• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭添加物對(duì)基于粒徑分析的砂性基質(zhì)飽和導(dǎo)水率的影響

    2013-11-26 02:25:42王一淳李德穎
    草原與草坪 2013年5期
    關(guān)鍵詞:果嶺導(dǎo)水率高爾夫球場(chǎng)

    王一淳 李德穎

    摘要:泥炭/砂混合物是一種廣泛應(yīng)用于高爾夫果嶺坪床,運(yùn)動(dòng)場(chǎng)草坪,園藝盆栽,及濾水系統(tǒng)中的基質(zhì)。 然而,對(duì)于泥炭/砂混合基質(zhì)水力特性的直接測(cè)量耗時(shí)較長(zhǎng)。試驗(yàn)的目的為:(1)測(cè)試符合美國(guó)高爾夫協(xié)會(huì)(USGA)推薦標(biāo)準(zhǔn)的砂與高比例泥炭混合基質(zhì)的飽和導(dǎo)水率(Ksat)是否為層流并遵循達(dá)西法則。 (2)研究泥炭類別和有機(jī)物含量對(duì)之前建立的預(yù)測(cè)飽和導(dǎo)水率的多重線性回歸模型的準(zhǔn)確性的影響。試驗(yàn)采用3種泥炭類別即木本泥炭蘚(Peat,Inc.Minnesota,USA),苔蘚泥炭(Sun Gro Horticulture,Maryland,USA)和葦苔泥炭 (Dakota Peat,North Dakota,USA),并分別按照泥炭占0%,0.2%,0.4%,0.8%,1.6%,4%,8%和10% 的重量配比與純砂混合。試驗(yàn)評(píng)估的模型如下:

    關(guān)鍵詞:高爾夫球場(chǎng);果嶺;根層基質(zhì);導(dǎo)水率;土壤分析

    中圖分類號(hào):G 849.3;S 151.9 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-5500(2013)05-0066-06

    收稿日期:2013-08-15; 修回日期:2013-10-09

    作者簡(jiǎn)介:王一淳(1983-),女,黑龍江省佳木斯市人。

    E-mail:Yichun.Wang@Live.cn

    Estimating water conductivity of sand-based root zone

    materials from particle size distribution:

    effects of peat amendments

    WANG Yi-chun,LI De-ying

    (Department of Plant Sciences,North Dakota State University,F(xiàn)argo,ND 58108,USA)

    Abstract:Sand and peat mixtures are widely used in constructed root zones of golf course putting greens and sports fields,containerized horticulture,and water filtering systems.Direct measurement of hydraulic properties often is time consuming.One of the objectives of this study was to test if saturated water flow is laminar and obeys Darcy's law when a large amount of peat is mixed with sand that conform to the USGA specifications.Another objective was to evaluate a previously developed multiple linear regression (MLR) model for predictingsaturated water conductivity (Ksat) as affected by peat types and organic matter (OM) content.Woody sphagnum peat (Peat,Inc.Minnesota,USA),sphagnum peat moss (Sun Gro Horticulture,Maryland,USA),and reed sedge peat (Dakota Peat,North Dakota,USA) were mixed with sand at 0%,0.2%,0.4%,0.8%,1.6%,4%,8%,and 10% (w/w) in the final mixtures.The model tested was Log10(Ksat)=5.340 7-0.528 6ρb-1.2846CP-0.044 2c+0.0612φ5-0.6095φ95,with ρb as bulk density (g/cm3),CP as capillary porosity (%),c as silt content (%),and φ5,φ10,φ16,φ84,φ95 values from the particle size distribution curve representing grain size in phi (φ) unit.Briefly,φx= -log (2,d),with x representing the percentage of sand mass smaller than d in size in a traditional particle size distribution curve.Results showed that Darcy's law prevailed at hydraulic pressure gradients up to 3.Results also showed that,with exception of less humified sphagnum peat moss at >4%,the model provided fair predictions of Ksat(R2 =0.74) for OM content up to 10%.

