate variable,called the mediator, that helps explain how or why an independent variable influences an outcome. In the context of a treatment study, it is often of great interest to identify and study the mechanisms by which an intervention achieves its effect. By investigating mediational processes that clarify how the treatment achieves the study outcome, not only can we further our understanding of the pathology of the disease and the mechanisms of treatment, but we may also be able to identify alternative, more efficient, intervention strategies. For example, a tobacco prevention program may teach participants how to stop taking smoking breaks at work (the intervention) which changes their social norms about tobacco use (the intermediate mediator) and subsequently leads to a reduction in smoking behavior (study outcome).[1]

    With mediation analysis, we gain insight and acquire deep understanding about the mechanism of action of pharmacological and psychotherapeutic treatments. Such information provides an added dimension to understand the etiology of disease and the pathways of therapeutic effects, which can stimulate the identification of more efficacious and cost-efficient alternative therapies.

    2. What is structural equation modeling?

    Structural equation modeling (SEM) is a very general,very powerful multivariate technique. It uses a conceptual model, path diagram and system of linked regression-style equations to capture complex and dynamic relationships within a web of observed and unobserved variables. Although similar in appearance,SEM is fundamentally different from regression. In a regression model, there exists a clear distinction between dependent and independent variables. In SEM,however, such concepts only apply in relative terms since a dependent variable in one model equation can become an independent variable in other components of the SEM system.[2,3]It is precisely this type of reciprocal role a variable plays that enables SEM to infer causal relationships.

    SEM models include both endogenous and exogenous variables. Endogenous variables act as a dependent variable in at least one of the SEM equations; they are called endogenous variables rather than response variables because they may become independent variables in other equations within the SEM equations. Exogenous variables are always independent variables in the SEM equations. SEM equations model both the causal relationships between endogenous and exogenous variables, and the causal relationships among endogenous variables.

    SEM models are best represented by path diagrams.A path diagram consists of nodes representing the variables and arrows showing relations among these variables. By convention, in a path diagram latent variables (e.g., depression) are represented by a circle or ellipse and observed variables (e.g., a score on a rating scale) are represented by a rectangle or square.Arrows are generally used to represent relationships among the variables. A single straight arrow indicates a causal relation from the base of the arrow to the head of the arrow. Two straight single-headed arrows in opposing directions connecting two variables indicate a reciprocal causal relationship. A curved two-headed arrow indicates there may be some association between the two variables. Error terms for a variable are inserted into the path diagram by drawing an arrow from the value of the error term to the variable with which the term is associated.

    For example, in most path diagrams for crosssectional data, error terms are not connected, indicating stochastic independence across the error terms. But if we suspect association between error terms – which is likely to occur in most longitudinal studies – the error terms should be connected by curved two-headed arrows. See Bollen[2]and Kowalski and Tu[3]for more details about modeling complex relationships involving latent constructs using SEM.

    3. Advantages of using structural equation modeling instead of standard regression methods for mediation analysis

    Baron and Kenny,[4]in the fi rst paper addressing mediation analysis, tested the mediation process using a series of regression equations. However, mediation assumes both causality and a temporal ordering among the three variables under study (i.e. intervention, mediator and response). Since variables in a causal relationship can be both causes and effects, the standard regression paradigm is ill-suited for modeling such a relationship because of its a priori assignment of each variable as either a cause or an effect.[1,5,6]Structural equation modeling (SEM) provides a more appropriate inference framework for mediation analyses and for other types of causal analyses.

    There are many advantages to using the SEM framework in the context of mediation analysis. When a model contains latent variables such as happiness,quality of life and stress, SEM allows for ease of interpretation and estimation. SEM simplifies testing of mediation hypotheses because it is designed, in part,to test these more complicated mediation models in a single analysis.[7]SEM can be used when extending a mediation process to multiple independent variables,mediators or outcomes. This contrasts with standard regression, in which ad hoc methods must be used for inference about indirect and total effects.[4,8,9]These ad hoc methods rely on combining the results of two or more equations to derive the asymptotic variance.This is especially problematic when there are different numbers of observations missing in the different regression equations representing a mediation process.Also, in standard regression, we handle missing data via listwise deletion since there is no built-in missing data mechanism when using ordinary least squares (OLS).

