彭曉清,劉鳳華,顏培實(shí)
(1.南通大學(xué) 實(shí)驗(yàn)動(dòng)物中心,江蘇 南通 226001;2.北京農(nóng)學(xué)院 動(dòng)物科學(xué)系,北京 100026;3.南京農(nóng)業(yè)大學(xué) 動(dòng)物科技學(xué)院,江蘇 南京 210009)
健康維系著畜產(chǎn)品的安全與高產(chǎn),以康樂(lè)求高產(chǎn)為環(huán)境調(diào)協(xié)循環(huán)型畜牧業(yè)的永久主題。不僅僅停留在以前的安全和口感,環(huán)境和福利問(wèn)題是人們最關(guān)注的[1]。在畜牧生產(chǎn)中,熱應(yīng)激對(duì)畜禽的危害很大。豬雖然有汗腺,但被毛稀少在炎熱環(huán)境中并不發(fā)汗[2],容易受到熱應(yīng)激的影響。
根據(jù)傳統(tǒng)中醫(yī)理論,熱應(yīng)激是暑熱之邪致病,屬于溫病學(xué)范疇。溫為熱之漸,火為熱之極。熱為病之源,應(yīng)激為熱之證。因此,治療要清熱涼血,促進(jìn)機(jī)體熱量散失以緩解熱應(yīng)激癥狀。近年來(lái),使用促進(jìn)散熱的天然素材—中草藥作為飼料添加劑,在預(yù)防和治療熱應(yīng)激方面取得了較理想的效果,受到了人們的普遍關(guān)注。本實(shí)驗(yàn)室采用中草藥復(fù)合制劑,用于防治熱應(yīng)激取得了理想的效果[4-5],但對(duì)其抗熱應(yīng)激作用機(jī)制未做進(jìn)一步研究。血液是機(jī)體運(yùn)輸營(yíng)養(yǎng)物質(zhì)、代謝廢物和氣體的中間介質(zhì),血液流變學(xué)指標(biāo)的檢測(cè)對(duì)于各類疾病的診斷和治療具有重要的臨床指導(dǎo)意義[3],血液流變異??梢苑从硨?dǎo)致疾病的生理應(yīng)激,但是豬在長(zhǎng)期熱應(yīng)激下血液流變學(xué)特性尚不清晰。
本研究通過(guò)檢測(cè)熱應(yīng)激對(duì)仔豬血液流變學(xué)的影響,觀察其變化規(guī)律,并利用中草藥提取物復(fù)合制劑對(duì)熱應(yīng)激仔豬進(jìn)行治療,剖析中草藥對(duì)熱應(yīng)激下仔豬的散熱調(diào)節(jié)機(jī)制,旨在為探討中藥復(fù)方防治熱應(yīng)激的機(jī)制和組方的改進(jìn)提供依據(jù)。
試驗(yàn)選擇64頭中國(guó)試驗(yàn)用小型豬(2月齡、體重7.15±0.59 kg), 按窩別、體重相似原則分為常溫對(duì)照組、高溫應(yīng)激組、高溫中草藥復(fù)合提取物Ⅰ組、高溫中草藥復(fù)合提取物Ⅱ組,每組4個(gè)重復(fù),每個(gè)重復(fù)4頭豬。預(yù)試期5 d,預(yù)試期間環(huán)境、飼養(yǎng)水平完全相同;正試期10 d,各組均飼養(yǎng)于人工氣候室中(高溫組溫度:26~40 ℃,24 h循環(huán)變溫,40 ℃高溫維持5 h;常溫對(duì)照組:溫度設(shè)定為23 ℃)。高溫應(yīng)激組人工氣候倉(cāng)溫度曲線見圖1。
試驗(yàn)基礎(chǔ)日糧按照NRC(1998)營(yíng)養(yǎng)需要設(shè)計(jì),仔豬自由采食和飲水。對(duì)照組和高溫應(yīng)激組飼喂基礎(chǔ)日糧治療組飼喂處理日糧,即在基礎(chǔ)日糧中按0.5%比例添加提取物復(fù)合制劑(提取物復(fù)合制劑Ⅰ:由藿香、蒼術(shù)、黃柏、石膏按等比例混合提取制備;提取物復(fù)合制劑Ⅱ:由藿香、蒼術(shù)、黃柏、石膏按1∶1∶1∶0.5比例混合提取制備)。設(shè)置各組環(huán)境濕度等完全一致(濕度 H∶60 %;光照度 L∶100 L X)。
圖1 人工氣候倉(cāng)溫度曲線Fig.1 Temperature curve of artificial weathering cabin
于試驗(yàn)的第1、3、6、10天,每組中選4頭豬,每頭空腹采集血樣10 mL,立即放入加入肝素鈉(0.2 mg / mL)的塑料試管中,1 mL通過(guò)Wintrobe測(cè)試分析紅細(xì)胞壓積,其余的用血液流變自動(dòng)分析系統(tǒng)分析全血黏度等血液流變學(xué)參數(shù)(200、1的剪切率下)[6]。
試驗(yàn)數(shù)據(jù)用SPSS 13.0進(jìn)行統(tǒng)計(jì)分析,結(jié)果用“平均值±標(biāo)準(zhǔn)差”表示。
2.1 全血黏度的變化
由表1可知,與常溫組比較,應(yīng)激組全血黏度高切變率在試驗(yàn)的第1和3天低于常溫組,后升高,第10天顯著高于常溫組(P<0.05)。中草藥提取復(fù)合物Ⅰ組第10天顯著低于高溫組(P<0.05)。中草藥提取復(fù)合物Ⅱ組3和6 d均低于高溫組,到第10天與應(yīng)激組比較有顯著差異(P<0.05)。
表1 豬全血黏度高切變率(200s-1)變化Table 1 The changes of whole blood viscocity of pig under high shear rate
注:同列肩標(biāo)相同字母表示差異不顯著(P>0.05);不同字母表示差異顯著(P<0.05)。下同。
Note:Values sharing a superscript are not different (P>0.05),values sharing different superscripts are significantly different(P<0.05). The same below.