    Key words:golf course;putting greens;root zone medium;water conductivity;soil analysis

    INTRODUCTION

    Sand and peat mixtures are widely used in constructed root zones of golf course putting greens and sports fields (Li et al,2000),containerized horticultural (Heiskanen and Rikala,1998),and water filtering systems (Tao et al,2009).Water holding and water conductivity of such mixtures are very important properties in their application because these properties dictate irrigation,drainage,solute movement,and soil aeration.The United States Golf Association (USGA) recommends tests of particle size distribution,water retention,capillary porosity (CP) at 30 cm water suction,OM,and Ksat,and evaluations of shape/roundness of sand particles (USGA Green Section Staff,1993).Direct measurement of hydraulic properties is time consuming.According to a survey conducted by the proficiency test program,the confidence interval for particle size analysis is +/-10 to +/- 35%,and that for saturated water conductivity is +/- 20% using the USGA specified procedures (Miller and Amacher,2001).Inconsistency of these test results between and within the laboratories may cause inconvenience in bidding and contract during the construction and management of a golf course.Predicting saturated water conductivity from some basic and more accurate analysis is an incentive driven alternate approach.

    Many models for estimation of hydraulic properties do not include OM content as a predictor (Hazen,1893).When OM is considered,very often it is treated as clay-sized particles (Arya and Paris,1981;Carman,1956;Childs and Collis-George,1950;Fair and Hatch,1933;Millington and Quirk,1959).However,peat and other organic materials used in sand root zone mixtures are fibrous rather than layer-silicates.Predicting water conductivity from basic soil properties using multivariate analyses and MLR have been attempted (Brakensiek,et al.,1984;Puckett,et al.,1985;Campbell,1985;Saxton et al.,1986;Vereecken,et al.,1990;Jabro,1992;Sperry and Peirce,1995).Model evaluations also have been conducted by many authors (Tietje and Hennings,1996;Zhang et al.,2000).There have been no thorough model comparisons for sand-predominant soils that are used for sports fields.Li et al.(2008) developed a step-wise MLR model to predict Ksatof sand-based root zone materials from known physical properties including bulk density,capillary porosity,clay content,and particle size distribution.The 292 samples were collected from commercial laboratories representing 200 locations from over 40 states in America and two provinces of Canada,with peat content ranging from 0 to 1.2 % (w/w) (Li et al.,2008).The model is:

    Log10(Ksat)=5.340 7-0.5286ρb-1.2846CP-0.044 2c+0.0612φ5-0.6095φ10+0.085φ95[1]

    where ρb is bulk density (g/cm3),CP is capillary porosity (%),c is silt content,and φ5,φ10,φ95 values from the particle size distribution curve for grain size in phi(φ) unit.Notice that OM is not included in this model.This may be because of the low content (0% to 1.2%) in common sand/peat mixtures of golf course putting green root zones,or collinearity between those predicting variables.

    Organic matter tends to accumulate as the sand-based root zones age (McClellan et al.,2007;Wang et al.,2013).Horticultural container mixes and water filtering systems use OM in high percentages.Therefore,a robust model is needed for predicting water conductivity under these conditions.Taylor et al.(1997) reported that water infiltration rate was as high as 1.03 m/h for fine sand with up to 2.98% reed sedge peat by weight.One of the objectives of this study was to evaluate adequacy of the MLR model developed by Li et al.(2008) for predicting water conductivity based on particle size analysis of sand-based root zone materials with different peats and a wide range of OM content.Another objective was to test if the saturated water flow is laminar and obeys Darcy's law in a porous medium of sand that conform to the USGA specifications in mixture with a wide range of peat type and ratio.

    MATERIALS AND METHODS

    Samples and Physical Properties

    Woody sphagnum peat (Peat,Inc.Minnesota,USA),sphagnum peat moss (Sun Gro Horticulture,Maryland,USA),and reed sedge peat (Dakota Peat,Minnesota,USA) were thoroughly mixed with sand that has a particle size distribution conform to the USGA specifications.Weight percentages of peat in the final mixture were 0%,0.2%,0.4%,0.8%,1.6%,4%,8%,and 10%.The mixtures were packed into brass cylinders (6 cm diam.5.4 cm i.d.) using a compactor equipped with a 1.36 kg hammer.Compaction was kept consistent by 5 drops of the hammer from a height of 305 mm (USGA Green Section Staff,1993).There are three replicates for each mixture forming a total of 66 mixture samples.

    Organic matter content was tested by the loss on ignition method.Particle size distribution for sand fractions was analyzed with the dry sieve method,and the clay fraction was analyzed with the pipette method (USGA Green Section Staff,1993).Total porosity was calculated from:

    X=1-ρbρsS-ρbρpP

    where ρb is bulk density;ρs is the sand particle density;ρp is the peat particle density;s and p are sand and peat content in the mixture by weight,respectively.Particle density of sand was measured with pycnometers.Capillary porosity was calculated from the total porosity minus the volumetric water content of the samples at -30 cm suction head.Sand grain shape and roundness was visually evaluated and assigned a descriptive category.Saturated water conductivity was measured by a constant head method following Klute (1986).