    Another important advantage of SEM over standard regression methods is that the SEM analysis approach provides model fit information about the consistency of the hypothesized mediational model to the data and evidence for the plausibility of the causality assumptions[10,11]made when constructing the mediation model. The standard regression procedure initially recommended by Baron and Kenny[4]has also been shown to be low powered.[7]Moreover, unlike standard regression approaches, SEM allows for ease of extension to longitudinal data within a single framework,corresponding with a study’s conceptual framework for clear hypothesis articulation.[12]Finally, Bollen and Pearl[10]note that even when the same equation is used in SEM and in regression analysis, the results will be different because they are based on completely different assumptions. Standard regression analysis implies a statistical relationship based on a conditional expected value, while SEM implies a functional relationship expressed via a conceptual model, path diagram, and mathematical equations. Thus, the causal relationships in a hypothesized mediation process, the simultaneous nature of the indirect and direct effects,and the dual role the mediator plays as both a cause for the outcome and an effect of the intervention are more appropriately expressed using structural equations than using regression analysis.

    4. Use of SEM for mediation analysis

    Figure 1 shows a path diagram for the causal relationships between the three variables in the smoking prevention example discussed earlier:prevention program (xi), social norm (zi), and amount of smoking (yi). In this example, all variables that are effected by other variables – social norms and amount of smoking – are endogenous variables, while variables that only impart an effect on other variables without being effected by other variables – the prevention program – are exogenous variables. All three variables in this smoking prevention example are assumed to be all observed so rectangles (not circles) are used to represent the variables.

    Figure 1: Pathway of a mediation process for a tobacco prevention program

    The SEM for this mediation model for the ith subject (1 ≤ i ≤ n) is given by:

    We assume the error terms (εzi,εyi) are uncorrelated,an important assumption for causal inference in performing mediation analysis.[10,11]We also assume multivariate normality for the error terms; this is a necessary underlying condition of the definition of direct, indirect and total effects. Note that the two structural equations are linked together and inference about them is simultaneous, unlike two independent standard regression equations.

    The direct effect is the pathway from the exogenous variable to the outcome while controlling for the mediator. Therefore, in our path diagram γxyis the direct effect. The indirect effect describes the pathway from the exogenous variable to the outcome through the mediator. This path is represented through the product of βxzand γzy. Finally, the total effect is the sum of the direct and indirect effects of the exogenous variable on the outcome, γxy+ βxzγzy.

    The primary hypothesis of interest in a mediation analysis is to see whether the effect of the independent variable (intervention) on the outcome can be mediated by a change in the mediating variable. In a full mediation process, the effect is 100% mediated by the mediator, that is, in the presence of the mediator, the pathway connecting the intervention to the outcome is completely broken so that the intervention has no direct effect on the outcome. In most applications, however,partial mediation is more common, in which case the mediator only mediates part of the effect of the intervention on the outcome, that is, the intervention has some residual direct effect even after the mediator is introduced into the model.

    In terms of testing the primary hypothesis of interest, we start by examining a reduced regression equation without the mediator:

    If we accept the null hypothesis (H0: γ*xy=0) for this reduced regression equation, then x and y (i.e., the intervention and the outcome) are not related and we should not consider potential mediators. We then proceed to evaluate the SEM for the mediation model if we reject the null hypothesis for this reduced regression equation. Full mediation (i.e., the intervention has no direct effect on the outcome) corresponds to the null hypothesis, H0: γxy=0. If this null is rejected, it becomes of interest to assess partial mediation via the direct,indirect and total effects. Inference (standard errors and p-values) about such effects is easily performed using the Delta or Bootstrap methods.[8,9,13]

    Significant advances have been made over the past few decades in the theory, applications and associated software development for fitting SEM models that can be used in the context of mediation analysis. For example, in addition to specialized packages such as LISREL,[14]MPlus,[15]EQS,[16]and Amos,[17]procedures for fitting SEM are also available from general-purposes statistical packages such as R, SAS, STATA and Statistica.These packages provide inference based on maximum likelihood, generalized least squares, and weighted least squares.