由表2可知,與常溫組比較,應(yīng)激組全血黏度低切變率在試驗(yàn)的第1、3天低于常溫組,之后逐漸升高,但與常溫組比較無(wú)顯著差異(P>0.05)。中草藥提取復(fù)合物Ⅰ組與應(yīng)激組各天之間均無(wú)顯著差異(P>0.05)。中草藥提取復(fù)合物Ⅱ組3和6 d均低于應(yīng)激組,到第10天顯著低于應(yīng)激組(P<0.05)。
由表3可知,應(yīng)激組紅細(xì)胞變形指數(shù)在試驗(yàn)的第6和10天顯著低于常溫組(P<0.05);中草藥提取復(fù)合物Ⅰ組、Ⅱ組在第6天和第10天顯著高于應(yīng)激組(P<0.05),且高于對(duì)照組,但差異不顯著(P>0.05)。
由表4可知,應(yīng)激組紅細(xì)胞壓積在試驗(yàn)的第6和10天顯著高于常溫組(P<0.05);中草藥提取復(fù)合物Ⅰ組在試驗(yàn)的第10天顯著低于應(yīng)激組(P<0.05),中草藥提取復(fù)合物Ⅱ組在第6天和第10天均顯著低于應(yīng)激組(P<0.05)。
表2 豬全血黏度低切變率(1s-1)變化Table 2 The changes of whole blood viscocity of pig under low shear rate
表3 紅細(xì)胞變形指數(shù)的變化Table 3 The changes of erythrocyte deformation index
表4 紅細(xì)胞壓積的變化Table 4 The changes of hematocrit
血液流變學(xué)研究血壓、血流量和血管阻力包括全血黏度、紅細(xì)胞變形性、紅細(xì)胞聚集性和血小板聚集性,他們可以反映全身的血液循環(huán)和疾病的發(fā)展過(guò)程。因此,血液流變學(xué)通常被用來(lái)診斷、預(yù)防疾病和評(píng)價(jià)藥效。本試驗(yàn)中,應(yīng)激組全血黏度和紅細(xì)胞壓積在受熱的1~3 d有所下降,有研究表明,急性的暴露于高溫環(huán)境中也會(huì)使WBV和HCT誘導(dǎo)性的下降[7-8],這與本研究在熱應(yīng)激初期觀察到的結(jié)果一致。在高溫的作用下,豬在熱應(yīng)激初期的血流加速,紅細(xì)胞在血管內(nèi)流動(dòng)加快,紅細(xì)胞之間聚集很難,所以全血黏度在低切變下降低。很多研究已表明熱暴露會(huì)使水?dāng)z取量上升[9],增多的水?dāng)z取量可能進(jìn)入脈管系統(tǒng),循環(huán)液體增多血液被稀釋,血漿和全血容量增加使得全血黏度下降。研究表明,在高溫應(yīng)激下牛的血漿和全血容量會(huì)上升[10-11];將雞暴露于30 ℃的環(huán)境下血漿和全血容量明顯上升[12]。因此,我們分析認(rèn)為高溫條件下全血黏度的下降也許是循環(huán)液體的增多引起的。高溫條件下,全血黏度的下降有利于增加組織灌注量、加快血液循環(huán)、增加體表微循環(huán)灌注量,減輕心臟負(fù)擔(dān)以及降低外周循環(huán)阻力等,這些應(yīng)答能提高暴露在高溫環(huán)境下豬機(jī)體的散熱能力。
紅細(xì)胞壓積與全血黏度的改變是關(guān)聯(lián)的[13]。紅細(xì)胞壓積的增高一直被認(rèn)為是機(jī)體為了提高血液中的氧含量和增強(qiáng)紅細(xì)胞氧氣運(yùn)輸能力的一種代償調(diào)節(jié)和適應(yīng)。在鳥類上發(fā)現(xiàn),HCT在高溫下會(huì)保持緩慢下降[14-15]。有研究證明,影響血液黏度的首要因素是紅細(xì)胞壓積的變化,血液黏度會(huì)隨紅細(xì)胞壓積升高按對(duì)數(shù)關(guān)系增高[16]。