    Particle size distribution curves were developed based on the cumulative percentage weight versus particle diameters in φ units.The φ units are related to nominal diameter d (mm) via:

    Statistics

    Regression variables in the MLR model to predict Ksat include OM content,CP,clay content,silt content,and φ5,φ10,φ16,φ50,φ84,φ 95 values of particle size distribution curve.Saturated water conductivity is of lognormal distribution,with the logarithmic mean and the logarithmic standard deviation.Therefore,Ksat data were transformed using log10 function before statistical analysis.

    Stepwise regression with forward,backward,and stepwise methods was used in the Procreg procedure of SAS (9.1) package (SAS Institute Inc.,Cary,NC,USA).The stepwise regression process was also compared with the Robustreg procedure for outlier and leverage identification.

    RESULTS AND DISCUSSION

    From the 1∶1 line of measured Ksat values plotted against the predicted values using model(Arga and Paris,1984),it can be seen that the previous linear regression model (Li et al.,2008) is not adequate in predicting the Ksat values of the samples that had a wide range of peat types and content due to a low R2 of 0.56 (Fig 1a).Residues after the model fit were correlated with selected variables as:

    Log10 (Ksat) =0.4081+0.6403CP-0.0694OM(2)

    This means that the variability may change with OM types and content.A close observation of data points revealed that all outliers are sphagnum peat moss mixtures with OM at more than 4% (Fig.1a).The predicted and measured 1∶1 line improved to R2 of 0.74 (Fig.1b) after the removal of 6 sphagnum peat moss data points.Sphagnum peat moss is the least decomposed OM of three peats,which has the highest OM content and lowest bulk density (BK) (Table 1).After the removal of those sphagnum peat moss data points,the model provided fairly adequate prediction of Ksat values of 60 samples that had OM content up to 10%.

    Organic matter content is not included in the MLR model by Li et al.(2008).This is probably because OM is correlated with BK,CP of the root zone mixtures.When combining the data from this study with that from Li et al.(2008) (Table 2),a new step

    Fig.1 Comparison of the predicted saturated hydraulic conductivity based on a multiple linear model (Li et al.,2008) with measured value.a) Outlier data points of sphagnum peat moss indicated in shade.b) Outlier data points of sphagnum peat moss are removed.

    wise MLR model was developed as follows:

    Log10 (Ksat) =4.961-0.807ρb-1.178CP-0.037OM-0.010 9φ5-0.201 9φ84+0.180φ95 (3)

    Again,this new model is not adequate in predicting Ksat,with an R2 of 0.46,which is relatively low.However,it was shown that with the inclusion of OM,clay content was dropped as one of the predictors.Further analysis showed a significant correlation among OM,CP,BK,and Clay (Table 3),indicating that CP and BK may be more powerful predictors in the model.

    Table 1 Physical properties of peats and sand used in the study

    Table 2 Descriptive statistics for the data set from 66 sand/peat mixture samples

    Table 3 Pearson correlation coefficients

    (n=348,P<0.0001)

    The above MLR model showed a negative correlation between Ksat and OM content.This result was consistent with the study by Nemes et al.(2005) that three of their studied Pedo-transfer models which include OM as one of the predictors negatively correlate Ksat with OM.However,other studies also found positive correlation between OM and Ksat contributing to the effect of OM on soil aggregates and pore distribution (Lado and Ben,2004).However,the contribution of soil aggregates may be negligible in sand-based root zone materials due to low clay content.

    Saturated water flow through peat has been reported to deviate from Darcy's law (Hemond and Goldman,1985).In this study,flux density was linear with hydraulic pressure gradient from 0.5 to 3 (Fig.2),indicating that water flow was laminar and that Darcy's law prevailed for the sand/peat mixtures.Wallach et al.(1992) reported that the flux density of coarse scoria was linear with hydraulic gradients up to 1.5.Further study is needed to find the peat content in sand/peat mixtures at which Darcy's law fails.In conclusion,results showed that Darcys law prevailed at hydraulic pressure gradients up to 3.Results also showed that,with exception of less humified sphagnum peat moss at >4%,the model provided fair predictions of Ksat (R2 = 0.74) for OM content up to 10%.