    5. An example of mediation analysis using SEM to model the relationship of drinking to suicidal risk

    Project MATCH[18]is a multisite treatment trial for alcohol use disorders that enrolled 1,726 participants (including 24% women) with a mean (sd) age of 40.2 (11.0) years.Previously, studies of alcohol dependent individuals established that drinking promotes depressive symptoms and depressive disorders and that depression is an important risk factor for suicidal thoughts and behavior.[19]Therefore, considering the context of the study and prior theory, mediation analysis was used to evaluate the hypothesis that greater drinking intensity leads to higher levels of depression which, in turn, leads to suicidal ideation.[19]In the model, drinking intensity was a latent construct based on three months of data about drinking behavior, while depression and suicidal ideation were measured using the Beck Depression Inventory.[20]

    Mediation analysis with SEM was performed using MPlus software. Age, gender, race, treatment assignment,study arm, and baseline percent days abstinent were controlled for in the structural equations for each endogenous variable in the structural model. The outcome – the presence or absence of suicidal ideation– was analyzed via the probit link (which is used to transform outcome probabilities to the standard normal variable), which made it possible to interpret the indirect, direct and total effects on an interval scale. Subjects were assessed at baseline and at 3-,9-, and 15-month follow-up, but in order to derive a single direct, indirect and total effect in the model(as in models of cross-sectional data) we constrained all model parameters at the three follow-up times to be equal and controlled for the baseline value of the outcome measure. Standardized estimates (between -1 and 1) were reported rather than raw estimates, so that estimates from different structural equations are on the same scale, simplifying interpretation.

    In the regression equation without the mediator,the estimate of the causal path from drinking intensity to suicidality was significant (γ^*xy=0.20, p<0.001).

    The path diagram of Figure 2 of the mediation model includes the standardized estimates for the causal paths for the indirect and direct effects. Both estimated paths for the indirect effect were statistically significant, while the estimate of the direct effectfrom drinking intensity to suicidal ideation was close to zero and not significant. Therefore, potentially,depression fully mediates the path between drinking intensity and suicidal ideation. The model showed reasonably good model fi t according to multiple SEM fi t statistics and indices: χ2(df=59)=218.29, p≤0.001; Root Mean Square Error of Approximation (RMSEA)=0.042;Comparative fit index (CFI)=0.947; Tucker-Lewis index(TLI)=0.933. Rule of thumb guidelines are that CFI ≥0.95,TLI ≥0.95 and RMSEA ≤0.05 represent a good fitting model.

    Figure 2: Pathway of a mediation process for a clinical model of drinking and suicidal risk(*p<0.05)

    6. Other issues to consider when performing mediation analysis

    Baron and Kenny[4]distinguished mediation from moderation, in which a third variable affects the strength or direction of the relationship between an independent variable and an outcome. In multi-group analyses a moderator is typically either part of an interaction term or a grouping variable. For example,if males are known to react differently than females to a particular intervention for lowering cholesterol, in a gender by treatment interaction effect, gender is a moderator. In mediated-moderation, such an interaction is used as an independent (i.e., exogenous) variable in the SEM path diagram.

    Longitudinal data help capture both withinindividual dynamics and between individual differences over time. Also, longitudinal data allow for the examination of whether changes in the mediator are more likely to precede changes in the outcome,presenting more accurate representations of the temporal order of change over time that lead to more accurate conclusions about mediation.[7]Latent growth modeling is an SEM extension for longitudinal data that can flexibly evaluate mediating relationships between multiple time-varying measures.[12]Autoregressive and multilevel models have also been used for longitudinal mediation analyses with SEM.

    Causal inference methods, which use the language of counterfactuals and potential outcomes, have been used in mediation analysis.[21]These approaches address the issues of potential confounders of the mediatoroutcome relationship and of potential interactions between the mediator and treatment. They also provide definitions for deriving effects for analyses involving mediators and outcomes that are not on an interval scale (i.e. count data, categorical data).These causal inference methods can be applied in the SEM framework.[22,23]Imai and colleagues[11]proposed approaches to extend SEM by using causal inference methods to generate a more general definition,identification, estimation, and sensitivity analysis of causal mediation effects that are not based on any specific statistical model; they also introduced a R package for performing causal mediation analysis using their approaches.[11]

    7. Conclusion

    Mediation helps explain the mechanism through which an intervention influences an outcome and assumes both causal and temporal relations. When performed using strong prior theory and with appropriate context, mediation analysis helps provide a focus for future intervention research so more efficacious and cost-efficient alternative therapies may be developed.Structural equation modeling provides a very general,fl exible framework for performing mediation analysis.