紅細(xì)胞變形性與外周微血管循環(huán)或者血液運(yùn)輸氧能力緊密相關(guān),主要影響高剪切力下的全血黏度。紅細(xì)胞變形性的改變?cè)谌梭w血液黏度和血漿黏度的變化中起著重要作用。本研究中,隨著高溫應(yīng)激時(shí)間的延長(zhǎng),全血黏度高切變值和紅細(xì)胞壓積有逐漸升高的趨勢(shì),且在第10天顯著增高(P<0.05),與此同時(shí)紅細(xì)胞變形指數(shù)在熱應(yīng)激的第6、10天顯著低于對(duì)照組(P<0.05)。表明隨著熱應(yīng)激進(jìn)程,機(jī)體應(yīng)激代償能力減弱,紅細(xì)胞的聚集性增強(qiáng),變形能力下降,加上在持續(xù)的高溫刺激下豬的飲水量也下降[17],而排泄散熱和呼吸散熱增加,機(jī)體水分大量流失引起血液黏稠度增加全血黏度增高、紅細(xì)胞壓積增高。長(zhǎng)時(shí)間高溫環(huán)境下血管特性的改變也會(huì)導(dǎo)致胃腸道血流量降低,消化功能減弱[18],機(jī)體損傷。
研究發(fā)現(xiàn)高劑量丹參水溶性提取物會(huì)使老化幾內(nèi)亞豬的血液黏度下降[19],中草藥添加劑具有改善兔血液流變學(xué)的作用[20]。本試驗(yàn)中,添加中草藥提取復(fù)合制劑組對(duì)熱應(yīng)激仔豬全血黏度、紅細(xì)胞壓積、紅細(xì)胞變形指數(shù)均有治療作用,在熱應(yīng)激的的第10天治療效果最明顯(P<0.05),說(shuō)明中草藥提取復(fù)合物可以通過(guò)改善血液流變學(xué)降低這種熱應(yīng)激產(chǎn)生的生理?yè)p傷。中草藥提取復(fù)合物Ⅰ可顯著改善全血黏度高切變值、紅細(xì)胞壓積、紅細(xì)胞變形指數(shù),但對(duì)全血黏度低切變值無(wú)改善作用;中草藥提取復(fù)合物Ⅱ?qū)ι鲜鲋笜?biāo)均有改善作用。
長(zhǎng)期高溫應(yīng)激使豬全血黏度升高,紅細(xì)胞變形能力下降,紅細(xì)胞壓積顯著升高。添加中草藥復(fù)合制劑后,血液流變學(xué)指標(biāo)得到了明顯的恢復(fù),尤其在熱應(yīng)激的第10天治療效果最明顯。
根據(jù)本研究結(jié)果,說(shuō)明中草藥提取復(fù)合物可以降低熱應(yīng)激產(chǎn)生的生理?yè)p傷。中草藥提取復(fù)合物Ⅱ在對(duì)血液流變學(xué)的治療作用上,效果優(yōu)于中草藥提取復(fù)合物Ⅰ。
參考文獻(xiàn):
[1] Patricia Barton Gade .Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production[J].Meat Science,2002,62:353-358.
[2] Baldwin B A,Ingram D L. Behavioural thermoregulation in pigs[J].Physiology and Behavio,1967,2(1):15-16.
[3] Schrauwen E,Houvenaghel A. Hemodynamic evaluation of endotoxic shock in anesthetized piglets: antagonism of endogenous vasoactive substances[J]. Circ Shock, 1985, 16(1):19-28.
[4] 張 琳,何 欣,宋小珍,等.中藥復(fù)合提取物對(duì)夏季蛋雞產(chǎn)蛋性能及蛋品質(zhì)的影響[J].中國(guó)家禽,2007(15):55-56.
[5] 劉鳳華,王占賀,李 博,等.中藥飼料添加劑在育肥豬中的抗熱應(yīng)激研究[J].飼料研究,2002(4):1-4.