    Fig.2 Saturated hydraulic conductivity of sand/peat mixtures tested at different hydraulic pressure gradients.Woody sphagnum peat,sphagnum peat moss,and reed sedge peat were mixed with sand at 0%,0.2%,0.4%,0.8%,1.6%,4%,8%,and 10% (w/w) in the final mixtures.

    REFERENCES

    Arya,L.M.and J.F.Paris.1981.A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.Soil Sci.Soc.Am.J.45:1023-1030.

    Brakensiek,D.L.,W.J.Rawls,and G.R.Stephenson.1984.Modifying SCS hydrologic soil groups and curve numbers for rangeland soils.Annual meeting ASAE Pacific Northwest Region.Kennewick,WA.

    Campbell,G.S.1985.Soil physics with basic.Transport models for soil-plant systems.Development in Soil Science 14.Elsevier Science Publishing Company Inc.New York,NY 10017 USA.

    Carman,P.G.1956.Flow of gases through porous media.Academic Press Inc.New York,NY.

    Childs,E.C.and N.Collis-George.1950.The permeability of porous materials.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences 201:392-405.

    Fair,G.M.and L.P.Hatch.1933.Fundamental factors governing the streamline flow of water through sand.J.American Water Works Association 25:1511-1565.

    Hazen A.1893.Some physical properties of sands and graves.24th Annual report of the State Board of Health of Massachusetts.Wright & Potter Printing Co.,State Printers,18 Post Office Square.

    Heiskanen,J.,and R.Rikala.1998.Influence of different nursery container media on rooting of Scots pine and silver birch seedling after transplanting.New Forests 16:27-42.

    Hemond,H.F.,and J.C.Goldman.1985.On non-Darcian water flow in peat.J.Eco.73:579-584.

    Jabro,J.D.1992.Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data.Trans.ASAE.35:557-560.

    Klute,A.and C.Dirksen.1986.Hydraulic conductivity and diffusivity:Laboratory methods.687-734.in:A.Klute (ed) Methods of soil analysis.Part 1.Agronomy 9.ASA and ASSSA.Madison,WI.

    Lado M,Paz A,Ben-Hur M .2004.Organic matter and aggregate-size interactions in saturated hydraulic conductivity.Soil Sci.Soc.Am.J.68,234-242.

    Li,D.,D.Kuehl,and W.Fang.2008.Estimating water conductivity of sand-based root zone materials from particle size distribution:evaluation of models.Acta Hort.783:113-145.

    Li,D.,Y.K.Joo,N.E.Christians,and D.D.Minner.2000.Inorganic soil amendment effects on sand-based sports turf media.Crop Sci.40:1121-1125.

    McClellan,Ty.A.,R.C.Shearman,R.E.Gaussoin,M.Mamo,C.S.Wortmann,G.L.Horst,and D.B.Marx.2007.Nutrient and chemical characterization of aging golf course putting greens:establishment and rootzone mixture treatment effects.Crop Sci.47:193-199.

    Miller,R.O.,and J.K.Amacher.2001.Laboratory performance of root zone test methods.Abstract ASA-CSSA-SSSA Annual Meeting,October 21-25,2001.Charlotte,NC.

    Millington,R.J.and J.P.Quirk.1959.Permeability of porous media.Nature 183:387-388.

    Nemes,A.,W.J.Rawls,and Y.A.Pachepsky.2005.Influence of organic matter on the estimation of saturated hydraulic conductivity,Soil Sci.Soc.Am.J.69 (4):1330 1337.

    Puckett,W.E.,J.H.Dane,and B.F.Hajek.1985.Physical and mineralogical data to determine soil hydraulicproperties.Soil Sci.Soc.Am.J.49:831-836.

    Saxton,K.E.,W.J.Rawls,J.S.Romberger,and R.I.Papendick.1986.Estimating generalized soil-water characteristics from texture.Soil Sci.Soc.Am.J.50:1031-1036.

    Sperry,J.M.and J.J.Peirce.1995.A model for estimating the hydraulic conductivity of granular material based on grain shape,grain size,and porosity.Ground Water 33:892-898.

    Tao,J.,K.M.Mancl.,and O.H.Tuovinen.2009.Treatment of sanitary sewer overflow with fixed media bioreactors.Applied Engineering in Agriculture 25:39-43.

    Taylor,D.H.,C.F.Williams,and S.D.Nelson.1997.Water retention in root-zone soil mixtures of layered profiles used for sports turf.HortScience 32:82-85.

    Tietje,O.and V.Hennings.1996.Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes.Geoderma.69:71-84.