    Conflict of Interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    Financial support for this study was provided by a grant from NIH/NCRR CTSA KL2TR000440. The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report.

    1. MacKinnon D, Fairchild A. Current directions in mediation analysis. Current Directions in Psychological Science 2009;18: 16-20.

    2. Bollen KA. Structural Equations with Latent Variables. New York, NY: Wiley; 1989.

    3. Kowalski J, Tu XM. Modern Applied U Statistics. New York,NY: Wiley; 2007.

    4. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: concept, strategic and statistical considerations. Journal of Personality and Social Psychology 1986;51: 1173-1182.

    5. Kraemer H. How do risk factors work together? Mediators,moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry 2001;158: 848-856.

    6. Rothman KJ, Greenland S. Modern Epidemiology.Philadelphia, PA: Lippingcott Williams and Wilkins; 1998.

    7. MacKinnon, D. Introduction to Statistical Mediation Analysis.New York, NY: Lawrence Erlbaum Associates; 2008.

    8. Sobel ME. Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290-312). San Francisco, CA: Jossey-Bass;1982.

    9. Clogg CC, Petkova, E, Shihadeh ES. Statistical methods for analyzing collapsibility in regression models. Journal of Educational Statistics 1992;17(1): 51-74.

    10. Bollen KA, Pearl J. Eight myths about causality and structural equation models. UCLA Cognitive Systems Laboratory,Technical Report (R-393). Draft chapter for S. Morgan (ed.)Handbook of Causal Analysis for Social Research. New York,NY: Springer; 2012.

    11. Imai K, Keele, L, Tingley D. A general approach to casual mediation analysis. Psychological Methods 2010;15(4): 309-334.

    12. Preacher KJ, Wichman AL, MacCallum RC, Briggs NE. Latent Growth Curve Modeling. Los Angeles, CA: Sage; 2008.

    13. Bollen KA, Stine R. Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology 1990;20: 115-140.

    14. Joreskog KG, Sorbom D. Lisrel 8 User’s Guide, Second Edition.Lincolnwood, IL: Scientific Software; 1997.

    15. Muthén LK, Muthén BO. Mplus User’s Guide, Seventh Edition. Los Angeles, CA: Muthén & Muthén; 1998-2012.

    16. Bentler, P.M. EQS 6 Structural Equations Program Manual.Encino, CA: Multivariate Software, Inc; 2006.

    17. Arbuckle JL. IBM SPSS Amos 19 User’s Guide. Crawfordville,FL: Amos Development Corporation; 1995-2010.

    18. Project MATCH Research Group. Project MATCH: rationale and methods for a multisite clinical trial matching patients to alcoholism treatment. Alcohol Clin Exp Res 1993;17:1130–1145.

    19. Conner KR, Gunzler D, Tang, W, Tu XM, Maisto SA. Test of a Clinical Model of Drinking and Suicidal Risk. Alcoholism:Clinical and Experimental Research 2011;35: 60-68.

    20. Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry,1961;4: 561–571.

    21. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992;3: 143-155.

    22. Muthén BO [internet]. Los Angeles, CA: Muthén and Muthén. [updated 2011; cited 2013 Dec 11]. Applications of Causally Defined Direct and Indirect Effects in Mediation Analysis Using SEM in Mplus. Available from: http://www.statmodel.com/examples/penn.shtml#extendSEM

    23. Pearl J. Causal inference in statistics: An overview. UCLA Computer Science Department, Technical Report R-350.Statistics Surveys 2009;3: 96-146.

    10.3969/j.issn.1002-0829.2013.06.009

    Center for Health Care Research & Policy, Case Western Reserve University at Metro Health Medical Center, Cleveland, Ohio, United States

    *correspondence: dgunzler@metrohealth.org

    Dr. Douglas Gunzler is a Senior Instructor of Medicine at the Center for Health Care Research and Policy, Case Western Reserve University. His research has focused on structural equation modeling and longitudinal analysis, emphasizing mediation analysis, missing data, multi-level modeling and distribution-free models, with applications in mental health and neurology. Dr. Gunzler received his PhD in Statistics from the Department of Biostatistics and Computational Biology at the University of Rochester in 2011.