[6] 彭曉青.高溫條件下豬散熱調(diào)節(jié)特性及中草藥復(fù)合制劑的作用[D].江蘇南京:南京農(nóng)業(yè)大學(xué),2009.
[7] Wang S, Bottje W G, Kinzler S, et al. Effect of heat stress on plasma levels of arginine vasotocin and mesotocin in domestic fowl (Gallus domesticus)[J]. Comparative biochemistry and Physiology A, Comparative physiology, 1989, 93(4):721-724.
[8] Zhou W T, Fujita M, Ito T, et al. Effects of early heat exposure on thermoregulatory responses and blood viscosity of broilers prior to marketing[J]. British Poultry Science, 1997, 38(3):301-306.
[9] Belay T, Bartels K E, Wiernusz C J, et al. A detailed colostomy procedure and its application to quantify water and nitrogen balance and urine contribution to thermobalance in broilers exposed to thermoneutral and heat-distressed environments[J]. Poultry Science, 1993, 72(1):106-115.
[10] Chaiyabutr N, Buranakarl C,Muangcgaroen V,et al.Effects of acute heat stress on changes in the rate of liquid flow from the rumen and turnover of body water of swamp buffalo[J]. Journal Agricultural Science, 1987, 108:549-553.
[11] Koga A, Furukawa R, Hirose H, et al. Intrabodily heat distribution, blood volume and blood flow rate to body surface in buffaloes and cattle under hot environments[C]//Tokyo Japan Vol.Proceedings of the Eighth AAAP Animal Science Congress:Japanese Society of Zootechnical Science,1996:578-579.
[12] Zhou W T, Chaiyabutr N, Fujita M, et al. Distribution of body fluid and change of blood viscosity in broilers (Gallus domesticus ) under high temperature exposure[J]. Journal of Thermal Biology, 1999, 24(3):193-197.
[13] Zhou W T, Fujita M, Yamamoto S. Effects of food and water withdrawal and high temperature exposure on diurnal variation in blood viscosity of broiler chickens[J]. British Poultry Science , 1998, 39(1):156-160.
[14] Vanhooser S L, Beker A, Teeter R G. Bronchodilator, oxygen level, and temperature effects on ascites incidencein broiler chickens[J]. Poultry Science, 1995,74(10):1 586-1 590.
[15] Yahav S, Straschnow A, Plavnik I, et al. Blood system response of chickens to changes in environmental temperature[J]. Poultry Science, 1997, 76(4):627-633.
[16] Cinar Y, Demir G, Cinar A B. Effect of hematocrit on blood pressure via hyperviscosity [J].Am Hypertension Journal, 1999, 12 (7):739 -743.
[17] 趙海云.顏培實(shí).高溫條件下二花臉公豬維持行為的特征[C]//哈爾濱:中國(guó)家畜環(huán)境科學(xué)討論會(huì)論文集,2006.
[18] Wolfenson D D, Sklan Y, Graber O, et al. Absorption of protein, fatty acids and minerals in young turkeys under heat and cold stress[J]. Br Poultry Science, 1987, 28(4):739-742.
[19] Wen C H, Hsin S T, Hong J L, et al. Improving abnormal hemorheological parameters in aging guinea pigs by water-soluble extracts of Salvia miltiorrhiza Bunge[J].Journal of Ethnopharmacology, 2007, 111(3):483-489.
[20] Yu L, Yuan L H, Xiang F K, et al Selection of component drug in activating blood flow and removing blood stasis of Chinese herbal medicinal formula for dairy cow mastitis by hemorheological method[J]. Journal of Ethnopharmacology, 2008, 116(2):313-317.
Abstract:The experiment adopted the artificial weathering cabin to simulate the heat stress environment. 64 2-month Chinese experimental piglets (CEMP) were randomly divided into the control group, Chinese herb compound extraction treatment group I and treatment group II. Analyze hematocrit through Wintrobe test, and adopt blood rheology automatic analysis system to test blood reheology indices such as blood viscosity, so as to study the dynamic change of the blood reheology indices affected by Chinese herb medicine combinative extractions. The results show that the high shear rate of blood viscosity for piglets in stress group was significantly higher than that of the control (P<0.05) in 10 th day, the erythrocyte deformation index of stress group was remarkably lower than that of the control (P<0.05) in 6 th and 10 th day, and the hematocrit was dramatically higher than that of the control (P<0.05) in 1 st, 3 rd, 6 th and 10 th day. After the treatment groups were added Chinese herb medicine combinative extractions, the blood rheology indices obviously recovered, especially in the 10 th day of heat stress. These results reveal that the heat stress does harm to piglets' health, while Chinese herb medicine combinative extractions can ease the damage, and Chinese herb medicine combinative extraction I is superior to II.
Keywords:Chinese herb medicine combinative extraction; heat stress; piglet; blood rheology