    USGA Green Section Staff.1993.USGA recommendations for a method of putting green construction.USGA Green Sect.Rec.31(2):1-3.

    Vereecken,H.,J.Mass,and J.Feyen.1990.Estimating unsaturated hydraulic conductivity from easily measured soil properties.Soil Sci.149:1-12.

    Wallach,R.,F(xiàn).F.da Silva,and Y.Chen.1992.Hydraulic characteristics of tuff (scoria) used as a container medium.J.Amer.Soc.Hort.Sci.117:415-421.

    Wang,Y.,W.Fang,D.Li,and R.Gaussoin.2013.Soil chemical properties of golf greens affected by age,initial construction and establishment.Inter.Turfgrass Soc.Res.J.12:539-544.

    Zhang,J.,K.Nakayama,G.R.Yu,and T.Miyazaki.2000.Scaling of saturated hydraulic conductivity:A comparison of models.Soil Sci.165:718-727.

    猜你喜歡
    果嶺導(dǎo)水率高爾夫球場(chǎng)
    陜北山地蘋果園土壤飽和導(dǎo)水率和植物導(dǎo)水率特征
    基于線性源法與圖像處理的土壤飽和導(dǎo)水率快速測(cè)量方法
    果嶺贈(zèng)李必瓊董事長(zhǎng)(新韻)
    安徽:六安水果產(chǎn)業(yè)蓬勃發(fā)展
    高爾夫球場(chǎng)果嶺的養(yǎng)護(hù)管理措施
    高爾夫球場(chǎng)遇險(xiǎn)
    海城市土壤飽和導(dǎo)水率空間分布特征
    中國(guó)高爾夫球場(chǎng)全名單
    《神探小子》之“高爾夫球場(chǎng)的爆炸案”
    土壤飽和導(dǎo)水率研究現(xiàn)狀分析
    山西水利(2011年5期)2011-07-25 13:46:18
    9色porny在线观看| 97超碰精品成人国产| 九草在线视频观看| 国产熟女午夜一区二区三区 | 日韩,欧美,国产一区二区三区| 男女边摸边吃奶| 亚州av有码| 一二三四中文在线观看免费高清| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 这个男人来自地球电影免费观看 | 国产精品国产av在线观看| av.在线天堂| 国产午夜精品久久久久久一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 久久精品国产亚洲av涩爱| 婷婷色麻豆天堂久久| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 91精品国产九色| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费 | 日韩一区二区视频免费看| 夜夜看夜夜爽夜夜摸| 国产精品秋霞免费鲁丝片| 免费观看性生交大片5| 在线观看www视频免费| 少妇被粗大的猛进出69影院 | 超色免费av| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av成人精品| 高清毛片免费看| 久久久久国产网址| 欧美日韩在线观看h| 国产片内射在线| 国产精品99久久99久久久不卡 | 人人澡人人妻人| 少妇 在线观看| 亚洲丝袜综合中文字幕| 久久免费观看电影| 久久午夜综合久久蜜桃| 国产乱来视频区| av视频免费观看在线观看| 满18在线观看网站| 一级片'在线观看视频| 国内精品宾馆在线| 又黄又爽又刺激的免费视频.| 欧美日韩综合久久久久久| 成人国产麻豆网| av国产精品久久久久影院| 蜜桃国产av成人99| videosex国产| 日韩精品有码人妻一区| 午夜91福利影院| 新久久久久国产一级毛片| 性高湖久久久久久久久免费观看| 日韩伦理黄色片| 美女xxoo啪啪120秒动态图| 97精品久久久久久久久久精品| 久久婷婷青草| 成人手机av| 免费大片18禁| 亚洲精品中文字幕在线视频| 国产免费现黄频在线看| 亚洲精品色激情综合| 春色校园在线视频观看| 精品一品国产午夜福利视频| 最新的欧美精品一区二区| 国产视频首页在线观看| 欧美3d第一页| 国产精品一区二区三区四区免费观看| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 国产在线一区二区三区精| 色网站视频免费| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲 | 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 超色免费av| 免费大片18禁| 国产在线一区二区三区精| 亚洲av二区三区四区| 国产一区二区在线观看av| av电影中文网址| 欧美精品高潮呻吟av久久| 亚洲欧美一区二区三区黑人 | www.