    欧美亚洲日本最大视频资源| 久久青草综合色| 国产伦人伦偷精品视频| 97在线人人人人妻| 18禁观看日本| 亚洲图色成人| 午夜免费成人在线视频| 自线自在国产av| 在现免费观看毛片| 国产片内射在线| 久久久久国产一级毛片高清牌| 国产成人影院久久av| 亚洲黑人精品在线| 母亲3免费完整高清在线观看| av网站免费在线观看视频| cao死你这个sao货| 80岁老熟妇乱子伦牲交| 国产成人免费无遮挡视频| cao死你这个sao货| 国产成人精品久久二区二区91| 久久精品成人免费网站| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲av高清一级| 欧美变态另类bdsm刘玥| 可以免费在线观看a视频的电影网站| 婷婷色麻豆天堂久久| 久久中文字幕一级| www.999成人在线观看| 日韩 欧美 亚洲 中文字幕| 久久久久久久大尺度免费视频| 欧美日韩av久久| 女人爽到高潮嗷嗷叫在线视频| 日日爽夜夜爽网站| 中文字幕色久视频| 婷婷色麻豆天堂久久| 人人妻人人澡人人爽人人夜夜| 精品一品国产午夜福利视频| 好男人电影高清在线观看| 国产精品一二三区在线看| 蜜桃国产av成人99| 成人国产一区最新在线观看 | 97精品久久久久久久久久精品| 亚洲国产欧美网| 看免费av毛片| netflix在线观看网站| 欧美日韩av久久| 国产精品久久久久久精品古装| 欧美成人精品欧美一级黄| 丝袜脚勾引网站| 精品卡一卡二卡四卡免费| 咕卡用的链子| 欧美国产精品va在线观看不卡| 一级a爱视频在线免费观看| 精品福利观看| 久久久精品94久久精品| 又大又黄又爽视频免费| 汤姆久久久久久久影院中文字幕| 亚洲美女黄色视频免费看| 日韩一卡2卡3卡4卡2021年| 国产97色在线日韩免费| 日韩大片免费观看网站| 免费看十八禁软件| 亚洲av日韩精品久久久久久密 | 久久亚洲国产成人精品v| 亚洲精品美女久久av网站| 免费高清在线观看日韩| 久久精品人人爽人人爽视色| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 午夜精品国产一区二区电影| 精品人妻一区二区三区麻豆| 青春草视频在线免费观看| 亚洲精品一二三| 人人妻人人澡人人爽人人夜夜| 18禁国产床啪视频网站| 少妇粗大呻吟视频| 亚洲精品一卡2卡三卡4卡5卡 | www.熟女人妻精品国产| 国产极品粉嫩免费观看在线| 亚洲色图 男人天堂 中文字幕| 美女大奶头黄色视频| 香蕉丝袜av| 啦啦啦 在线观看视频| 熟女av电影| 热99久久久久精品小说推荐| 青春草视频在线免费观看| 青春草视频在线免费观看| avwww免费| 精品一品国产午夜福利视频| 亚洲精品国产区一区二| 欧美 亚洲 国产 日韩一| 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 欧美黄色淫秽网站| 操出白浆在线播放| 在线观看免费日韩欧美大片| 男女免费视频国产| 国产精品.久久久| 亚洲男人天堂网一区| 欧美在线黄色| 亚洲图色成人| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品久久二区二区免费| 国产女主播在线喷水免费视频网站| 一区二区日韩欧美中文字幕| 免费黄频网站在线观看国产| 国产精品国产av在线观看| 90打野战视频偷拍视频| 嫩草影视91久久| 美女中出高潮动态图| 在线精品无人区一区二区三| 国产精品av久久久久免费| 国产精品国产三级国产专区5o| 午夜久久久在线观看| 最新在线观看一区二区三区 | 婷婷色综合www| 天堂俺去俺来也www色官网| 国产爽快片一区二区三区| 一区二区三区激情视频| 999精品在线视频| 欧美+亚洲+日韩+国产| 久久狼人影院| 国产三级黄色录像| 午夜福利在线免费观看网站| 国产av一区二区精品久久| 久久久国产欧美日韩av| 国产深夜福利视频在线观看| 午夜免费观看性视频| 老汉色av国产亚洲站长工具| 久久99一区二区三区| 嫁个100分男人电影在线观看 | 一级毛片 在线播放| 最新在线观看一区二区三区 | www.精华液| 黑人欧美特级aaaaaa片| netflix在线观看网站| 日韩一区二区三区影片| 国产真人三级小视频在线观看| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 久久国产精品大桥未久av| 久久精品成人免费网站| 中文欧美无线码| 十分钟在线观看高清视频www| 久久久久精品国产欧美久久久 | 十分钟在线观看高清视频www| 91精品国产国语对白视频| 国产精品久久久久久精品电影小说| 热99国产精品久久久久久7| 久久ye,这里只有精品| 国产男女内射视频| 高清不卡的av网站| 一二三四在线观看免费中文在| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 亚洲午夜精品一区,二区,三区| 97人妻天天添夜夜摸| 日韩一区二区三区影片| 