色视频.com| 性色avwww在线观看| 国产高清三级在线| 纵有疾风起免费观看全集完整版| 午夜久久久在线观看| 51国产日韩欧美| 久久久欧美国产精品| 国产极品天堂在线| 午夜福利视频精品| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| 少妇 在线观看| 国产伦理片在线播放av一区| 精品一区二区免费观看| 亚洲欧美中文字幕日韩二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 夜夜骑夜夜射夜夜干| 亚洲精品乱码久久久v下载方式| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 免费日韩欧美在线观看| 日日摸夜夜添夜夜添av毛片| 日本av免费视频播放| 亚洲,一卡二卡三卡| 高清毛片免费看| 全区人妻精品视频| 国产片内射在线| 999精品在线视频| 性高湖久久久久久久久免费观看| 七月丁香在线播放| 人妻系列 视频| 久久久久久久久久成人| 色婷婷av一区二区三区视频| 51国产日韩欧美| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 老司机影院成人| 两个人免费观看高清视频| 成人手机av| 日韩强制内射视频| 精品久久久精品久久久| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 久久久久人妻精品一区果冻| 中文字幕亚洲精品专区| 国产免费一级a男人的天堂| 制服人妻中文乱码| 久久精品国产鲁丝片午夜精品| av.在线天堂| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 亚洲性久久影院| 少妇丰满av| 国产精品久久久久成人av| 日韩精品免费视频一区二区三区 | 草草在线视频免费看| 亚洲欧美清纯卡通| 久久av网站| 最新中文字幕久久久久| 国产 精品1| 91精品三级在线观看| www.色视频.com| 丝袜脚勾引网站| 亚洲,欧美,日韩| 视频区图区小说| 高清欧美精品videossex| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| 在线观看免费高清a一片| 日本91视频免费播放| 美女大奶头黄色视频| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 新久久久久国产一级毛片| 成人毛片a级毛片在线播放| 久久影院123| 欧美亚洲日本最大视频资源| 国产高清不卡午夜福利| 极品人妻少妇av视频| 99久久综合免费| 亚洲精品久久成人aⅴ小说 | 亚洲精品中文字幕在线视频| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 男女国产视频网站| 国产亚洲精品第一综合不卡 | 日韩强制内射视频| 欧美精品高潮呻吟av久久| 蜜臀久久99精品久久宅男| av在线播放精品| av在线老鸭窝| 日韩中字成人| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 日韩视频在线欧美| 草草在线视频免费看| 欧美日韩av久久| 久久精品国产亚洲av涩爱| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 成人亚洲精品一区在线观看| 国产综合精华液| 蜜桃久久精品国产亚洲av| 天天操日日干夜夜撸| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| 3wmmmm亚洲av在线观看| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 男女边吃奶边做爰视频| 丝瓜视频免费看黄片| av网站免费在线观看视频| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 国产一级毛片在线| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 国产毛片在线视频| 多毛熟女@视频| 久久久久久久国产电影| 18在线观看网站| 99九九在线精品视频| 国产午夜精品一二区理论片| 精品午夜福利在线看| 啦啦啦啦在线视频资源| 纵有疾风起免费观看全集完整版| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜添av毛片| 色哟哟·www| 蜜桃国产av成人99| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 国产毛片在线视频| 丰满乱子伦码专区| 日韩视频在线欧美| 色吧在线观看| 亚洲图色成人| av在线观看视频网站免费| 一级毛片我不卡| 亚洲久久久国产精品| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡 | 久久青草综合色| 亚洲丝袜综合中文字幕| 日韩中文字幕视频在线看片| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 成人二区视频| 这个男人来自地球电影免费观看 | 免费人妻精品一区二区三区视频| 我要看黄色一级片免费的| 又黄又爽又刺激的免费视频.| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 成人毛片60女人毛片免费| 精品久久国产蜜桃| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 午夜免费观看性视频| 国产精品偷伦视频观看了| 国产亚洲最大av| 91成人精品电影| 高清黄色对白视频在线免费看| √禁漫天堂资源中文www| av黄色大香蕉| 亚洲av成人精品一二三区| 日韩一区二区三区影片| 母亲3免费完整高清在线观看 | 国产成人免费观看mmmm| 纯流量卡能插随身wifi吗| 日韩一本色道免费dvd| 久久午夜福利片| 在线精品无人区一区二区三| 国产片内射在线| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 人妻少妇偷人精品九色| 男女免费视频国产| 亚洲欧美清纯卡通| 大陆偷拍与自拍| 免费观看性生交大片5| 另类亚洲欧美激情| 亚洲内射少妇av| 丝瓜视频免费看黄片| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 寂寞人妻少妇视频99o| 在线观看免费高清a一片| 亚洲国产精品999| 国产亚洲欧美精品永久| 天天影视国产精品| 一本—道久久a久久精品蜜桃钙片| 中文字幕亚洲精品专区| 哪个播放器可以免费观看大片| 亚洲欧美一区二区三区国产| 男的添女的下面高潮视频| 亚洲综合精品二区| 九九在线视频观看精品| 一区二区三区免费毛片| 久久久久久久久久久免费av| 免费观看无遮挡的男女| 黄色一级大片看看| 日本av手机在线免费观看| 久久久欧美国产精品| 久久人人爽人人爽人人片va| videos熟女内射| 国产一区二区在线观看日韩| 18禁动态无遮挡网站| freevideosex欧美| 久久人人爽人人片av| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 伦理电影大哥的女人| 亚洲国产精品一区三区| 日韩在线高清观看一区二区三区| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 九色成人免费人妻av| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 一级黄片播放器| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 热re99久久国产66热| 国产欧美亚洲国产| 中文字幕av电影在线播放| 午夜福利,免费看| 国产视频首页在线观看| kizo精华| 99九九线精品视频在线观看视频| 日韩成人伦理影院| 亚洲情色 制服丝袜| av视频免费观看在线观看| 国产国拍精品亚洲av在线观看| videos熟女内射| 亚洲国产av影院在线观看| 久久久久久久大尺度免费视频| 国产黄频视频在线观看| 婷婷色av中文字幕| 观看av在线不卡| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 国产女主播在线喷水免费视频网站| 欧美 亚洲 国产 日韩一| 老司机影院毛片| 美女内射精品一级片tv| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 免费av不卡在线播放| 免费观看无遮挡的男女| 亚洲成色77777| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 亚洲欧美成人精品一区二区| 久久影院123| 在线播放无遮挡| 欧美另类一区| 欧美激情 高清一区二区三区| 欧美少妇被猛烈插入视频| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 亚洲内射少妇av| 久久婷婷青草| 亚洲精品国产色婷婷电影| 少妇被粗大的猛进出69影院 | 黄色毛片三级朝国网站| 国产成人精品在线电影| 国产在视频线精品| 国产成人精品无人区| 国产老妇伦熟女老妇高清| 满18在线观看网站| 少妇人妻精品综合一区二区| 日本-黄色视频高清免费观看| 天美传媒精品一区二区| 美女中出高潮动态图| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 精品视频人人做人人爽| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 久久青草综合色| 岛国毛片在线播放| 成人无遮挡网站| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 日本免费在线观看一区| 下体分泌物呈黄色| 国产极品天堂在线| 国产69精品久久久久777片| 国产一区二区三区av在线| 国产精品久久久久久久久免| 草草在线视频免费看| 高清在线视频一区二区三区| 五月玫瑰六月丁香| 欧美变态另类bdsm刘玥| 免费大片18禁| 成人免费观看视频高清| 最近手机中文字幕大全| 亚洲av日韩在线播放| 下体分泌物呈黄色| 亚洲精品,欧美精品| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| 亚洲少妇的诱惑av| 日韩中文字幕视频在线看片| 精品人妻在线不人妻| av天堂久久9| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 精品亚洲乱码少妇综合久久| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| av一本久久久久| 日韩电影二区| 成人国语在线视频| av卡一久久| av女优亚洲男人天堂| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美在线一区| 国产69精品久久久久777片| 免费观看av网站的网址| 免费观看性生交大片5| 午夜福利,免费看| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 一区在线观看完整版| 