丝袜在线中文字幕| 91字幕亚洲| 亚洲少妇的诱惑av| videos熟女内射| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 香蕉国产在线看| 国产欧美日韩综合在线一区二区| 亚洲一码二码三码区别大吗| 欧美激情高清一区二区三区| 叶爱在线成人免费视频播放| 美女脱内裤让男人舔精品视频| 美女脱内裤让男人舔精品视频| 一级毛片黄色毛片免费观看视频| 99国产综合亚洲精品| 久久中文字幕一级| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影 | 精品一品国产午夜福利视频| 在线观看免费视频网站a站| 男女无遮挡免费网站观看| 欧美日本中文国产一区发布| 欧美在线一区亚洲| 国产精品人妻久久久影院| 日日爽夜夜爽网站| 成年人黄色毛片网站| 亚洲国产av影院在线观看| 成人手机av| 亚洲精品国产色婷婷电影| 一边摸一边抽搐一进一出视频| 人人妻,人人澡人人爽秒播 | 久久久久精品人妻al黑| 美女高潮到喷水免费观看| 大话2 男鬼变身卡| 亚洲国产av影院在线观看| 91老司机精品| 高清欧美精品videossex| 99热全是精品| 丝袜脚勾引网站| 精品国产超薄肉色丝袜足j| 中文字幕亚洲精品专区| 又大又爽又粗| 各种免费的搞黄视频| 亚洲精品av麻豆狂野| 天堂俺去俺来也www色官网| 成人国产一区最新在线观看 | 国产熟女欧美一区二区| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 交换朋友夫妻互换小说| 国产精品秋霞免费鲁丝片| 丰满人妻熟妇乱又伦精品不卡| 午夜激情av网站| 久热这里只有精品99| 永久免费av网站大全| 国产成人一区二区三区免费视频网站 | 成人三级做爰电影| 久久人人爽av亚洲精品天堂| 超碰成人久久| 国产成人系列免费观看| 大陆偷拍与自拍| 人人妻人人澡人人看| 丝袜美足系列| 一级a爱视频在线免费观看| 午夜免费成人在线视频| 国产一区二区激情短视频 | 欧美日韩视频精品一区| 欧美少妇被猛烈插入视频| 一本综合久久免费| 777久久人妻少妇嫩草av网站| 丝袜脚勾引网站| 国产成人欧美| 在线观看免费视频网站a站| 日本a在线网址| 亚洲成国产人片在线观看| 我要看黄色一级片免费的| 99久久人妻综合| 午夜免费男女啪啪视频观看| 亚洲av电影在线进入| 久久天躁狠狠躁夜夜2o2o | 麻豆乱淫一区二区| 精品亚洲成a人片在线观看| 国产一卡二卡三卡精品| 精品久久久久久久毛片微露脸 | 涩涩av久久男人的天堂| 亚洲,欧美,日韩| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 激情五月婷婷亚洲| 亚洲av片天天在线观看| 国产片特级美女逼逼视频| 激情视频va一区二区三区| 自线自在国产av| 久热这里只有精品99| 五月开心婷婷网| 老鸭窝网址在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 高潮久久久久久久久久久不卡| 精品久久久精品久久久| 侵犯人妻中文字幕一二三四区| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 这个男人来自地球电影免费观看| 亚洲av成人精品一二三区| 国产亚洲欧美精品永久| xxxhd国产人妻xxx| 国产精品熟女久久久久浪| 超碰97精品在线观看| 国产日韩欧美在线精品| 捣出白浆h1v1| 免费女性裸体啪啪无遮挡网站| 日韩伦理黄色片| 日韩大片免费观看网站| 国产成人精品久久二区二区免费| 久久精品国产a三级三级三级| 亚洲中文av在线| 免费在线观看黄色视频的| 啦啦啦在线免费观看视频4| 一二三四在线观看免费中文在| av天堂在线播放| 国产91精品成人一区二区三区 | 久久国产亚洲av麻豆专区| 午夜精品国产一区二区电影| www.av在线官网国产| 国产精品国产三级专区第一集| 日韩一卡2卡3卡4卡2021年| 一区二区三区四区激情视频| 午夜视频精品福利| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 91老司机精品| 黄网站色视频无遮挡免费观看| 热re99久久精品国产66热6| 欧美在线黄色| 色94色欧美一区二区| 婷婷丁香在线五月| 一二三四在线观看免费中文在| 熟女av电影| 成人黄色视频免费在线看| 丁香六月欧美| 亚洲第一av免费看| 国产精品 国内视频| 亚洲国产av影院在线观看| 波多野结衣一区麻豆| 久久久久精品国产欧美久久久 | 久9热在线精品视频| 亚洲国产欧美网| 国产又爽黄色视频| 国产精品久久久久久人妻精品电影 | 黄网站色视频无遮挡免费观看| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 美女大奶头黄色视频| 操出白浆在线播放| 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡 | 欧美成人精品欧美一级黄| 尾随美女入室| 超色免费av| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 欧美在线一区亚洲| 大片电影免费在线观看免费| 亚洲专区国产一区二区| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 一区在线观看完整版| 久久热在线av| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区 | 少妇粗大呻吟视频| 美女脱内裤让男人舔精品视频| 久久久久久亚洲精品国产蜜桃av| 啦啦啦视频在线资源免费观看| 午夜两性在线视频| 国产欧美日韩一区二区三 | avwww免费| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 大香蕉久久成人网| 一区二区三区四区激情视频| 成年av动漫网址| 大香蕉久久网| 国产精品成人在线| 国产高清国产精品国产三级| 午夜激情av网站| 亚洲国产看品久久| 男女免费视频国产| 少妇的丰满在线观看| 精品国产国语对白av| 狠狠精品人妻久久久久久综合| 99国产精品免费福利视频| 亚洲精品久久久久久婷婷小说| 男女边吃奶边做爰视频| 一级黄色大片毛片| 欧美黑人精品巨大| 亚洲精品久久久久久婷婷小说| 高清不卡的av网站| 91成人精品电影| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 免费在线观看影片大全网站 | 最近最新中文字幕大全免费视频 | 国产爽快片一区二区三区| 人体艺术视频欧美日本| 色综合欧美亚洲国产小说| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀 | 黄网站色视频无遮挡免费观看| 午夜福利,免费看| 黄色片一级片一级黄色片| 亚洲午夜精品一区,二区,三区| 九草在线视频观看| 91麻豆av在线| 中文字幕制服av| 大型av网站在线播放| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人| av一本久久久久| 亚洲欧美精品综合一区二区三区| 国产又爽黄色视频| 男女之事视频高清在线观看 | 手机成人av网站| 十八禁网站网址无遮挡| 久久久久视频综合| 午夜视频精品福利| 亚洲一区二区三区欧美精品| 丝袜美足系列| 亚洲视频免费观看视频| 久9热在线精品视频| 日日夜夜操网爽| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 午夜激情久久久久久久| 久热爱精品视频在线9| 午夜福利在线免费观看网站| 夫妻午夜视频| 少妇粗大呻吟视频| 日韩一本色道免费dvd| 亚洲国产欧美网| 国产午夜精品一二区理论片| 国产成人av教育| a级毛片黄视频| 国产一卡二卡三卡精品| 亚洲国产av影院在线观看| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 另类亚洲欧美激情| 久久久精品国产亚洲av高清涩受| 超碰成人久久| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 两个人看的免费小视频| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 久久影院123| 搡老岳熟女国产| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 久久这里只有精品19| 午夜福利一区二区在线看| 成年人免费黄色播放视频| 两人在一起打扑克的视频| 亚洲欧美精品综合一区二区三区| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品古装| 99精国产麻豆久久婷婷| 精品免费久久久久久久清纯 | 乱人伦中国视频| 久久99一区二区三区| 久久影院123| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 久9热在线精品视频| 久久国产精品影院| 丝袜美腿诱惑在线| 国产99久久九九免费精品| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 狂野欧美激情性bbbbbb| 久久久久精品人妻al黑| 国产97色在线日韩免费| 国产视频一区二区在线看| 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂| avwww免费| 亚洲免费av在线视频| 999久久久国产精品视频| 亚洲五月婷婷丁香| 曰老女人黄片| 性高湖久久久久久久久免费观看| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩一区二区三 | 国产精品二区激情视频| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 