熟妇人妻不卡中文字幕| 18禁裸乳无遮挡动漫免费视频| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久 | 18禁在线播放成人免费| 欧美激情极品国产一区二区三区 | 久久久a久久爽久久v久久| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 看免费成人av毛片| 99久久精品国产国产毛片| 国产永久视频网站| 久热久热在线精品观看| 日韩大片免费观看网站| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看| 国产免费现黄频在线看| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 免费黄网站久久成人精品| 99久久中文字幕三级久久日本| 黄色欧美视频在线观看| 国产精品女同一区二区软件| 97超碰精品成人国产| 97在线视频观看| 中文字幕久久专区| 久久久久视频综合| 国产淫语在线视频| 综合色丁香网| 在线天堂最新版资源| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 自线自在国产av| 精品午夜福利在线看| 亚洲精华国产精华液的使用体验| 久久久久久久久久成人| 91久久精品国产一区二区成人| av.在线天堂| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线 | 国产伦理片在线播放av一区| 亚洲成人手机| 满18在线观看网站| 热re99久久精品国产66热6| 亚洲国产av新网站| 久久婷婷青草| 免费观看性生交大片5| 全区人妻精品视频| 韩国av在线不卡| 久久精品久久久久久噜噜老黄| 在线观看一区二区三区激情| 国产高清国产精品国产三级| 岛国毛片在线播放| 老司机影院成人| 街头女战士在线观看网站| 久久精品国产鲁丝片午夜精品| 九色成人免费人妻av| 亚洲在久久综合| 亚洲欧美清纯卡通| 蜜臀久久99精品久久宅男| 内地一区二区视频在线| 有码 亚洲区| 伊人久久精品亚洲午夜| 2021少妇久久久久久久久久久| 欧美亚洲 丝袜 人妻 在线| av线在线观看网站| 一级a做视频免费观看| 亚洲精品美女久久av网站| 我要看黄色一级片免费的| 免费高清在线观看视频在线观看| 亚洲图色成人| a级毛片免费高清观看在线播放| 精品酒店卫生间| 精品一区二区三区视频在线| 一区在线观看完整版| 久久久久久久亚洲中文字幕| 精品久久久久久久久av| 一级毛片aaaaaa免费看小| 国国产精品蜜臀av免费| 久久亚洲国产成人精品v| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| av线在线观看网站| 伦理电影免费视频| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 少妇的逼水好多| 亚洲成人手机| 亚洲精品视频女| 欧美成人午夜免费资源| 久久久精品94久久精品| .国产精品久久| 国产精品99久久99久久久不卡 | 一区二区日韩欧美中文字幕 | 亚洲国产色片| 国产欧美日韩综合在线一区二区| 午夜免费观看性视频| 午夜福利视频精品| 亚洲精品自拍成人| 新久久久久国产一级毛片| 国产日韩一区二区三区精品不卡 | 日日爽夜夜爽网站| 国产永久视频网站| 99久久人妻综合| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 韩国高清视频一区二区三区| 黑人高潮一二区| 伊人久久精品亚洲午夜| 曰老女人黄片| 久久久久精品久久久久真实原创| 成人午夜精彩视频在线观看| 国产成人a∨麻豆精品| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 欧美少妇被猛烈插入视频| 夫妻性生交免费视频一级片| 一边摸一边做爽爽视频免费| 中国三级夫妇交换| 十八禁网站网址无遮挡| 久久久久精品性色| 亚洲怡红院男人天堂| 国产精品不卡视频一区二区| 国产精品久久久久成人av| 国产熟女午夜一区二区三区 | 日日爽夜夜爽网站| a级毛片在线看网站| 伊人久久国产一区二区| 亚洲情色 制服丝袜| 大话2 男鬼变身卡| 成年av动漫网址| 亚洲欧洲精品一区二区精品久久久 | 国产精品99久久久久久久久| 色婷婷久久久亚洲欧美| 3wmmmm亚洲av在线观看| 少妇被粗大的猛进出69影院 | 国产日韩欧美视频二区| 爱豆传媒免费全集在线观看| 久久鲁丝午夜福利片| 下体分泌物呈黄色| 亚洲伊人久久精品综合| 中国美白少妇内射xxxbb| 亚洲欧美清纯卡通| 日韩中字成人| 久久久欧美国产精品| 亚洲精品国产av成人精品| 一区在线观看完整版| 日韩欧美一区视频在线观看| 能在线免费看毛片的网站| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 一区在线观看完整版| 人妻 亚洲 视频| 国产在视频线精品| 久久精品国产自在天天线| 少妇的逼水好多| 美女cb高潮喷水在线观看| 看非洲黑人一级黄片| 蜜桃在线观看..| 亚洲四区av| 一区二区av电影网| 伦精品一区二区三区| 午夜激情av网站| 亚洲av.av天堂| 不卡视频在线观看欧美| 狂野欧美白嫩少妇大欣赏| 一级毛片 在线播放| 久久久久国产网址| 久久精品国产亚洲网站| 欧美精品国产亚洲| 成人亚洲精品一区在线观看| 国产69精品久久久久777片| 国产精品免费大片| 国产av码专区亚洲av| 在线亚洲精品国产二区图片欧美 | 老司机影院毛片| 丝袜在线中文字幕| 国产亚洲最大av| 我的老师免费观看完整版|