中国美女看黄片| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 久久 成人 亚洲| 国产精品二区激情视频| 制服人妻中文乱码| 青春草视频在线免费观看| 少妇的丰满在线观看| av天堂在线播放| 国产精品一国产av| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 两性夫妻黄色片| 国语对白做爰xxxⅹ性视频网站| 黄片小视频在线播放| 成人三级做爰电影| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 韩国高清视频一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 岛国毛片在线播放| 丰满迷人的少妇在线观看| 亚洲第一av免费看| 视频在线观看一区二区三区| 9191精品国产免费久久| 国产伦理片在线播放av一区| 99久久精品国产亚洲精品| 少妇 在线观看| 欧美精品一区二区大全| 亚洲国产最新在线播放| 日韩,欧美,国产一区二区三区| av天堂久久9| 午夜免费观看性视频| 大片电影免费在线观看免费| 久久久国产欧美日韩av| 91国产中文字幕| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 国产1区2区3区精品| 欧美人与善性xxx| 成人影院久久| 人妻 亚洲 视频| 国产视频首页在线观看| av视频免费观看在线观看| 极品人妻少妇av视频| 老司机靠b影院| 亚洲一区二区三区欧美精品| 欧美日韩精品网址| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 老司机亚洲免费影院| 欧美xxⅹ黑人| 我要看黄色一级片免费的| 久久人妻福利社区极品人妻图片 | av欧美777| 黄色片一级片一级黄色片| 国产黄色视频一区二区在线观看| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 欧美日韩亚洲综合一区二区三区_| 午夜91福利影院| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| 黄色视频不卡| 真人做人爱边吃奶动态| 国产三级黄色录像| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 国产97色在线日韩免费| av线在线观看网站| 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 久久国产精品大桥未久av| 真人做人爱边吃奶动态| 国产精品九九99| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 午夜91福利影院| 久久久久精品人妻al黑| av天堂久久9| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 丝袜喷水一区| 两人在一起打扑克的视频| 又大又黄又爽视频免费| 国产精品一区二区精品视频观看| 男女免费视频国产| 午夜福利影视在线免费观看| 亚洲人成77777在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 国产成人一区二区在线| 国产片内射在线| 亚洲第一青青草原| 50天的宝宝边吃奶边哭怎么回事| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 国产在线视频一区二区| 久久国产亚洲av麻豆专区| 午夜福利在线免费观看网站| 夜夜骑夜夜射夜夜干| 99国产精品一区二区蜜桃av | 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 9热在线视频观看99| 国产精品久久久久久人妻精品电影 | 欧美97在线视频| 国产精品 欧美亚洲| 久久亚洲国产成人精品v| xxxhd国产人妻xxx| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频 | 中文字幕人妻丝袜制服| 91九色精品人成在线观看| 欧美日韩亚洲综合一区二区三区_| 最近手机中文字幕大全| 国产精品久久久久久人妻精品电影 | 在线精品无人区一区二区三| 国产1区2区3区精品| 亚洲九九香蕉| 热99国产精品久久久久久7| 亚洲一码二码三码区别大吗| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人| 久久久久网色| 天天躁夜夜躁狠狠久久av| 一二三四在线观看免费中文在| 久久天躁狠狠躁夜夜2o2o | 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 国产成人一区二区三区免费视频网站 | 丝瓜视频免费看黄片| 久久久久久亚洲精品国产蜜桃av|